TAXONOMY, STRUCTURE AND IMPLEMENTATION
_OF EVIDENTIAL REASONING MODELS

Moshe Ben-Bassat February 1987
CSD-870005



-

TECHNICAL REPGRT
R-TN

CSD-§TN ==
September 1956

TAXONOMY, STRUCTURE AND IMPLEMENTATION
OF EVIDENTIAL REASONING MODELS* +

Moshe Ben-Bassat

Faculty of Management, Tel Aviv University, Tel Aviv, Israel
&
Cognitive Systems Laboratory, UCLA Computer Science Department, LA., CA. 90024

ABSTRACT

The fundamental elements of evidential reasoning problems are described, followed by a discus-
sion of the structure of various types of problems. Bayesian inference networks and state space
formalism are used as the tools for problem representation. A human-oriented decision-making
cycle for solving evidential reasoning problems is described and illustrated for a military situa-
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system shell for evidential reasoning: i.e., a situation assessment processor.
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TANONOMY, STRUCTURE AND IMPLEMENTATION
OF EVIDENTIAL REASONING MODELS

Moshe Ben-Bassat

I. PROBLEM STATEMENT

Evidential reasoning refers to inference mechanisms by which evidence provided by 1 et
of indicators {e.g.. tindings. feuatures, wctributes. variables) is analyzed in order to gain hetor
understanding of a given hypothesis, concept, situation or phenomenon. Among problem-
solving tasks of this nature are medical diagnosis, weather forecasting, corporate assessment.
political crisis assessment and battlefield reading. All of these problems share common charac-
teristics in that the problem solver (PS) starts with an initial incomplete understanding of the -
tuation (e.g) patient status) and bused on his prior knowledge and expectations, he seeks 1ld;-
tional information that may reduce the uncertainty regarding the complete picture of the siti-
tion. Following a cyclic process. sources for additional informarion are identified, evaluated and
utilized; the new evidence is integrated into the existing knowledge base; the situation is
reassessed; and, if final assessments still cannot be made, further information is requested. The
process ends only when:

1. the problem solver (PS) decides that he knows enough to form a defensible interpretation
of the situation: or

2. no additional sources of information can coatribute significantly {in a cost-effacm 2
manner) to remove the uncertainty which still remains: or

3. time constraints force him to abort the information acquisition process and assess the -

tuation as best he can.

Models for evidential reasoning and uncertainty management have attracted stgntticar:
scientific effort since the beginning of the century. Classical probabiiity theory, Carnap's and
Hempel's confirmation theory, Shafer's evidence theory and Zadeh's possibility thzor.
represent a sampling ot such endeavor. Munv of the classical models have been adopred and
improved by artificial intelligence researchers who huve applied them in such varied EXPert svs-
tems as MYCIN [Shortliffe 1976], PROSPECTOR [Duda 1979] and MEDAS [Ben-Buassu:
1980].

This paper presents a draft taxonomy of evidential reasoning problems and proposes .
framework by which evidential reasoning models may be evaluated and compared. As a frame
of reference, we propose models based on Bavesian (probabilistic) inference networks.



2. PROBLEM AND KNOWLEDGE REPRESENTATION
2.1 Bayesian Inference Networks

Problem und Knowledge representation for evidential reusoning tusks may be based on
uncertain hierarchicul inference networks. Typicully. in such networks, leaf nodes represent oh-
servable events tindicutors), while hicher-level nodes represent events (hypotheses) the values
tor which (true. false or other) may be inferred from other (usually lower-level) nodes in the
network.

Formually, a node represents a multi-valued proposition in which the values are mutually
exclusive and exhaustive. If this is not the case. the node s decomposed into separate nodes,
each of which represents a set of mutuully exclusive propositions,

Atany given time, euch node is assigned a set of values corresponding to our degree of
beliet in the validity of the alternative propositions represented by that node. In Bayesian net-
works, node values represent the probablities of the various alternatives corresponding to that
node.

