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ABSTRACT

Strong relationships exist between the topological properties of the constraint graph of given
constraint satisfaction problem (CSP) and the computational tractability of that problem. Gen-
erally speaking, it is best for the constraint graph to have as few edges as possible. This paper
deals with two main issues. First, we discuss the type of information exhibited by the constraint
graph and the relevance of this information to the solution of the CSP. Second, we consider the
possibility of changing the representation of a given CSP in order to obtain a more informative
constraint graph. Observing that ordinary path-consistency operation usually adds edges to the
network, we propose a modified path-consistency scheme preventing this from occurring. We
then develop two approximation algorithms (which do, in some sense, the reverse of path-

consistency) for reducing the connectivity in the constraint graph, and prove their properties.
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1. Introduction

Graphs offer useful representations for a variety of phenomena. The constraint graphs associated

with networks of binary constraints are a prominent example.

A network R of binary constraints defined on a set of variables /X ,...,X,} is a set of
relations R;; from every variable X; to every variable X;. A network of constraints R represents a
unique (possibly' empty) n-ary relaton p (ie., a subset of the space
X =dom(X ) x*- x dom (X,), where dom (X;) denotes the domain of X;) such that an n-tuple ¢
is allowed by p if and only if its projections on all the two-dimensional subspaces of X simul-
taneously satisfy the binary constraints of the network R. A constraint graph corresponding to a
network of constraints consists of a vertex for each variable and an edge for each binary con-

straint which is not the universal constraint (i.e., comprising the entire subspace).

A Constraint Satisfaction Problem (CSP) is concerned with the task of finding either one
or all of the n-tuples allowed by the relation p represented by a given network of constraints R
(or finding that it is empty). CSPs have applications in many Al areas. Picture recognition, elec-

tronic circuit analysis, and truth maintenance systems are examples.

The constraint graph has an obvious role as a means of visualizing a network of con-
straints. More significantly, however, strong relationships exist between the topological proper-
ties of the constraint graph and the tractability of the constraint satisfaction problem. For exam-
ple, it was shown that if the constraint graph is a tree then the problem can be solved in time

linear in the number of variables.



The utility of the constraint graph stems from the fact that it carries important indepen-
dency information about the relations under consideration. The fact that the constraint graph is a
tree, for example, mcans; ;hﬁt instantiating any variable to some specific value renders the sub-
problems associated with the subtrees adjacent to the instantiated variable completely indepen-
dent on one another, in the sense that choices made in one subproblem do not affect in any way
choices made in any other subproblem. This is precisely the property that makes the solution of

tree-structured CSPs an easy task.

This capacity for highlighting independencies, makes any constraint graph an /ndepen-
dency map (I-map [Pearl1986] ), of the relation it represents. A graph G is said to be an I-map
of a dependency model I if there is a one-to-one correspondence between the variables of the
model and the vertices of G and if each separation in the graph implies a comresponding condi-
tional independence in the model (where the exact meaning of conditional independence

depends on the specific model).

An I-map works only in one way: it guarantees that vertices found to be separated always
correspond to independent variables, but does not guarantee that all those shown to be connected
are in fact dependent. A complete graph is a trivial I-map, but it does not show any independen-
cies at all. An I-map (and, as such, a constraint graph) would carry the greatest amount of infor-

mation when depicting as many independencies as possible, i.e., when it is edge-minimal.

The theory of graphoids [Pearl1986] uncovers sufficient conditions for a set of indepen-
dencies among a finite collection of elements to possess a unique edge-minimal I-map. (These
conditions define a graphoid.) Unfortunately, independencies induced by binary networks of
constraints do not satisfy all of these conditions and, in general, do not have unique minimal I-
maps. Similarly, as we show later, binary networks of constraints do not have unique edge-
minimal constraint graphs. In this paper we examine the issue of improving the representation

of a constraint satisfaction problem by reducing the number of edges in its constraint graph.



The paper has the.folloying plan. The next section discusses the relationships between
the tractability of a CSP ar—ld the amount of independencies exhibited by its constraint graph, and
motivates the need for reducing the connectivity of the constraint graph. Section 3 briefly
explores the properties of constraint graphs as I-maps. Section 4 develops the notion of reduci-
bility of networks of constraints. Section 5 suggests a procedure for obtaining an approximation
of a network of constraint whose constraint graph is minimal. A modified version of the algo-
rithm, called directional path-redundancy, is discussed in Section 6. Section 7 contains conclu-

sions and suggestions for further study.
2. Why Reduce the Constraint Graph?

