REMOVING REDUNDANCIES IN CONSTRAINT NETWORKS

Avi Dechter February 1987
CSD-870006



Tecwmenr FEPOET- |

REMOVING REDUNDANCIES IN CONSTRAINT NETWORKS

Avi Dechter
Department of Management Science
California State University, Northridge, CA 91330
and
Cognitive Systems Laboratory, Computer Science Department
University of California, Los Angeles, CA 90024
Rina Dechter
Artificial Intelligence Center
Hughes Research Laboratories, Calabasas, CA 91302
and

Cognitive Systems Laboratory, Computer Science Department
University of California, Los Angeles, CA 90024

Topic area: Automated reasoning {constraint satisfaction)
Track: science track
Keywords: constraint satisfaction problems, path-consistency, path-redundancy, backtracking

ABSTRACT
The removal of inconsistencies from the problem’s representation, which has been emphasized
as a means of improving the performance of backtracking algorithms in solving constraint satis-
faction problems, increases the amount of redundancy in the problem. In this paper we argue
that some solution methods might actually benefit from using an opposing strategy, namely, the
removal of redundancies from the representation. We present various ways in which redundan-
cies may be identified. In particular, we show how the path-consistency method, developed for
removing inconsistencies can be reversed for the purpose of identifying redundancies, and dis-
cuss the ways in which redundancy removal can be beneficial in solving constraint satisfaction

problems.



REMOVING REDUNDANCIES IN CONSTRAINT NETWORKS
Avi Dechter and Rina Dechter

1. Introduction

A binary Constraint Satisfaction Problem (CSP) is concerned with the task of finding either one
or all of the n-tuples allowed by a given network of binary constraints (or finding that no such

n-tuple exists).

A network R of binary constraints defined on a set of variables {X,...,X,} is a set of
relations R;; from every variable X; to every variable X;. A network of constraints R represents a
unique (possibly empty) =n-ary relation p (i.e, a subset of the space
X =dom (X ) x - - - xdom(X,), where dom (X;) denotes the domain of X;) such that an n-tuple ¢
is allowed by p if and only if its projections on all the uni-dimensional and two-dimensional sub-

spaces of X simultaneously satisfy the binary constraints of the network R.

A constraint graph corresponding to a network of constraints consists of a vertex for
each variable and an edge for each binary constraint which is not the universal constraint (i.e.,

comprising the entire subspace).

CSPs are inherently difficult problems to solve and typically are solved using some sort
of a backtracking search algorithm. The issue of improving the performance of these algorithms
has been on the agenda of researchers in Artificial Intelligence for quite some time (e.g.,
[Gaschnig1979, Haralick1980, Bruynooghe1981] , as many Al tasks can be formulated as CSPs
(e.g., line-drawing analysis [Waltz1975] and reasoning about temporal intervals {Allen1985] ).
Observing that there are possibly many equivalent network representations of a given n-ary rela-
tion p, attempts were made at finding ways for moving from some initial representation to one

which is better suited to be solved by backtracking. A central theme in the literature on this sub-



ject is that of the benefit of removing local inconsistencies from the problem’s representation.
Such inconsistencies may be discovered either prior to, or during, backtracking [Mack-

worth1977, Dechter1986¢].

An inconsistency, in general, is a state of affairs where a certain action (i.e., instantiating
a variable to a certain value during backtracking) is permitted by one piece of data (considered
in isolation), and prohibited by another. If the data permitting the action is consulted first, then
the algorithm might expand much work based on the assumption that the particular action is glo-
bally permitted only to discover later that this assumption if false. An inconsistency, once

discovered, is eliminated by recording the fact that the action is not permitted.

The removal of an inconsistency results in a redundancy in the database, namely, a situa-
tion whereby the fact that an action is prohibited is expressed by more than one piece of data.
Excessive redundancy in the data has its own potential adverse effects on our ability to solve the
problem efficiently. First, it often increases the amount of data that has to be stored, and second,
it tends to obscure any special structure the problem might have, and which may be exploited by
the solution procedure. Of particular importance is the connective structure of the constraint
graph, which strongly affects to the tractability of the problem. The strength of the relationships
between the connective structure of the constraint network and the complexity of it solution is
most vividly demonstrated by Freuder’s [Freuder1982] conditions for backtrack-free search. in
particular, he shows that is the constraint graph forms a wee, then backtrack-free search is

guaranteed.