A link between nodes H, und £ ; fepresents evidential relevancy between the two
corresponding events. Each link is assigned valuets) that represent the degree of significance for
inferring /i; from E;, or vice-versu. In Bayesian networks, a directed link emanating from 4,
and pointing to £, is assigned a matrix that represents P (e; I h;) for all the possible values of H,
and £,. Using this formulation, we avoid committing ourselves to whether the link represents a
causal  relationship  (i.e., P{symprom | disease ) or a diagnostic  relationship (i.e.,
P ( disease | symprom ). In our experience. however, eliciting causal probabilities is preferable
In most cases. See {Ben-Bassat 1930, p.130] tor a discussion in the context of medical diag-
nosis.

Once an observable node is reported. its evidence is propagated along the network links
and revises our belief in the validity of the higher-level hypotheses connected to that node. In
Buyesian networks, propagation mechuanisms are based on Bayes theorem us the fundamental
tool for probability revision, e.g., [Peurl 19%86u

2.2 Node Categorization

The hierarchical network structure stygests i categonzation of the nodes into three main
tvpes. Typically, leaf nodes represent events that cuan be perceived directly by the system sen-
sors (the *‘eyes, ears’” and the keybourd), higher-'evel nodes represent events that are de-
duced by the system inference engine ("brain''). Root nodes represent the target hypotheses
whose resolution is the ultimate objective of the system. Intermediate nodes may, or muay not.
be on the list of target hypotheses (see below): in any case, we use them to form defensible ar-
gumentations of the resolution of higher level hvpotheses.
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Several comments, however, are in order:

1. An intermediate- or top-level node may sometimes be directly observable, but at a higher
cost than inferring it from observable lower-level indicators. For instance, opening the
abdomen (explorative laparotomy) provides direct observation of events that we intially
attempt to deduce from less expensive observatons.

2. We may sometimes wish to bypass low-level nodes and report a value directly into an
intermediate- or top-level node. This value is not an observation; rather, it is a deduction
performed by an autonomous agent who is unable to (or prefers not to) delineate the
basis for his deduction by lower-level nodes. An example would be a distributed mili-

tary intelligence operation in which medium-level officers report upwardly only their
summarized assessments.

3 An observable indicator may sometimes be observed with noise. In this case we up-
wardly report a set of probabilities summarizing our impression of the noisy observation
with regard to the possible values of the node. An example would be a patient who does
not respond unequivocally to a physician’s questions.

4. Although the structure indicates that evidence is propagated bottom-up, top-down and
sideways propagation may sometimes prove very useful. In fact, an important feature of
Bayesian propagation is that it permits propagation in all directions.

2.2 State Space Representation

Using this framework, we may represent evidential reasoning tasks by a state space for-
malism. The state of the system at any given stage is characterized by the current values on the
network nodes. For the initial state, Sy, we assign all top-level hypotheses their prior probabili-
ties. The initial values for intermediate and leaf nodes may be derived from their parents and
the values on the links. Additionally, observable nodes that have not yet been observed are as-
signed the value UNOBSERVED, designated by "?." These nodes are suggested candidates for
direct observation by the information acquisition process.

From the goal-state point of view, the network nodes are divided into target and non-
target nodes. Target nodes represent hypotheses requiring resolution by the end of the process,
i.e., upon process termination, one needs to commit to set of values -- one for each target node --
that jointly constitute the best explanation for the existing evidence.

The set of target nodes depends on the application. In some cases, the only important
decisions made at the final stage concern the root nodes; decisions about other nodes do not lead
to any operational consequences. In these cases, the goal state depends only on the values of the
root nodes.
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[n other cases, the states of intermediate nodes impact the action plan (in addition to their
roles as mediators for higher-level deductions). For instance, in the medical diagnosis of criticat
care disorders, a node representing the state of SHOCK is an intermediate node. Yet, to devise a
treatment plan, it is very important to know whether the patient is or is nor in SHOCK.

Optimal termination criteria and commitment rules are complex issues, still in their in-
fancies for probabilistic inference networks, See, however, [Ben-Bassat 1980b] and [Pearl
1986b]. An example of a simplified goal state for medical diagnosis is as follows:

Se The values of the top level hypotheses and a selected group of intermediate hypotheses
are above or below certain thresholds.

A more sophisticated state space formulation of diagnostic problems is presented by [Ben-
Bassat 1985a].

Evidential reasoning is the process of transferring the network from its initiaj state, Sp,
to a goal state, Sg. The operators for this transformation are queries on the observable nodes.

