THE LOGIC OF REPRESENTING DEPENDENCIES
BY DIRECTED GRAPHS

Judea Pearl February 1987
Thomas Verma CSD-870004

TECHNICAL REPORT

R-79
February, 1987
THE LOGIC OF REPRESENTING DEPENDENCIES
BY DIRECTED GRAPHS
by

Judea Pear! & Thomas Verma

Cognitive Systems Laboratory
Computer Science Department
University of California
Los Angeles, CA 90024
judea@locus.ucla.edu

ABSTRACT

Data-dependencies of the type ‘‘x can tell us more about y given that we already know z’’ can be
represented in various formalisms: Probabilistic Dependencies (PD), Embedded-Multi-Valued Depen-
dencies (EMVD), Undirected Graphs (UG) and Directed-Acyclic Graphs (DAGs). This paper provides an
axiomatic basis, called a semi-graphoid, which captures the structure common to all four types of depen-
dencies and explores the expressive power of DAGs in representing various types of data dependencies. It
is shown that DAGs can represent a richer set of dependencies than UGs, that DAGs completely represent
the closure of their generating bases, and that they offer an effective computational device for testing con-
sistency in a given set of dependencies as well as inferring new dependencies from that set. These proper-
ties might explain the prevailing use of DAGs in causal reasoning and semantic nets.

Science track
Major topic: Knowledge Representation

Subtopics: Data Dependencies, Logic of Relevance, Network Representations

* This work was supported in part by the National Science Foundation Grant #DCR 85-01234.

1. INTRODUCTION

Why Dependencies?

The notion of relevance or informational dependency is basic to human reasoning. People tend to
judge the 3-place relationships of mediated dependency (i.e., x influences y via z) with clarity, conviction
and consistency. For example, knowing the departure time of the last bus is relevant for assessing how
long we are about to wait for the next bus. However, once we leamn the current whereabouts of the next
bus, the former no longer provides useful information. These common-sensical judgments are issued
qualitatively and reliably and are robust to the uncertainties which accompany the assessed events. Con-
sequently, if one aspires to construct common-sensical reasoning systems, it is important that the language
used for representing knowledge should allow assertions about dependency relationships to be expressed
qualitatively, directly and explicitly. Moreover, the verification of dependencies should be accomplished
swiftly by a few primitive operations on the salient features of the representation scheme.

Making effective use of information about dependencies is a computational necessity, essential in
any reasoning. If we have acquired a body of knowledge z and now wish to assess the truth of proposition
x, it is important to know whether it would be worthwhile to consult another proposition y, which is not
in z. In the absence of such information, an inference engine would spend precious time on derivations
bearing no relevance to the task at hand. A similar necessity exists in truth maintenance systems. If we
face a new piece of evidence, contradicting our previously held assumptions, we must retract some of
these assumptions and, again, the need arises of quickly identifying those that are relevant to the contrad-
iction discovered. But how would relevance information be encoded in a symbolic system?

Explicit encoding is clearly impractical because the number of (x,y, z) combinations needed for
reasoning tasks is astronomical. Relevance or dependencices are relationships which change dynamically
as a function of the information available at any given time. Acquiring new facts may destroy existing
dependencies as well as create new ones. The former change will be called monotonic as it narrows the
scope of propositions relevant to the target conclusion, and the latter will be called nonmonotonic as the
scope of relevant propositions widens. For example, in trying to predict whether I am going to be late for
a meeting, it is normally a good idea to ask somebody on the street for the time. However, once I establish
the precise time by listening to the radio, asking people for the time becomes superfluous, and their
responses would be irrelevant, thus demonstrating monotonic change of dependencies. For an example of
a nonmonotonic relationship, consider the following: Normally, knowing the color of X 's car tells me
nothing about the color of Y’s, but if X were to tell me that he almost mistook ¥ 's car for his own, a new
dependency is created between the two color variables -- whatever I learn about the color of X s car will
have bearing on what I believe the color of Y ’s car to be. What logic would facilitate these two modes of
reasoning?

Why Logic?

