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ABSTRACT

This paper presents a constraint-network formulation for maintaing consistency of beliefs in
dynamically changing knowledge bases. It exploits techniques developed for Constraint-
Satisfaction problems and provides an efficient distributed scheme for updating beliefs in singly
connected constraint-networks.

We present a belief-revision process consisting of two phases. In the first phase, called
support-propagation, each variable updates the number of extensions consistent with each of
its values. The second, called diagnosis, is invoked by a variable that detects a contradiction,
and identifies a minimal set of assumptions that accounts for the contradiction. The support-
propagation phase is accomplished in a single pass through the network while the diagnosis pro-
cess takes at most 4 passes. Overall, the impact of any new input to the system can be pro-
pagated in at most 5 passes through the network. Extensions of this scheme to multiply-
connected networks using the cycle-cutset and clustering approaches, are also discussed.

*This work was supported in part by the National Science Foundation, Grant #DCR 85-01234



1. Introduction

——

Reasoning in dynamic environment is a central issue in Artificial Intelligence. If one assumes a
partiaily described state of the world (representing the current focus of reasoning), and allows
the "unexplicated" portion to impinge upon it by either adding or deleting facts, the difficuity is
to keep the explicated knowledge "consistent” so that queries of interest (e,g., is P true?) can be
reliably answered at all times. Various non-monotonic logics as well as truth-maintenance sys-
tems have been devised to handle such tasks [Doyle 1979, De-Kleer 1983]. This paper presents
a constraint-network formulation of this problem and, using theoretical results developed for
managing static networks, offers both an effective scheme of belief revision and a unifying

abstraction within which other formulations can be tested, understood and compared.

We shall assume, as is in propositional and predicate calculus, that knowledge is
repre‘sentcd by facts and relations among facts, i.e. by constraints among various entities. The
constraint-Satisfaction Model (to be expounded later) is a simple language developed for
representing systems of constraints that has the expressive power of propositional calculus and is
extensively used for expressing static problems. A substantial body of knowledge for solving
problems stated in this language was developed [Mackworth 1977, Montanari 1974, Freuder
1982, Dechter 1985] and some of its techniques e.g. backtrackings, dependency-directed back-
tracking etc, were also used in truth-maintenance systems (Doyle 1979, De-Kleer 1983]. The
purpose of this paper is to establish a firmer link between non-monotonic reasoning systems and

Constraint-networks, by showing how the latter handles dynamically changing environments.
2. The model

A static constraint satisfaction problem (CSP), also referred to as a a constraint-
network (CN), involves a set of n variables X1,...,X,, each represented by its domain values,

Ry,....R,, and a set of constraints. A constraint Ci(X; , - - . Xi)) is a subset of the Cartesian



product R; X -+ XRj, that specifies which values of the variables are compatible with each other.

A solution (also called arrextension) is an assignment of values to all the variables which satisfy
all the constraints, and the task is to find one or all solutions. A constraint is usually represented
by the set of ail tuples permitted by it. A Binary CSP is one in which all the constraints are
binary, i.e., they involve only pairs of variabies. A binary CSP can be associated with a
constraint-graph in which nodes represent variables and arcs connect pairs of variables which
are constrained explicitly. Consider, for instance, the CSP presented in figure 1a (modified from
[Mackworth 1977) ). Each node represents a variable whose values are explicitly indicated, and
each link is labeled with the set of value-pairs permitted by constrained variables (the constraint

between connected variables is a strict lexicographic order along the arrows.)

X1

Figure 1: An example CSP

Dynamic Constraint-Networks (DCN) is a sequence of static CN’s each resulting from
a change imposed by the "outside world" on the preceding one. Changes can be of two types:
restrictions or relaxations. Restrictions occur when a new constraint is imposed on a subset of

existing variables (e.g. forcing a certain value for a variable), or when a new variable is added to



the system via some links. The added links may represent unary consu'aints,'(i.c. restricting the
domain values), or of a higher dimension ( restricting a subset of the newly introduced variables
and some variables already in the network). Figure 1b shows a change occurring in the model of
figure la, by adding variable X ¢ and its associated (lexicographic) constraint. Restrictions can
only expand the model, i.c. they add variables and add constraints so that the associated con-

straint graph (representing the knowledge) monotonically grows.