The objective of a control strategy [Ben-Bassat 1985b] is to reach a goal state in a cost-effective
manner.

3. TYPES OF EVIDENTIAL REASONING PROBLEMS

Three main factors play a role in determining the difficulty of evidential reasoning prob-

lems:

1. - network structure (depth, width, loops ...);

2. - target nodes -- their number and interrelationships among them; and
3. - dependencies among observable nodes.

We shall describe several types of evidential reasoning problems based on the first two
factors only. These are graphically illustrated in Figures 1 through 6, where the following nota-
tion is used:

obsefvable node Q
target node ©

intermediate node O



Case (a):

- one set of hypotheses which are mutually exclusive and exhaustive

- observations which are directly linked to the hypotheses

Eigure | - Classical Bavesian Classificanor

Case (a) is representative of the well-known classical Bayesian classificarion problem,
extensively researched in statistics, decision theory and pattern recognition.



Case (b):

- set of hypotheses which are mutally exclusive and exhaustive

- hierarchical tree-like inferential links

o
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offoRolclo

X1 = HUSBAND (H) KILLED WOMAN (W)
X3 = HUSBAND DID NOT KILL WOMAN
X3 = WOMAN COMMITTED SUICIDE

= WEAPON HAS H’S FINGERPRINTS
= WEAPON BELONGS TO H
= COUPLE HAD MANY FIGHTS

= H HAS MOTIVE FOR KILLING W

Z

T

U

Vi  =NEIGHBOR ISAYS FIGHTS HEARD

w

Y = WOMAN LEARNS TO PREPARE POISON

Figure 2

Researchers in behavioral decision theory refer to Case (b) as cascaded inference
{Schum 1978]. (The example here was provided by J. Pearl.)



Case (c):
hierarchically-structured, mutually-exclusive and -exhaustive hypotheses

- observadons which are directly linked to groups of hypotheses at different layers of the

hierarchy _ .
' THREAT/NO THREAT
| THREATS A, Ag A, THREATS B, B, B,
Ay Ay B, B, B;
El E2 E3 E4 Es E6 E1 El Eq
S 1 L - -
Figure 3

An example of Case (c) appears in threat assessment of unknown objects. Some observ-
able nodes may point directly into the root node that represents the hypothesis, whether or not
the object is at all threatening. This hypothesis, however, represents several families of hy-
potheses concerning the various types of threats, each of which may, in turn, be subdivided into
more refined classification -- up to the point where each specific type of threat occupies a
separate node. For each of the subfamilies, we may have direct links from observable nodes and,
perhaps, an interrnediate node. Obviously, if £ provides evidence for a family A, then it also
provides some evidence for all of the subfamilies of H. Gordon and Shortliffe [1985] and Pearl
[1986b] have dealt with this problem.

Elo



Case (d):
- multiple non-competing sets of hypotheses

- observations which are directly linked to the hypotheses

. A DEFENSIVE FORCE (D) CONTROLS THREE MAJOR POSTS OF A BATTLEFIELD, H, H, H,
. AN OFFENSIVE FORCE (0) MAY ATTACK NONE, ONE, TWO OR ALL THREE OF THE POSTS

. (D) MAY TAKE RECONNAISSANCE ACTIONS IN ORDER TO REDUCE THE UNCERTAINTY.
TYPICAL INDICATORS RESULTING FROM SUCH ACTIONS MAY INCLUDE:

X - INCREASED ACTIVITY IN THE NORTHERN AREA
X, - BRIDGING EQUIPMENT MOVED FORWARD
Figure 4

Case (d) refers to a situation where several hypotheses may co-exist simultaneously. In
such a case, every hypothesis H; gets its own node with two possibie values, H; and H;. The
problem is also known as multi-membership classification in the context of pattern recognition
[Ben-Bassat 1980b] and was recently addressed by Pear [1986c¢).
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Case (e):
- multiple, partially-competing sets of hypotheses

- multi-link inferential chains without loops (singly-connected graph)

Gy
b cmeows
RADIO REPORY TESTIMONY

Figure 5

Case (e) represents a situation of multiple causes for a given observation. The example
presented in Figure 5 was discussed by Kim and Pearl [1983]. The top-level hypotheses are par-
tially competing in the sense that "earthquake" reduces the likelihood of "burglary" by "explain-
ing away" the alarm sound.
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Case (f):