Thus, if the problem already has some desirable structure, then it might be beneficial to
modify the process of obtaining consistency so that the structure is preserved. Furthermore, by
eliminating certain types of redundancies, while adding inconsistencies, it may be possible to

bring about an improvement in the representation of the problem.



This paper is concemned with issue manipulating the representation of a given CSP by
identifying redundant constraints, namely, constraints whose removal from the network, while

changing the connective structure of the problem, does not affect the set of solutions p.
2. Consistency and Redundancy Re-defined

The definition of both consistency and redundancy in networks of constraints relies on a distinc-
tion that can be made between the direct constraint R;; between two variables X; and X, and
constraints induced on them by the rest of the network. An induced constraint can be thought of
as a binary relation consisting of all the instantiations of the variable-pair (X;, X;) which are con-
sistent with some subset of the other constraints. The intersection of all the constraints induced
on (X;, X;), i.e., the constraint induced by all the constraints except the direct constraint, is called
the network-induced constraint, denoted E;j. The global constraint between X; and X; is the

intersection of the direct and the network-induced constraints.

An inconsistency in a constraint occurs when some pair of values is permitted by (i.e., is
part of) the direct constraint between two variables but prohibited by.their network-induced con-
straint. An inconsistency can be eliminated by simply erasing the value-pair from the direct con-
straint between the variables. Clearly, such a change does not alter the set of all solutions in any
way. When none of its pairs are inconsistent with the network-induced constraint, a direct con-

straint is said to be explicit.

Definition A direct constraint R;; is said to be explicit if the remainder of the network

does not add any further restrictions on the global constraint between X; and X;, i.e., ifR;; < ﬁ,'j.

A pair of values is permitted by an explicit constraint if, and only if, it is part of at least
one solution. Montanary [Montanari1974] has shown that if a relation can be represented by a
binary network of constraints then there is a unique representation where all the constraints are

explicit, called the minimal network of constraints.



In contrast, redundancy in & constraint occurs when a pair of values which is prohibited
by the network-induced constraint is also prohibited by (i.e., absent from) the direct constraint
between two variables. A redundancy is eliminated by adding the pair to the direct constraint.

This change, too, cannot have any effect on the set of all solutions.

Of special interest is the case where all the pairs that are prohibited by direct constraint
are already prohibited by the induced constraint. In this case the entire constraint is said to be

redundant,

Definition: A direct constraint R;; is said to be redundant if it does not add any further

restrictions on the global constraint between X; and X, i.e., if E,-j S Ry;.

All redundancies associated with a redundant constraint are eliminated by simply remov-

ing the entire constraint from the network.

The definitions of explicit and redundant constraints are given graphical representation in
the Venn diagrams of Figure 1. Observe that a constraint can be explicit and redundant at the
same time. In this case the direct constraint and the network-induced constraints coincide.

induced direct ) induced direct
constraint constraint constraint constraint

(a) Explicit Constraint (b) Redundant Constraint

Figure 1: Explicit and Redundant Constraints



Improving the representation of a CSP involves two types of operations: (1) Eliminating
inconsistencies and making each constraint as explicit as possible, and (2) Eliminating redundan-
cies by identifying and removing redundant constraints. Although these operations represent
two opposing objectives they are, in large part, orthogonal to each other. First, a constraint
which is redundant will never become non-redundant as a result of making any other constraint
more explicit, because this can possibly only tighten the network-induced constraint and thus
make the constraint more redundant. Second, a constraint can never become less explicit as a
result of the removal of another, redundant, constraint since this can possibly only loosen the

induced constraint and make the constraint even more explicit.

It is clear that in the ‘‘ideal’’ representation of a CSP the constraint between any two
variables should be either explicit or universal (i.e., non-existing). Such networks of constraints

are called U/-minimal.

Definition: A network of constraints for which a subset U/ of constraints are universal and

all other constraints are explicit is said to be U-minimal.

The properties of U-minimal networks are discussed in [Dechter1986a). The task of
obtaining a U-minimal representation of a given network of constraints is as illusive as that of
finding the minimal network of constraints because it requires the knowledge of the network-
induced constraint for all pairs of variables. For the same reason, the task of deciding whether a
given constraint is redundant or not is a difficult one. An approximate method, based on the

notion of path-consistency is presented in the following section.
3. Path-Redundancy

Montanary suggested that the minimal network of constraints may be approximated by
replacing the requirement that each constraint be explicit by a weaker condition, called path con-

sistency.