The information conveyed in the fact that two variables are not directly constrained, i.e., that
they are independent given some subset of variables, can be valuable, if it is exploited by algo-
rithms that solve CSPs. As mentioned above, if the constraint graph of a CSP has a tree struc-
ture, it is possible to solve the problem in O(nk2) when n is the number of variables and & is the
number of values [Freuder1982, Dechter1985]. Therefore, if the constraint graph can be reduced

into a tree, the special tree-algorithm can be used to solve the problem efficiently.

Most problems, however, may not be reducible into a tree structure. In these cases it is

possible to exploit independencies in the constraint graph in several ways.

One approach, called the cycle-cutset approach [Dechter1986a] is based on the following
observation: If a subs;ct of instantiated variables cuts all cycles in the constraint graph, the
remaining problem can be solved in linear time by the tree-algorithm. Thus, a general search
algorithm can be used to find a partial consistent solution for the variables in the cutset, and then

the tree-searching algorithm can be invoked to solve the rest of the problem.

If the cycle-cutset contains ¢ variables, then for each consistent instantiation of these

variables, a tree-problem with (n-c) variables needs to be solved. In the worst case the tree-



problem needs to be solved &° times. Since the complexity of the tree algorithm is linear we get
that the the worst-case performance of the cutset approach whe'n. the cutset-size is ¢ is &€,
while the general knowﬁ-u-pper-bound for such problems is O(k"). As the size of the cutset
becomes smaller the worst-case bound is smaller and the problem can be solved more efficiently.

Problems that have sparser constraint graphs will generally tend to have smaller cutsets and can

be more easily solved.

Another enhancement of backtrack algorithms, called graph-based backjumping, also
benefits from the indcpcncicncies represented by the constraint graph. It is based on the idea
that, upon encountering a dead-end, the backtrack algorithm should *‘jump’’ back directly to a
variable that could have caused that dead-end rather than simply backing to the most recently
instantiated variable, as would a naive backtrack algorithm do. Pertinent information for finding
the culprit is readily available in the constraint-graph: The algorithm should go back to the most
recent variable which is connected to the dead-end variable [Dechter1986b]. It is clearly advan-
tageous, for realizing the full benefits of this approach, that the constraint graph exhibits as many
independencies as possible, since this will result in bigger backjumps which, in turn, will cause

larger chunks to be pruned off the search space.
3. Constraint Graphs as I-maps

In Section 1 we argued intuitively that a constraint graph is an I-map of the relation it represents.
To show this we must first provide a precise interpretation for the notion of conditional indepen-

dence in the present context.

Let p denote an n-ary relation, i.e., a subset of the space § =dom(X) x - - - xdom(X,),
where T ={X,, X3, ..., X} is a set variables and dom (X;) is the domain of variable X;. Let
Sy =dom(X;,) x -+ - x dom (X ) denote a subspace of §, where X = {X;,..., X; }is a subset of

the variables, and let Tlx(p) denote the projection of p onto Sy. A set of values



X ={X,..., x;} is said to be legal in p for X if x € TIx(p). A specific set of values x is
referred to as an instantiation of X and corresponds to a selection of p, denoted Gy, (p), which

is a relation consisting precisely of those tuples of p that satisfy the instantiation.

Definition: A subset of variables X is said to be independent of another subset Y in some

relation p if ITx(Gy-y(p)) = [L(p) for any legal instantiation y of Y.

It is easy to see that when X is independent of Y, so is Y on X, and we simply say that X
and Y are independent. A necessary and sufficient condition for X and Y to be independent is that

Ox =x,7=y(P) = Ox=x(P) X Oy, (p) for any x and y.

Definition: Two non-intersecting sets of variables, X and ¥, are said to be conditionally
independent given a third subset of variables, Z, if they are independent in the selection
corresponding to any legal instantiation of the variables in Z. The notation (X 1Z1Y) will be

used to denote the independence of X and Y given Z.

For example, consider the following relation involving four variables A, B, C, and D:

i

A and B are not independent in p, but are conditionally independent given D because they are
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independent in selections corresponding to instantiating D to both g and b. C and D are indepen-

dent in p, but are not conditionally independent given A.