- multi-perpespective hierarchical reasoning (target nodes distributed all over the network)

- no constraints on the links
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ANALYSIS OF MILITARY SITUATION ASSESSMENT

Figure 6

In many applications (e.g., scene analysis, military situation assessment), in order to gen-
erate a rich description of an object or situation, one must view it from multiple perspectives..
For instance,-in order to analyze a potential military atrack, one needs to consider several per-
spectives [Ben-Bassat & Freedy, 1982]: TYPE, THRUST, TARGET, TACTICS, DEPLOY-
MENT, etc. Within each of these interrelated perspectives, the situation may be classified by
one or more of the alternatives (states or classes) associated with that perspective. For example,
an enemy attack can be one of the following TYPES: deliberaze, hasty, spoiling, or ambush.
Similarly, there are several alternatives for each of THRUST, TARGET, TACTICS, etc.
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Also, within a given perspective, several alternatives may co-exist simultaneously.
Within the THRUST perspective, for instance, there is no reason to assume a priori that the
enemy attack will consist of ranks only or parachutes only. Any combination of the possible al-
ternatives, tanks, air, mobile infantry, parachutes, helicopter-carried infantry, etc. may, in prin-
ciple, be simultaneously true.

The recognition process is to some extent "hierarchical” in that low-level indications are
used as building blocks for higher-level indications. For instance, information regarding the
presence of trees, their height and density are features that contribute to determine COVER and
CONCEALMENT. Boulder size and soil type contribute to determine tank TRAFFICABILI-
TY. Together, they contribute to TERRAIN analysis. The results of TERRAIN analysis and
other factors such as CAPABILITY contribute, in turn, to the determination of what TACTICS
the enemy may choose, his DEPLOYMENT technique and may even influence the choice of a
TARGET.

In this case, the target nodes are distributed all over the network because, to devise a bat-
te plan, one needs to know the details of both the arena and of the enemy’s intentions, not just
whether or not he intends to attack.
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4. IMPLEMENTATION IN EXPERT SYSTEMS

Expert systems for evidential reasoning problems should support the cycle through
which human beings go in solving these problems. Qur extensive experience with medical diag-
nosis, military situation assessment, electronic roubleshooting and other applications suggest
the cycle illustrated in Figure 7. Experimental evidence supporting this description may be
found in [Eddy and Clanton 1982], [Elstein et al. 1978] and [Zakai et al. 1983).

INITIAL FINDINGS SUMMA
ACCUMULATION & INTEGRATION COMPOS.ITNON
+
HYPOIHESES = . TERMINATION
GENERATION & EVALUATION TEST
GOAL(S)
SETTING

INFORMATION SOURCES
EVALUATION & SELECTION

L HNDINGS SORTING Y

GOALS & MYPOTHESES

EVIOENCE I
INTEGRATION

Figure 7 - The Cycis of Evidential Reasoning

Here, for illustrative purposes, a military situation assessment will be used. Each step in
the cycle représents one type of decision problem, each of which may require different skills on
the part of a human problem solver, and different algorithms on the part of an expert system.

(0) Accumulating Initial Findings

The cycle starts with the presentation of an initial set of specific facts about the situation.
These facts may have been observed in the field, or they may have been passed to the decision
maker (e.g., a G2 officer) through the command channels. They may have come from higher
eschelons, from parallel units or from subordinate units. They also include indications or
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responses to requests for information previously placed by the G2 and collected by the various
information-collecting agencies at his disposal.

From thereon, the process may be decomposed into the following steps:
(1) Evidence Propagation and Hypothesis Generation

Any recently obtained findings are integrated into the existing body of evidence (which,
in the first iteration, is a priori information only) and trigger a moving chain of deductions point-
ing to several alternative interpretations in several perspectives of the barttlefield. The uncertain-
ty regarding the uth of these interpretations is updated and, as a result, some alternatives may
be verified beyond some threshold of confidence, others may be refuted (below some reasonable
threshold of confidence) and still others may remain uncertain, though stll feasible. At this
point, an attempt is made to see if the entire puzzle is clear, i.e., whether the existing evidence
explains the situation in each perspective of the battlefield and a global interpretaton of the si-
tuation may be drawn. Those aspects of the battlefield remaining unclear serve as bases for
deriving hypotheses to be worked on in subsequent stages. The generation of a rich set of plau-
sible hypotheses is the hallmark of a good situation assessor.