Definition: A pair of values (x;, x;) is said to be allowed by a path of length m through
nodes (Vi=Vy ., Vi,s - s Vi Ve =V5) if there is a sequence of values (z1,22,...,Zp-1) Such

that
Rk, (6isz1y and Ry i, (z1,22) and - - - and Ry ¢, (zn—1,%)) -

Definition: A pair of values (x;, x;) which is allowed by every path from node V; to node

V; in the complete network R is called path-induced. Otherwise, it is called path-illegal

Definition: A binary constraint R;; is said to be path-consistent if all of its pairs are path-

induced. A network of constraints R is path-consistent if all of its constraints are path consistent.

The requirement of a constraint being path-consistent is weaker than that of being expli-
cit because every explicit constraint must be path-consistent, but not every path-consistent con-

straint is necessarily explicit.

Montanary showed that a pair of values is path-induced if, and only if, it is allowed by all
paths of length m=2. Path consistency algorithms repeatedly check all paths of length m=2 and

remove all path-illegal pairs until no such pairs remain [Montanari1974, Mackworth1977].

The task of recognizing all the redundant constraints in a network can be approximated

by replacing redundancy with a stronger requirement called path-redundancy.

Definition: A constraint R;; is path-redundant if every path-induced pair is already per-

mitted by it.

The condition of a constraint being path-redundant is stronger than that of being redun-
dant, since every path-redundant constraint must be redundant, but not every redundant con-

straint is necessarily path-redundant.



The definitions of path-consistency and path-redundancy, and their relationships to those
of consistency and redundancy are shown graphically in Figure 2. As the diagrams show, a

path-consistent constraint is not necessarily explicit, but a path-redundant constraint must be

redundant,
path-induced .
induced constraint direct direct pig‘n';['fm"gfd induced
constraint constraint constraint constraint
Fa

(a) Path-Consistent Constraint _ (b) Path-Redundant Constraint
Figure 2: Path-Consistent and Path-Redundant Constraints

A convenient way to check whether a given constraint is path;rcdundant or not is to con-
sider a set of value-pairs which is guaranteed to contain the path-induced constraint (for exam-
ple, the Cartesian product of the domains of the two variables involved), and to check the path-
legality status of each pair of this set which is not in the direct constraint. The direct constraint
is path-redundant if, and only if, all such pairs are path-illegal. This process is, essentially, the
reverse of achieving path-consistency, since it can be thought of as the process of adding path-
illegal pairs to the direct constraint in an attempt to make it universal. If this attempt is success-

ful, then the constraint is redundant.

An algorithm for determining whether a constraint R;; is path-redundant is given below.



The algorithm returns rrue if the constraint is path-redundant and false otherwise.

procedure PATH-REDUNDANT((, j))
begin
let U;; = dom(X;) x dom(X;)
forall k #1i,j
letQ = U,'j -R"j
foreachpe Q
if not PERMIT (p, (i,/), k) let R;; =R;; v {p}

end
if R;; = Uy; return true
end
return false
end

The procedure PERMIT(p, (i,j), k) (given below) returns true if the the pair p is per-
mitted for the variable pair (X;, X;) by the path (i —k-/), and false (i.., the pair p is path-illegal)
otherwise. Thus, the algorithm examines all the paths of length 2 anchored at nodes i and j, and
augments the relation R;; by pairs that are found to be path-illegal. If this angmentation process
results with the constraint becoming the universal constraint, then the original constraint is

redundant.

procedure PERMIT{(p, (i,)), k)
begin
let D, be the domain of X
let p be (p;, p;)
forallv e Dy
if (p;, v) € Ry and (v, pj) € Ry; return true
end
return false
end

The PERMIT procedure considers all legal values of X;, and returns true as soon as one
value is found consistent with the pair p. The complexity of PERMIT is O (k), where & is the
number of possible values of each variable. The complexity of PATH-REDUNDANT s,



therefore, O (nk>) where n is the number of variables.

The status of being redundant, for a given constraint, is dependent on the other con-
straints in the network, and any change in the network may affect this status. In particular, the
removal of one redundant constraint, while not affecting the set of solutions, may cause other
redundant constraints to become non-redundant. Therefore, a set of constraints which are found
to be path-redundant in a given network, may not be removed simultaneously, but rather in
sequence, where the path-redundancy of the constraints in the set needs to be re-examined after
the removal of each one them. Constraints that were non-redundant to start with, or that became
non-redundant in the process, need not be checked again as they cannot become redundant again.
The number of constraints that can be removed in this way is dependent on the sequence in

which they are considered.