The notion of conditional independence is equivalent to that of embedded multivalued
dependency (EMVD) in the theory of relational databases [Maier1983]. An EMVD Z —»—X (Y)
(read ‘‘Z multivalued determines X in the context of ¥*”) implies that (X |Z 1Y), and vice versa.

The notion of embedded multivalued dependency is, in turn, a generalization of that of mul-



tivalued dependency (MVD). An MVD Z -5—X is equivalent to (X 1 Z1T - (ZUX)). Thus, mul-
tivalued dependencies represent a special type of conditional independencies where one set of

variables makes another set independent on the rest of the variables.

It is easy to show that if, in a constraint graph, the nodes corresponding to a subset X of
variables are separated from those corresponding to a subset Y by the nodes corresponding to a
subset Z, then X is independent of Y given Z. Thus, the constraint graph must be an I-map of the
relation that it entails (more precisely, of the independencies embedded in the model represeted

by the relation).

On the other hand, not every I-map for a relation can be associated with a constraint

graph. Consider, for example, the following relation p:

o pi
oo e
o oo |
o o »|Q

The following independencies can be observed in p (among many others):
(A1D1B), (41D 1C), (BID1C), (A1{B.C}1D), (C|{A,B}1D), (B1{A,C}]D)

The two graphs in Figure 1 are minimal I-maps of this relation, i.e., no edge can be removed
without destroying its I-mapness. However, while the graph in 1(a) is also a constraint graph of
p, the graph in 1(b) is not, i.e., there is no way to back the edges of 1(b) with constraints whose

simultaneous solution yields p.
4. Reducibility in Network of Constraints

The absence of an edge between two nodes in a constraint graph indicates that the constraint
between the corresponding variables is the universal constraint. Minimizing the number of
edges in the constraint graph of some CSP corresponds, therefore, to representing the problem

by a network of constraints with as many universal constraints as possible.
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Figure 1 - Two minimal I-maps of p

Definition: A network of constraints for which a subset U of constraints are universal is

called a U-network. U corresponds to the missing edges in the constraint graph.

Definition: Two networks of constraints R’ and R” which represent the same n-ary rela-

tion p are called equivalent.

Definition: A U-network of constraints R (or its constraint graph) is said to be irreducible

if no equivalent U’-network R’ exists such that U c U,
q

For any network of binary constraints, a constraint between two variables may always be
removed (i.e., replaced by the universal constraint), with the result being an equivalent network,

if it is redundant in this network. This notion is given a precise definition next.

For any two variables X; and X; a distinction can be made between their direct constraint
R;;, and the constraint R ; induced on them by the rest of the network. The induced constraint
can be thought of as a binary relation consisting of all the instantiations of the variable-pair
X;, X j) which are consistent with all other constraints in the network. The global constraint

between X; and X; is the intersection of the direct and the induced constraints.

Definition: A constraint R;; is said to be redundant if it does not add any further restric-

tions on the global constraint between X; and X;, i.c., if R;; < Rj;.



If at least one of the non-universal constraints of a network of constraints is redundant
then, clearly, the network and its constraint graph are reducible. However, just the fact that none
of the non-universal coris?u%ainfs is redundant does not necessarily imply that the network is
irreducible. It might be possible to remove a non-redundant constraint at the expense of restrict-

ing one or more of the other non-universal constraints in the network.

As an example, consider the network of Figure 2(a), which possesses a single solution
(a b a). None of its constraints is redundant and thus may not be unilaterally removed. How-
ever, the network is reducible, since, for instance, an equivalent network results from removing
the constraint between variables B and C and, at the same time, deleting the pair (b b) from the

constraint between A and C (see Figure 2(b)).

AN
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Figure 2 - A Reducible Network with No Redundant Constraints

This asymmetry in the relationships between reducibility and redundancy would be

avoided if all non-universal constraints were explicit.

Definition A constraint R;; is said to be explicit if the remainder of the network does not

add any further restrictions on the global constraint between X; and X, i.e., if R;; E,-j.

A pair of values is permitted by the explicit constraint R}; if, and only if, it is part of at
least one solution. Thus, R}} =1y, X} (p), where p is the relation represented by the network., A

network of constraints all of which are explicit is a unique minimal network of constraints*



[Montanari1l974]. It is minimal in the sense that none of its constraints can be tightened (by
deleting one or more pairs of values) with the result being an equivalent network. We now gen-
eralize this notion to the case where some of the constraints in the network are forced to remain

universal.