We will impose this monotonicity property on relaxing changes as well, although such
changes more naturally correspond to deletion of facts. If, for instance, a certain fact or con-
straint, is no longer known to be true, (i.e. it is in a "don’t know" state), it seems appropriate to
remove it from the network altogether. We insist, however, that the network will only grow
(with the exception that unary constraints can be deleted) with the effect that, once a variable or
a constraint enters the network, it will always stay there. This restriction requires to model
potentially relaxable constraints in a special way. Consider, for example, two variables X and
X , with a binary constraint C 3., (Figure 2a). In order to express the change "C 2 is not known
to be true any more" an additional variable, X3, is introduced, together with a a ternary con-
straint between X 1, X2 and X3 representing the relations: " X3 = 1 if C 2 hoids and X5 =0 oth-
erwise" (in figure 2b the edges are connected to indicate a ternary constraint). Initially, thereis a
unary constraint associated with variable X3 restricting its value to "1", thus expressing the fact
that constraint C 1, holds. A change requiring the removal of C 13 can be expressed by eliminat-
ing this unary constraint frotn X3. In general, when an i-ary constraint is not expected to be

always true it should be modeled by an i+1-ary constraint as indicated by the example.

The traditional tasks posed to the network can be to find a consistent extension or to find
all consistent extensions. In Truth-maintenance systems the interest is in finding theorems, ie.
in detecting those variables having only one consistent value in all extensions. Such variable-

value pairs, will be called implied. The task on which this paper focus, however, is to determine
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what we call, the support vector, of each variable, namely, to label each value with the fre-
quency of its appearance in the set of all extensions. The reason for selecting this task is that all
the other tasks can be easily derived from it. For instance, a variable’s value is implied if its
associated support is positive and is zero for the rest of the values. Similarly, having a variable
with a zero-support-vector indicates a contradiction, (i.e. no consistent extension exists). Addi-
tionally, the pattern of support vectors can facilitate the efficient extraction of the set of all

extensions (by making consistent assignment of values with non-zero supports).

The main contribution of this paper lies in providing an efficient scheme of propagating
the revisions necessary for keeping all support vectors consistent with external changes. The
scheme is presented for singly connected networks, and can be extended to the multiply-

connected networks, where its complexity becomes a function of the sparseness of the network.

The following section describes how to derive and maintain the support information
efficiently, in a binary tree-structured DCN (Dynamic-Constraint-Network). Section 4 extends
the model to handle assumptions and contradictions, section 5 extends the scheme to include k-
ary constraints, and section 6 discusses extensions to multiply-connected networks and contains

concluding remarks.



3. Support propagation in trees

It is known that when constraint networks have tree-topology, they can be solved easily
[Dechter 1985, Freuder 1982]. Moreover, the number of solutions on such tree-networks can
be computed very efficiently. It turns out, that many of the sequential algorithms on trees can be
adapted naturally to a distributed implementation and can be used for propagating beliefs and

maintaining consistency.

Let each variable be associated with a support vector. The following paragraphs present
a scheme for updating the support vectors following a change to the network. Consider a frag-

ment of a tree-network as depicted in figure 3.
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Figure 3

The link (X,Y) partitions the tree into two subtrees: the subtree containing X, Tyy(X), and the

subtree containing Y, Txy(Y). Likewise, the links (X,U), (X,V), and (X,Z), respectively, define
the subtrees Txy (U), Txv(V) and Txz(Z). Denote by sx(x) the overall support for value x of X,
by sx(x/Y) the support for x contributed by subtree Txy(Y), i.c. the number of extensions res-
tricted to this subtree that are consistent with X =x, and by sy(y/-X) the support for ¥ =y in