When the removal of any constraint in some set of redundant constraints does not dimin-
ish the redundancy of any of the other constraints in the set, we say that they are all indepen-
dently redundant. For example, if the process of path-consistency results in adding to the net-
work constraints that were universal in the original network, then all the added constraints are
independently redundant since their simultaneous removal will not affect the solution set.
Notice, however, that while these constraints are redundant, they are not necessarily path-
redundant, and thus the algorithm PATH-REDUNDANT is not guaranteed to recognize their

redundancy.

On the other hand it is easy to see that a set of path-redundant constraints which are not
adjacent to one another, i.e., no two of them share a common variable, are independently path-
redundant. This is so because only paths of length m =2 are used to détermine the path redun-

dancy of a constraint.

10



The property of a set of constraints being independently redundant is desirable because it
alleviates the need to search among all possible ordering of the constraints for some subset of

them that may be removed.
4. The Use of Redundancy Elimination in Problem Solving

Elimination of redundant constraints is expected to be beneficial for solution methods that rely

on the connective structure of the problem as depicted by its constraint graph.

Backtracking algorithms benefit from consulting the constraint graph in two ways. First,
it provides a simple way of backjumping [Gaschnig1979, Dechter1986¢]. Backjumping is an
improvement of standard backtracking whereby, at a deadend, the algorithm goes back to the
first variable which could be the “‘reason’’ for the deadend (rather than to previous variable in
the stack, as called for by standard backtracking). A variable which is not connected (directly or
indirectly) to the deadend variable cannot possibly be the source of the deadend, and thus it is
always safe to jump back to the first available variable which is conr_lectcd to the deadend vari-

able while pruning the search tree.

Second, consulting the constraint graph can reduce the amount of work required for the
expansion of nodes in the search tree. This is so, because no consistency checks are required

between the node being expanded and nodes with which it is not directly connected.

Utilizing these features has resulted in substantial improvements in backtracking perfor-
mance. The amount of improvement was directly related to the sparseness of the constraint
graph [Dechter1986¢]. Thus, the removal of redundant constraints, and, consequently, their
corresponding edges in the constraint graph has a potential for improving the performance of

backjumping.

11



As an example, consider the CSP given in Figure 3(a) consisting of three variables, A, B,
and C, all having the same domain {a, b, ¢}. The constraint between the variables B and C is

redundant and may be removed, resulting in the graph of Figure 3(b).

|

A0

""" Figure 3: A Problem Exhibiting Redundancy '

The search performed by a backjumping algorithm which considers the nodes in the order
A, B, C is shown in Figure 4(a). If the redundant constraint is removed, then the search is
reduced to that shown in Figure 4(b) because the first occurance of a deadend permits jumping

back to variable A.

a
aa (deadend)
ab (deadend)
ac (deadend) a
b aa (deadend)
ba (deadend) b
bb (deadend) ba (deadend)
C C
ca ca
cab (solution) cab (solution)
(a) (b)

Figure 4: Backjumping Searches for the Problems in Figure 3

12



Removal of redundant constraints, while potentially beneficial, generally results in
increasing the search space, which may wipe out its benefits. What is needed, therefore, is a way
to identify redundant constraints whose removal will not cause the search space to increase.
This can be accomplished by tying the notion of redundancy to the order in which the backtrack-

ing algorithm instantiates the variables. Letd =X; ,...,X; be an ordering of the variables.

Definition: A constraint R;;, is said to be directional-path-redundant with respect to d if

its redundancy can be ascertained by considering only paths of length m=2 of the form

(X;,~X;,—X,,), for | >max{j, k}.

The removal of a constraint which is directional-path-redundant with respect to an order-
ing which is precisely the reverse of the order used by a backtracking algorithm, will not affect
the search space explored by the algorithm. To see why this is so, consider a network whose

constraint graph is given in Figure 5:

2

1

Figure 5 - An Ordered Constraint Graph

Suppose that backtrack algorithm considers the variables in the order X1, X, X3 X4. If the
constraint R 53 is redundant with respect to an ordering d =X 4,X3,X 2,X1 (i.e., using X, alone),
then its removal will not cause the algorithm to develop any more nodes because all the relevant
information of this constraint must be contained in constraints Ry; and R3, which will be
known to the algorithm by the time it gets to X3. By contrast, if X4 is also needed to establish

the redundancy of constraint R 53, then the removal of the constraint may cause the algorithm to

13



consider values of X 3 that would not be considered had it remained in the network.