Definition: a network of constraints for which a subset I/ of constraints are universal and

all the rest of the constraints are explicit is said to be U-minimal.

In the sequel we use the term U-minimal network as a generic name for networks of con-
straints which possess some set of universal constraints (while all other constraints are explicit),
and the notation {/’-minimal network, U/”-minimal network, etc., to refer to networks with

specific sets (U’, U”, etc.) of universal constraints.

Theorem 1: A U-minimal network of constraints (and its constraint graph) is irreducible

if, and only if, none of its constraints is redundant.

Proof: If at least one constraint is redundant then, clearly, the network is reducible. Now
suppose that none of the constraints are redundant. The removal of an non-redundant constraint
from a network of constraints representing an n-ary relation p results in a network representing a
relation which is strictly greater than p. This can potentially be compensated by restricting one
or more of the other constraints. However, the non-universal constraints cannot be restricted
because they are explicit, while restricting any universal constraint will result in the addition of

an edge to the network, thus reducing the set of universal constraints. ]

By definition, the U’-minimal network representation of a relation p is unique and can be

obtained by projecting p on all of its two-dimensional subspaces, except for the subset U’ of

* The notion of a minimal network of constraints should not be confused with that of a minimal
constraint graph. In fact, they represent two opposing tendencies: A minimal constraint graph is
associated with reducing the redundancy in the constraints (by eliminating redundant edges),
while a minimal network of constraints is likely to represent the relation in a redundant way and
to increase the number of edges in the constraint graph.
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constraints which are left universal. Clearly, not all relations are representable by a U’-network,
with an arbitrary set U’ of constraints. However, if a relation p cannot be represented by a U’
network for some set U "(;f constraints, the U’-network generated by the above construction is
the best approximation of p by such a network. The proof of the following result is similar to

that of Theorem 3.1 in [Montanari1l974].

Theorem 2: The network of constraints R” obtained by projecting p on all of its two-
dimensional subspaces, except for a subset U’ of universal constraints, represents an n-ary rela-

tion p” such that

4

PP .
Furthermore, no network R” with a set U” of universal constraints exists, which represents an n-
ary relation p” such that
pep’cp’.
Corollary: A relation p which is representable by a U’-network of constraints, has a

unique U’-minimal network representing it. [J

Given a U’-network of constraints, R, representing some relation p, the comresponding
U’-minimal network representation of p is the best representation for determining whether R is

reducible or not,

Theorem 3: A U’-network of constraints (and its constraint graph) is reducible if, and

only if, at least one of the constraints in the corresponding U’-minimal network is redundant.

Proof: This statement follows from the previous corollary and from Theorem 1, that
shows that redundancy of some constraint is necessary and sufficient condition for reducibility of

a U-minimal network. OJ

11



There is no unique irreducible U-minimal network of constraints (and, therefore, no
unique irreducible constraint graph) representing a given relation. Moreover, the sets of univer-
sal constraints of all equ-i\‘ra.lenf irreducible U/-minimal networks may not have equal cardinali-
ties. For example, the two networks of Figure 3 are both irreducible U/-minimal network

representations of the following relation:

oo R
o oas|lC

A|B
a a
a b
a b
b b

Figure 3 - Two Irreducible U/-minimal Network Representations of the Same Relation.

To demonstrate the amount of redundancy that might be present in a naive CSP represen-
tation of a problem we consider the 5-queen problem. The task in this problem is to place 5
queens on a 5x5 chessboard so that no queen is on the same row, column, or diagonal as any
other. A standard formulation of this problem as a binary CSP associates a variable with each
row (e.g., variables A, B, C, D, and E), each of which may be assigned one of five values (say, g,
b, ¢, d, and e) corresponding to the columns. There is a constraint between every pair of vari-
ables (for a total of ten constraints), consisting of all pairs of values which are not in direct
conflict. The constraints of this network are listed in the appendix to this paper. The constraint

graph of this formulation is the complete graph shown in Figure 4(a).
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To identify irreducible U-minimal network representation we first calculate the minimal
network of constraints by finding all the solutions and projecting on all variable-pairs. (The con-
straints of the minimal nét:w_ork_ are listed in the appendix. Its constraint graph is, of course, also
the complete graph of Figure 4(a)). Then, considering one constraint at a time, each constraint
found to be redundant is removed. The specific constraints removed in this way, and their
number, depend on the order in which the constraints are considered. In all orderings tried this
number was either four or five. The constraint graph of one irreducible U-minimal network
representation of this problem is shown in Figure 4(b). This representation is much easier to

solve than the original one since all cycles are cut by instantiating a single variable.