Txy(Y). (These notations will be shorten to s (x),s(x/Y) and s (y/-X) respectively whenever the



identity of the contributing subtree is clear). The support for any value x of X is given by:

s(x)y=  II  s@x/Y), (D
Yeneighbors
namely, it is a product of the supports contributed by each neighboring subtree. The support that

Y contributes to X =x can be further decomposed as follows:

sx/¥)= ) s(y/=X) )
(xy)eCX.Y)
Namely, since x can be associated with several matching values of Y, its support is the sum of

the supports of the associated y-values. Equalities (1) and (2) yield:

sxy=_ O Yy  so/-X) (3)
Ye Mlgthﬂ!S(x‘y)EC X.Y)
Equation (3) lends itself to a nice propagation scheme, i.e., if variable X gets from each neigh-
boring node, ¥, a vector of restricted supports, (also called the support vector from Y to X)
sy 1/-X)y....50:/-X))
(y; is in ¥’s domain), it can calculates its own support vector according to equation (3) and at the

same time it can generate the appropriate messages to its neighbors. The message, (s (x/-Y)),

that X sends to Y is the support vector reflecting the subtree Txy(X), and can be computed by:

s(x/-Y)= I1 Yy  s(z/-X) (4)
Ze neighbouwrs , Z*Y(x.z)e CX.2)

The message generated by a leaf-variable is a vector of "zero"s and "one"s expressing the unary
constraint on its domain, i.e. "0" is associated with each illegal value and "1" with every legal

value.

Assume, that the network is initially in a stable state and the task is to maintain this sta-
bility when a new input causes a momentary instability. The updating scheme is initiated by the
variable directly exposed to the new input. Any such variable will recalculate and deliver the
support vector for each of its neighbors. When a variable in the network receives an update-
message, it recalculates its outgoing messages, sends them to the rest of its neighbors, and at the

same time updates its own support vector. The propagation due to a single outside change will



propagate through the network only once (no feed-back), since the network has no loops. If the
new input is a "restrictron” , it may cause a contradictory state, in which case, all the nodes in the

network will converge into a "0" support vector.

To illustrate the mechanics of the propagation scheme described above, consider the
problem of figure 1a. In figure 4a the support vectors and the different messages are presented.
(the order within a support vector corresponds to the order of values in the originating variable,
namely message (8,1) from X3 to X represents (sx,(a/~X1) , 5x, {b/-X1)). Suppose now that
the system is forced by an outside change to restrict the value of X5 to "b". In that case X, will
originate a new message to X3 of the form (0,1,0). This, in tumn, will cause X3 to update its sup-
ports and generate updated messages t0 X 1,X4 and X 5 respectively. The new supports and the

new updated messages are illustrated in figure 4b.

(@

Figure 4

If one is not interested in calculating numerical supports but merely in indicating whether
a given value participates in some extension, (i.e. having "1" if it does and "0" otherwise), then
flat support-vectors can be propagated in exactly the same way; the summation operation in (3)

should be replaced by the logic operator "OR", while the multiplication can be replaced by



HAN'D".

4. Handling assumptions and contradictions

While most of the changes imposed on the system comes from the outside world, it is
common in non-monotonic reasoning to allow the system to make assumptions i.e., temporary
restrictions imposed by the system for inferential purposes. When contradictions occur, they no
longer indicate a state of dead-end but only state that under the current set of assumptions a con-
sistent extension no longer exists. The system is now at liberty (or obligation) to reverse and
change the assumptions to achieve a non-contradictory state. This process is modeled by allow-
ing the system internally to impose unary constraint on some variables, marked as assump-

tions, and later to delete or change them in a contradiction resolution process.