The notion of directional-path-redundancy has the additional advantage that all the con-
straints found to be directional-path-redundant with respect to some direction d, are indepen-
dently redundant and thus may be removed simultaneously. To show this it enough to demon-
strate that there is an order by which the constraints can be removed so that the removal of each
constraint cannot possibly interfere with the directional-path-redundancy of the remaining con-
straints. Ford =X; ,...,X; , any order such that a constraint R;;,, k >j is checked before any

constraint R;; m >l, if k <m, has this property. To see this, refer back to the network of Figure

5, and assume again that d =X4,X3,X2.X;. Further assume that both constraints R34 and R 23
are directional path-redundant with respect to d. The removal of constraint R34 cannot possibly

interfere with the redundancy of R 53 with respectto X ;.

Directional-path-redundancy can be found by slightly modifying algorithm PATH-
REDUNDANT. Applying it before backjumping may improve its performance and is

guaranteed not to cause it to deteriorate.

The cycle-cutset approach [Dechter1986b] is using the fact that tree-structured CSPs can
be solved in linear time by switching to a specialized tree-algorithm whenever the set of vari-
ables instantiated by a backtracking (or a backjumping) algorithm forms a cutset of the con-
straint graph. The efficiency of this approach depends of the sparseness of the constraint graph,

and therefore this method too should perform better if redundant constraints are removed.
5. Conclusion

Researchers in the area of solving constraint satisfaction problems have emphasized the advan-
tages of increasing the amount of redundancy in the network representation of problems. In this
paper we point out that some benefits can be obtained by removing redundancies. We extend the

idea of path-consistency to enable identifying redundancies and present some ways in which

14



redundancy elimination is useful.

[Allen1985]

References

Allen, J. F., ““‘Maintaining Knowledge about Temporal Intervals,”’ in Read-
ings in Knowledge Representation, R. J. Brachman H.J. Levesque, Ed. Los
Altos, CA: Morgan Kaufman Publishers, Inc., 1985, pp. 509-521.

[Bruynooghe1981] Bruynooghe, Maurice, ‘‘Solving combinatorial search problems by intelli-

[Dechter1986a]

[Dechter1986b]

[Dechter1986c]

[Freuder1982]

[Gaschnig1979]

[Haralick1980]

[Mackworth1977]

[Montanaril974]

[Waltz1975]

gent lg)gcktracking,” Information Processing Letters, Vol. 12, No. 1, Febru-
ary 1981.

Dechter, A, and R. Dechter, ‘“Minimal Constraint Graphs,”” UCLA, Com-
puter Science Department, Cognitive Systams Laboratory, Los Angeles, CA,
Tech. Rep. R-74, December, 1986.

Dechter, R. and J. Pearl, ‘““The cycle-cutset method for improving search
performance in Al applications,”” UCLA, Cognitive systems, Computer Sci-
ence, Los Angeles, Cal., Tech. Rep. R-58, September, 1986.

Dechter, R., ‘‘Learning while searching in constraint-satisfaction-
problems,”” in Proceedings AAAI-86, Philadelphia, Pensilvenia: August,
1986. ;

Freuder, E.C., “‘A sufficient condition of backtrack-free search.,”’ Journal of
the ACM, Vol. 29, No. 1, January 1982, pp. 24-32.

Gaschnig, J., ‘‘Performance Measurement and Analysis of Certain Search
Algorithms,”” Department of Computer Science, Camegie-Mellon Univer-
sity, Pittsburgh, PA, Tech. Rep. CMU-CS-79-124, 1979,

Haralick, R. M. and G.L. Elliot, ‘‘Increasing tree search efficiency for ccon-
straint satisfaction problems,”” Al Journal, Vol. 14, 1980, pp. 263-313.

Mackworth, A.K., *‘Consistency in networks of relations,”” Artifficial intelli-
gence, Vol. 8, No. 1, 1977, pp. 99-118.

Montanari, U., ‘‘Networks of constraints :fundamental properties and appli-
cations to picture processing,”’ Information Science, Vol. 7, 1974, pp. 95-
132.

Waltz, D., “Understanding Line Drawings of Scenes with Shadows,”” in The

Psychology of Computer Vision, P. H. Winston, Ed. New York, NY:
McGraw-Hill Book Company, 1975.

15