A A

Gy

c o) <
(@) 6) P

Figure 4 - The Constraint Graphs of Two Equivalent Representations
of the 5-Queen Problem
The task of obtaining an irreducible U-minimal network of constraints equivalent to a
given network, let alone finding one with a maximum number of universal constraints, is very
difficult. It would require knowing the constraints induced on any pair of variables by the entire
network (excluding the direct constraint between them), which is virtually equivalent to finding
the set of all solutions. Therefore, we look for an approximation of an irreducible U/-minimal
network, i.e., a network which has as few constraints as possible and is still computable with

local operations.

13



5. Approximating an Irreducible Network of Constraints

Montanary [Montanari1974] proposed to approximate the minimal networks of constraints of

binary CSPs by what has become known as path-consistent networks.

Definition: The constraint R;; between two variables X; and X; is said to be path con-
sistent if for any pair of values (x;, x;) permitted by this constraint, and for any path of length m
through nodes (V;i=Vy , Vi, ...,V Vi =V)) there is a sequence of values (21,27, ...,Zm-1)

such that
Riok, (xisz1y and Ry i, (z1,22) and - - -and R ¢ (zm-1.%;) -

A network of constraint is path consistent if all of its constraints are path consistent.

Definition: A pair of values (x;, x;) for which the condition of path consistency is not
satisfied by at least one path from node V; to node V; in the complete network R is called path-

illegal.

A constraint which is not path consistent can be made one by simply removing all path-
illegal pairs. The removal of these pairs does not change the problem because they are disal-
lowed anyway by the induced constraint for the pair of variables in question. To determine
whether a pair is path-illegal it is sufficient to consider only paths of length m=2 [Mon-
tanari1974]. Montanary and Mackworth [Mackworth1977] have proposed polynomial-time

algorithms for achieving path consistency in a network of constraints.

Similar methods can be used for approximating irreducible networks of constraints.
First, the notion of path consistency in networks can be generalized to cover U-minimal net-

works.

14



Definition: A network of constraints is said to be U-parh-consistent if all of its con-

straints are path-consistent, except for a set U of universal constraints.

Given a U’-network of constraints, an equivalent U’-path-consistent network can be

obtained in one of two primary ways:

1. By executing a complete path-consistency algorithm and then removing the constraints
of the set U’ from the resulting path-consistent network. This procedure is valid because
it simply amounts to augmenting the constraints of the set U’ by all the pairs that were
removed from them by the algorithm for being path-illegal. All these pairs remain path-
illegal after performing path-consistency and therefore may be added back to these con-

straints.

2. By using a modified path-consistency algorithm which does not touch the constraints of
the set U” at all. Any of the path-consistency algorithms proposed in the literature can be

trivially modified in this way.

The two procedures will not result, in general, in the same U’-path-consistent network.
The non-universal constraints of the network obtained by the first procedure are either equal or
contained by the corresponding constraints of the network obtained by the second procedure.
Thus, the first procedure is likely to provide a better approximation to the U’-minimal network.
The second procedure, on the other hand, has an obvious computational advantage. We will
refer to a generic algorithm that takes 2 U-network and generates a U-path-consistent network

(employing any of these methods) as the U-PATH-CONSISTENCY algorithm.

Now consider the task of identifying additional redundant constraints for the purpose of
their removal. The same consistency checks which are involved in attaining path-consistency
can be used in this task. This is based on the following observation: A pair of values (x;, x;)

which is path-illegal may be added to the constraint R;; (if it is not already part of that

15



constraint) without changing the problem. If, as a consequence of adding path-illegal pairs, the
constraint becomes the universal constraint, we may then conclude that it is redundant and
remove it. Let U;; be the universal constraint for the pair of variables (X;, X), and let L;; the set

of all pairs of Uj; which are path-illegal. The above observation is summarized in the following

definition.
Definition: A constraint R;; is said to be path-redundant if L;j 2 Uj; — R;;.

Clearly, if a constraint is path-redundant then it is redundant and may be removed. The
converse, however, is not true, i.e., it possible for a constraint to be redundant but not path-

redundant.

An algorithm for determining whether a constraint R;; is path-redundant is given below.