The main task in a conflict resolution process, is to identify a smallest set of assumptions
that may account for the conflict. We will call this process the diagnosis task, (Uncoincidently,
this task is closely related to the way we formulated the problem of circuit diagnosis, where
devices were modeled as assumption variables and the task was to identify a minimal number of
faulty devices that will cxbla'm the system fault. For details see [Dechter 1986., Geffner 1986].
). The diagnosis process, too, can be performed distributedly but, unlike the support propagation
scheme, it has to be synchronized. Assume, at first, that when variable X detects a contradiction
it propagates this information to the whole network, and during this propagation process it
creates a directed tree rooted at itself. (Later we show that only a relevant subtree actually needs

be activated). Given this tree, the diagnosis process proceeds as follows:

With each value v of V we associate a weight w (v), indicating the minimum number of
assumption-changes in the directed subtree rooted at V, which needed to make v consistent.

These weights obey the following recursion:



w(¥)=Y min _w(y;) (5)
Y, »yeC (V.1
when {Y;} are the set Sf Vs children and their domain values are indicated by y;;; i.e. y;; is the

j* value of variable Y;, (see figure 5).

min{wi,w3}

Y, Yy Y3 Yi

Figure 5
The weights associated with assumption-variables will be "0" if no change is assumed and "1"
otherwise. The computation of the weights is performed distributedly and synchronously from
the leaves to the root. A variable waits to get the weights of all its children, computes its own
weights according to (5), and sends them to its parent. During this bottom-up-propagation a
pointer is kept from each value of V to the values in each of its child-variables, where a
minimum is achieved. When the root variable X receives all the weights, it computes its own
weights and selects one of its values that has a minimum weight. It then initiates (with this
value) a top-down propagation down the tree, following the pointers marked in the bottom-up-
propagation, a process which generates a consistent extension with a minimum number of
assumptions changed. At termination this process marks the assumption variables that need to

be changed and the appropriate changes required.

There is no need, however, to activate the whole network for the diagnosis process,
because the support information available clearly points to those subtrees where no assumption
change is necessary. Any subtree rooted at V whose support vector to its parent, P, is strictly

positive for all "relevant" values, can be pruned. Relevancy can be defined recursively as fol-
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lows: the relevant values of V are those values which are consistent with some relevant value of
its parent, and the relevant values of the root, X, are those which are not known to be excluded

by any outside-world-change, independent of any change to the assumptions.

To illustrate the diagnosis process, consider the network given in figure 6a, which is an
extension to the network in figure la (the constraint are strict lexicographic order along the
arrows.) Variables Xy, X and X7 are assumption variables, with the current assumptions indi-
cated by the unary constraints associated with them. The support messages sent by each variable
to each of its neighbours are explicitly indicated. (The overall support vectors are not given
explicitly.) It can be easily shown that the value a for X3 is implied and that there are 4 exten-
sions altogether. Suppose now that a new variable X g and its constraint with X3 is added (this is
again a lexicographic constraint.) The value a of Xy is consistent only with value b of X3 (see
figure 6b). Since the support for @ of X3 associated with this new link is zero, the new support
vector for X5 is zero and it detects a contradiction. Variable X3 will now activate a subtree for
diagnosis, considering only its value b as "relevant”, (since, value a is associated with a "0" sup-
port coming from Xg which has no underlying assumptions). In the activation process, X 4 and
X 5 will be pruned since their support messages to X 3 are strictly positive. X | will also be pruned
since it has only one relevant value ¢ and the support associated with this value is positive. The
resulting activated tree is marked by heavy lines in figure 6b. The diagnosis process of this sub-
tree will be initiated by both assumption variables X ¢ and X7, and it will determine that the two
assumptions X ¢ =c and X7 = ¢ need to be replaced with assuming d for both variables (the diag-

nosis computation itself is not demonstrated).