(2) Prioritizing Goals Deserving Attention

Occasionally (particulariy in early stages), too many hypotheses may be triggered by the
existing evidence, and not all of them may be explored simultaneously. In such a case, specific.
goals need to be set on which we will focus our attention in the next immediate stages. These
may include, for instance, verificaton/elimination of a specific hypothesis or differentiaton
between a group of competing hypotheses. Factors affecting goal determination include the
severity and urgency of the candidate alternatives (i.e., enemy antack is expected within 24
hours), their present level of uncertainty and their initial a priori incidence.

(3) Evaluation and Selection of Information Sources

Once a goal is set, information sources potentially offering the findings by which this
goal may be achieved need to be identified and evaluated. Such an evaluation is based, on one
hand, on the potency (information content and reliability) of these information sources to
achieve the determined goal and, on the other hand, on the cost of utilizing them. This cost
reflects not only financial, tecknical and logistic investments, but also the risk involved in get-
ting the information. The information source(s) with the greatest expected contribution to the
specified goal compared to its cost is then invoked, ¢.g., a reconnaissance aircraft. Frequently, a
battery of information sources may be utilized simultaneously to permit deeper exploration of a
given hypothesis or concurrent exploration of several hypotheses.
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(4) Sorting of Evidence by Goals and Hypotheses

As new evidence comes in, either as a result of the decision maker’s request or ‘‘volun-
tarily,” it should be sorted with regard to the entire bartlefield structure (including the triggered
hypotheses) and, on the highest priority, with regard to the current goal(s). Nonetheless,
findings should not be ignored just because they do not contribute directly to the current goal(s)
or to the previously activated hypotheses. Such lateral thinking may open new ideas leading to
the generation of new hypotheses -- which may, eventually, turn out to include the correct ones.
Goals need to be set in order to effectively direct the information acquisition path. However,
once an indicator is observed, its significance should be analyzed with respect to all of its
relevant alternatives.

(5) Evidence Integration

Once all their relevancy links are identified, new findings are integrated with the existing
findings, not just added to them. Recognizing dependencies between new and existing findings
may prevent artificial compounding of redundant information. It may also suggest synergy, i.e.,
the evidence suggested by the group of findings is greater than the sum of the individual
findings’ evidence. At this stage, we may also try to restructure the grouping of findings in an
attempt 1o discover new possible interpretations. The new integrated evidence modifies the un-
certainty of existing hypotheses and may suggest new hypotheses conceming the true situation.
This completes the cycle and brings us back to stage (1) -- unless the termination test is positve.

(6) Termination

The situation assessment cycle may be interrupted or fully terminated under one of the
following conditions:

a. A decision is reached with regard to the true situation in each aspect of the battlefield, all
(suspicious) findings are explained by this interpretation and no additional hypotheses
are sufficiently triggered to justify further exploration.

b. Several triggered hypotheses have not yet been settled; however, the cost of removing
the remaining uncertainty is relatively high compared to the expected gain of information
and the impact on the battle plan (or treatment plan if medical diagnosis is the case).

c. New developments (e.g., sudden enemy attack) force the decision maker to abandon in-
formation acquisition and, based on existing evidence, assess the situation as best he can.

(7) Integrated Summary Composition

The situation assessment process culminates in the composition of the individual deci-
sions made for separate battlefield aspects into one complete and coherent picture that leads to
tactical planning (earlier referred to as "commitment decisions”). The end result is the Intelli-
gence Estimate document, which is currently produced manually by the intelligence officer.
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5. SUMMARY

We have presented several types of evidential reasoning problems and a detailed descrip-
tion of the Bayesian Inference Networks (BIN) approach for structuring these problems. The
references cited in the paper provide a partial picture of the state of the art in Bayesian evidential
reasoning. Although much work remains to be done, recent developments and experience in this
field suggest that the BIN-based approach is a powertul tool for practical expert systems.
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