The algorithm returns frue if the constraint is path-redundant and false otherwise.

procedure PATH-REDUNDANT((, j))
begin
let U;; be the universal constraint for (X;, X;)
for a]f kij
let Q = U,'j —'R,-j
foreachp € Q
if not PERMIT (p, (i,/), k) let R,‘j =R;j v {p}

end
if R;; = U}; return true
end
return false
end

The procedure PERMIT(p, (i,j), k) (given below) returns true if the the pair p is per-
mitted for the variable pair (X;, X;) by the path (i -k —j), and false (i.e., the pair p is path-illegal)
otherwise. Thus, the algorithm examines all the paths of length 2 anchored at nodes i and /, and
augments the relation R;; by pairs that are found to be path-illegal. If this augmentation process

results with the constraint becoming the universal constraint, then the original constraint is

16



redundant.

procedure PERMIT(p, (i, /), k)
begin
let Dy be the domain of X
let p be (p;, p;)
forallv e D;
icfl (pi» v) € Ry and (v, pjy € Ry; return true
en
return false
end

The PERMIT procedure considers all legal values of X;, and returns true as soon as one
value is found consistent with the pair p. The complexity of PERMIT is O (k), where £ is the
number of possible values of each variable. The complexity of PATH-REDUNDANT is, there-

fore, O (nk3 ) where n is the number of variables.

Definition: A U-network of constraints is said to be path-irreducible if none of its non-

universal constraints is path-redundant.

A path-irreducible U-network equivalent to a given network of constraints may be
obtained by considering all non-universal constraints in some order and removing from the net-
work each constraint which is found to be path-redundant. One pass through the network is
sufficient because a constraint which is not path-redundant in a network will never become one
as a consequence of removing other constraints. This process is likely to discover more redun-

dancies if the non-universal constraints are as explicit as possible. this is accomplished by per-

17



forming U-path-consistency first. An outline of such a procedure is given below:

procedure REDUCE
begin
perform U-PATH-CONSISTENCY on R
let Q@ ={(i,j)IR;; € R, i #j}
forall (i,j)e Q
if PATH-REDUNDANT(({,/)) let R =R — (i, )
end
end

The procedure REDUCE returns a network which is both path-irreducible and U-path
consistent. Its complexity is O (cnk?), where ¢ is the number of constraints in R. The particular
network produced by this procedure depends on the order in which the constraints are considered

(i.e., their order in Q) and, of course, is not guaranteed to be of a maximal cardinality set U.

REDUCE was applied to the 5-queen problem CSP representation discussed in Section
4, using several random orderings. The number of constraint that were removed from the net-
work was either 3 or 4 in all cases (compared with 4 to 5 when true irreducible U-minimal net-
works are found). Constraint graphs of two irreducible U-path consistent networks for this prob-
lem are shown in Figure 5 (the constraints themselves are the same as those of the minimal net-
work appearing in the appendix). Notice that in order to cut all the cycles in the network of Fig-
ure 5(a), a minimum of two variables must be instantiated, but it take the instantiation of but a

single variable (A or B) to cut all the cycles in the network of Figure 5(b).

The procedure REDUCE can be thought of as a greedy algorithm which operates on a
search space defined as follows: Each state is a network of constraints equivalent to the original
network, and a legal operator is the removal of one path-redundant constraint. Each leaf node in
this space is a path-irreducible U-network of constraints. Our objective is to find a leaf node

having a maximatl set U, i.e., associated with the longest solution path.

18



NN
!

D
C & ,

(o, ‘\b )

Figure 5 - Two Irreducible U-Path-Consistent Networks for the 5-Queen Problem
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At each step the algorithm elects one out of the set of all path-redundant constraints for
removal from the network. This may cause some (or all) of the other candidates to become
non-path-redundant. therefore, heuristically, we would like to accord priority to those con-
straints whose removal leaves as many path-redundant constraints as possible. Several types of

heuristic information is available for guiding the choice in each step.

First, we note that the removal of a constraint can affect the path-redundancy status of
only constraints which are adjacent to it, i.e., share a variable with it. (This is so because only
paths of length m =2 are used to determine the path-redundancy of a constraint.) Two con-
straints which do not share a common variable are said to be independent of one another. Thus,
a reasonable heuristic evaluation function would be the number of constraints in the candidate
set which are independent of the constraint. A more precise approach would be to find the exact

number of constraints that will remain path-redundant after the removal of each constraint.