Once the diagnosis process had been terminated, all assumptions can be changed accord-
ingly, and the system can get into a new stable state by handling those changes as if they were an
outside world changes, i.e by propagating the newly updated support vectors. If this propagation

is not synchronized, the amount of message passing on the network may be proportional to the
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te)
number of assumptions changed. If, however, these message updating is synchronized, the net-

work can reach a stable state with at most two message passing on each arc. Figure 6c, give the

new updated messages after the system had been stabilized.
5. Handling arbitrary constraints

Non-binary constraints can have various graphical representations each capturing some
aspects of the constraint. In Bayes networks, for instance [Pearl 1986], they are represented by
directed graph, namely, a node and all its parent nodes is connected by a hyper constraint,
quantified by its conditional probability given all its parents. For our needs we choose to stay in

an undirected graph representation, and represent a k-ary constraint by a complete graph among
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the constrained variables, adding connecting marks to distinguish it from a set of binary con-
straints. (see figure 7)—The parallel of trees in such generalized constraint graphs are singly-
connected networks, in which every two constraints have at most one common variable and a
sequence of "connected” constraint does not contain a cycle. Figure 7a and 7b presents both

singly-connected and multiply-connected networks, respectively.

@ ®)

Figure 7

An extension of the support propagation scheme to singly-connected networks follows. Con-
sider a variable X and its neighboring constraints, as depicted in figure 8a. Variable X partici-
pates in constraints C; (a 4-ary consn'ain;) , C, , and C; (binary constraints). An i-ary con-
straint separates the network into i singly connected sub-networks each containing one of the
constraint variables. Denote by Tc(X), the tree containing X that result from separation by con-
straint C ( see figure 8a), by s(x/—C) the support for X =x which is contributed by T¢(X) (see
figure 8a), and by C;(X) the i constraint associated with X. The overall support for x of X
satisfies the following recursion:

!
sx)= TI Y _Hs(vjl—C;(X)) (6)
Ci(x)(x.v,,vz, .. ..w,)EC,-(X)»'=1
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Equation (6) suggests the following modification to the support propagation scheme: A
variable, X, sends to each of its neighboring variables via constraint C, its support vector
(s (x1/—C),...,s (x;/—C)), i.e. the support which it receives "outside" of constraint C (i.e. contri-
buted by Tc(X)). At the same time it will receive from each of this neighbours their supports
outside this constraint C, enabling it to compute both its overall support (according to (6)), and
its respective contributing supports to be sent to the rest of its neighbors. When a variable gets a
message from a neighbor in constraint C, it updates the relevant messages to all its neighbors
excluding those that share constraint C with it ( see figure 8b ). For this scheme to work, each
variable has to know all its constraints explicitly, namely, an i-ary constraint will have to be

duplicated at each one of its i variables.

The diagnosis process can be similarly modified for singly connected general constraint
graphs. For details see [Dechter 1986.] Both the support propagation phase and the diagnosis
process on singly-connected networks take the same amount of message passing as their

simplified (binary-constraints) versions.
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6. Summary and conclusions

We presented an efficient scheme for belief revision in dynamic networks of constraints
which are singly connected. The scheme contains two main phases: support updating and
conflict resolution. The first handle non-contradictory inputs and requires one pass through the
network. The latter finds a minimum set of assumption-changes that resolves the conflict. The
diagnosis process may take five passes in the worst case: activating a diagnosis subtree {one
pass), determining a minimum assumption set (two passes) and updating the supports with new

assumptions (two passes).

When the network contains loops the scheme can be extended using two approaches:
Cycle-cutset and clustering. The cycle-cutset method is based on the idea that when a variable
is instantiated, it actually cuts all paths through it. Therefore, if we instantiate a set of variables
that constitutes a cycle-cutset, the resulting network is singly connected and our propagation
scheme holds. This method has been used and tested in static CSPs. (see [Dechter 1987]. Clus-
tering involves grouping variables into clusters so that the resulting structure is singly con-
nected. This require computing and storing the constraint associated with each cluster. The
quality of this approach is dependent on the sizes of the resulting clusters while the quality of the
cycle-cutset method is dependent on the size of the cutset. A combination of the two approaches

is also feasible.

The computational difficulties associated with the presence of loops are not unique to our
constraint-network formulation but are inherent to the basic problem of consistency maintenance
and will appear, under various disguises, under any formalism. The importance of network
representation, though, is that it identifies the core of these difficulties, estimates the expected
complexity, and provides a unifying theoretical underpinning that encourages the exchange of

strategies across domains.
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