Observe that there is no guarantee that all the constraints which remain path-redundant
will eventually be removed by REDUCE. However, such would the case be if these constraints
were independent on each other. Thus, another possibility is to elect for removal a constraint

that has the largest set of path-redundant constraints which are both independent on it and
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independent on each other. Unfortunately, this is equivalent to finding a maximal independent
set of constraints, which js an NP-complete problem. An additional advantage of finding
independent sets of path-redundant constraints is that they all may be removed simultaneously,

thus saving considerable amount of calculation.

If an optimal solution is desired, i.e., a network with a maximal set U, it can be found by
performing less then an exhaustive search. Algorithm A* can be used to find the longest solu-
tion path on the search space described above. The evaluation function of each node will be
f = g+h where g is the length of the path from the initial state to the current state, and A is the
number of constraints which are still path-redundant. This heuristic function is admissible, since
it is an upper bound on the longest path to the goal, and is even monotone. Therefore, A* with
this evaluation function, will find the best solution and will never expand a node more then once.
The number of independent constraints among the removable constraints could be used to update

a lower bound of the longest solution path which, in turn, can be used to prune the search tree.
6. Directional Path-Redundancy

In Section 2 we explained that reducing the constraint graph will benefit backtrack algorithms
that utilize the constraint graph for backjumping, because of the increased number of backjump-
ing opportunities. At the same time, reducing the constraint graph involves the relaxation of cer-
tain constraints (those that are found to be redundant), which has the effect of increasing the
search-space the algorithm must explore. This is to be expected, since the reduction process
does exactly the opposite of what path-consistency operation, designed to reduces the search-
space, does. Therefore, no categorical claims can be made on the overall effect the reduction
operation might have on the performance of backjump algorithms, and these must be assessed

experimentally.
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It is possible, however, to guarantee that the search-space explored by the algorithm will
not change at all, by usmg a restricted form of the reduction operation. The basic idea is to tie
the definition of path- redundancy to the specific ordering of the variables that will be used later

by the backjumping algorithm. Letd =X, ...,X, be an ordering of the variables.

Definition: A constraint R;;, i < j, is said to be directional-path-redundant with respect
to d if its redundancy can be ascertained by considering only paths of length m=2 of the form

(X,'—Xk—Xj), for k)j

The procedure PATH-REDUNDANT will be made directional by simply replacing line
3 with
forallk >1,j.

If none of the non-universal constraints of a U-network is directional-path-redundant with
respect to some order 4, the network is said to be directional-path-irreducible with respect to
that order. The procedure REDUCE, using directional-path-redundancy, will turn any U-

network into a directional-path-irreducible network.

If the reduction of the network uses only directional-path-redundancy with respect to an
order which is precisely the reverse of the order used by a backtracking algorithm, the search
space explored by the algorithm will not be affected. This is so because, in this case, by the time
the backtrack algorithm is in a position to use a constraint which has been removed by the reduc-
tion procedure, it has already available to it all the information contained in that constraint. To
clarify this point, consider a network whose constraint graph is given in Figure 6: Suppose that
backtrack algorithm considers the variables in the order X1, X5 X3 X4. If the constraint R 3 is
redundant with respect to X | alone, then its removal will not cause the algorithm to develop any
more nodes because all the relevant information of this constraint must be contained in con-

straints R 7 and R 13, which will be known to the algorithm by the time it gets to X3. On the
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l
Figure 6 - An Ordered Constraint Graph

other hand, if X4 is also needed to establish the redundancy of constraint R 3, then the removal
of the constraint may cause the algorithm to consider values of X 3 that would not be considered

had it remained in place.

Any ordering of the constraints used by REDUCE to remove directional-path-
redundancy with respect to some ordering d of the variables will lead to a directional path-
irreducible network. However, it is clearly best to tie the ordering of the constraints to d so that
a constraint R;;, j>i will always be checked (and removed if directional-path-redundant) before
any constraint Ry [ >k, if j</. This order guarantees that removal of one constraint will not
interfere with the removal of any other. To see this, refer back to the network of Figure 7, and
assume that d =X4,X1,X7,X. Further assume that both constraints R34 and Ry are direc-
tional path-redundant with respect to d. The removal of constraint R34 cannot possibly interfere
with the redundancy of R o3 with respect to X ;. However, if R 3 is removed first then this might

cause R 34 to be no longer path-redundant with respect to X».

A consequence of this is that all the constraints that are directional-path-redundant with
respect to some direction d may be removed simultancously, with the result being the smallest
possible network (i.e., has a minimal number of arcs in its constraint graph) which is

directional-path-irreducible with respect to that direction.
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The notion of directional-path-redundancy is related to that of directional-path-
consistency developed in [Dechter1985]. A network is said to bc directional-path-consistent
with respect to some orde_n'_ng d of the variables if any constraint R;;, i </, is consistent with
respect to all paths (i -k —j) for k >j. An algorithm for achieving directional-path-consistency of
a given network is a straightforward variation of any path-consistency algorithm. It is easy to
see that all constraints added to the network by a directional-path-consistency algorithm are
directional-path-redundant with respect to the same direction. Thus, all such constraints are

guaranteed to be removed by the optimal reduction procedure discussed above.
7. Conclusions

This paper argues in favor of manipulating the representation of constraint satisfaétion problems
in order for their constraint graphs to show as many independencies among the variables as pos-
sible. This is accomplished by identifying redundancies in the constraint network which allow
the removal of constraints. We develop a theoretical basis for this operation by defining the
notion of U-minimal network of constraints, and propose an approximation procedure for dis-

covering network that are irreducible.

Our conjecture (which is partially supported by the 5-queen example) is that many
“‘naive’’ formulations of CSPs are not optimal from the point of view of the density of the con-
straint graph and thus can be improved by the methods suggested in this paper. Other classes of

problems need to be investigated in order to draw firmer conclusions.

The practical utility of the ideas presented has yet to be tested. An investigation is
currently under way to study the best ways these ideas can be incorporated into existing back-

tracking algorithms and the expected improvements in their performance.
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APPENDIX

The original network of constraints for the 5-queen problem:

((AB)(ac)(ad)(ae)(bd)(be)(ca)(ce)(da)(db)(ea)(eb)(ec)
((AC)(ab)(ad)(ae)(ba)(bc)(be)(cb)(cd)(da)(dc)(de) (e a)(eb)(ed)
(AD)(ab)(ac)(ae)(ba)(bc)(bd)(ca)(cb)(cd)(ce)(db)(dc)(de)(ea)(ec)(ed))
((AE)(aby(ac)(ad)(ba)(bc)(bd)(be)(ca)(cb)(cd)(ce)(da)(db)(dc)(de)(eb)(ec)ed)
(BCO)(ac)(ad)(ae)(bd)(be)(ca)(ce)(da){db)(ea)(eb)(ec)
(BD)(ab)(ad)(ae)(ba)(bc)(be)(cb)(cd)(da)(dc)(de)(ea)(eb)(cd)
(BE)(ab)(ac)(ae)(ba)(bc)(bd)(ca)(cby(cd)(ce)(db)(dc)(de) (ea)(ec)(ed)
(CD)(ac)(ad)(ae)(bd)(be)(ca)(ce)(da)(db)(ea)(eb)(ec)
((CE)(ab)(ad)(ae)(ba)(bc)(be)(cb)(cd)(da)(dc)(de)(ea)(eb)(ed)
(DE)(ac)(ad)(ae)(bd)(be)(ca)(ce)(da)(db)(ea)(eb)(ec))

The minimal network of constraints for the 5-queen problem:

((AB)(ac)(ad)(bd)(be)(ca)(ce)(da)(db)(eb)(ec))
((AC)(ab)(ae)(bay(bc)(cb)(cd)(dc)(de)(ea)(ed))
((AD)(ab)(ae)(ba)(bc)(cb)(cd)(dc)(de)(ea)(ed)
((AE)(ac)(ad)(bd)(be)(ca)(ce)(da)(db)(eb)(ec))
(BC)(ac)(ad)(bd)(be)(ca)(ce)(da)(db)(eb)(ec))
(BD)(ab)(ae)(ba)(bc)(cb)(cd)(dc)(de)(ea)(ed))
(BE)(ab)(ae)(ba)(bc)(cb)(cd)(dc)(de)(ea)(ed))
((CD)(ac)(ad)(bd)(be)(ca)(ce)(da)(db)(eb)(ec)
((CE)(ab)(ae)(ba)(bc)(cb)(cd)(dc)(de)(ea)(ed)
(DE)(ac)(ad) (bd)(be)(ca)(ce)(da)(db)(eb)(ec)
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