In probability theory, the notion of informational relevance is given precise quantitative underpin-
ning using the device of conditional independence, which successfully captures our intuition about how
dependencies should change with learning new facts. A variable x is said to be independent of y, given
the information z, if

Pxylz)=P(x1z)P(ylz) ¢}

Accordingly, if x and y are marginally dependent (i.e., dependent, when z is unknown) and become in-
dependent given z, a monotonic relationship holds. Conversely, if x and y are marginally independent
and become dependent upon learning the value of z, a nonmonotonic relationship between x,y and z is
captured. These relationships are also captured by the qualitative notion of Embedded Multivalued Depen-
dencies (EMVD) in relational databases. Thus, in principle, probability and database theories could pro-
vide the machinery for identifying which propositions are relevant to each other with any given state of
knowledge.

However, it is flatly unreasonable to expect people or machines to resort to numerical equalities or
relational tables in order to extract relevance information. Human behavior suggests that such information
is inferred qualitatively from the organizational structure of human memory, not from manipulating
numbers or tables. Accordingly, it would be interesting to explore how assertions about relevance can be
inferred qualitatively and whether assertions similar to those of probabilistic or database dependencies can
be derived logically without references to numbers or tables. Preliminary work related to probabilistic
dependencies has been reported in {Pearl and Paz, 1986] and is extended in this paper to the qualitative no-
tion of EMVD.

Why Graphs?

Having a logic of dependency might be useful for testing whether a set of dependencies asserted
by an expert is self-consistent and might also allow us to infer new dependencies from a given initial set
of such relationships. However, such logic would not, in itself, guarantee that the inferences required
would be computationally tractable or that any sequence of inferences would be psychologically meaning-
ful, i.e., correlated with familiar mental steps taken by humans. To facilitate this latter feature, we must
also make sure that most derivational steps in that logic correspond to simple local operations on struc-
tures depicting common-sensical associations. We call such structures dependency graphs.

The nodes in these graphs represent propositional variables, and the arcs represent local dependen-
cies among conceptually-related propositions. Graph representations are perfectly suited for meeting our
earlier requirements of explicitness, saliency and stability, i.e., the links in the graph permit us to directly
and categorically express dependence relationships, and the graph topology displays these relationships

explicitly and preserves them, in fact, under any assignment of numerical parameters.

It is not surprising, therefore, that graphs constitute the most common metaphor for describing
conceptual dependencies. Models for human memory are often portrayed in terms of associational graphs
(e.g., semantic netwotks [Woods, 1975], constraint networks [Montanari, 1974), inference nets [Duda,
Hart and Nilsson, 1976] conceptual dependencies [Schank 1972]) and conceptual graphs [Sowa, 1983].
Graph-related concepts are so entrenched in our language (e.g. *‘threads of thoughts,”” *‘lines of reason-
ing,”” *‘connected ideas,” ‘‘far-fetched arguments’’ etc.) that one wonders whether people can, in fact,
reason any other way except by tracing links and arrows and paths in some mental representation of con-
cepts and relations. Therefore, a natural question to ask is whether the intuitive notion of informationat
relevémcy or the formal notions of probabilistic and database dependencies can be captured by graphical
representation, in the sense that all dependencies and independencies in a given model would be deducible
from the topological properties of some network.

Despite the prevailing use of graphs as metaphors for communicating and reasoning about depen-
dencies, the task of capturing dependencies by graphs is not at all trivial. When we deal with a
phenomenon where the notion of neighborhood or connectedness is explicit (e.g., family relations, elec-
tronic circuits, communication networks, etc.), we have no problem configuring a graph which represents
the main features of the phenomenon. However, in modeling conceptual relations such as causation, asso-
ciation and relevance, it is often hard to distinguish direct neighbors from indirect neighbors; so, the task
of constructing a graph representation then becomes more delicate. The notion of conditional indepen-
dence in probability theory is a perfect example of such a relational structure. For a given probability dis-
tribution P and any three variables x, y, z, while it is fairly easy to verify whether knowing z renders x
independent of y, P does not dictate which variables should be regarded as direct neighbors. Thus, many
different topologies might be used to display the set of dependencies embodied in P, each capturing a
fragment of the set. We shall also see that some useful properties of dependencies and relevancies cannot
be represented graphically and the challenge remains to devise graphical schemes that minimize such
deficiencies.

Why Directed Graphs?

The main weakness of undirected graphs stems from their inability to represent nonmonotonic
dependencies; two independent variables must be directly connected by an edge, merely because there ex-
ists some other variable that depends on both. As a result, many useful independencies remain un-
represented in the graph. To overcome this deficiency, one can employ directed graphs and use the arrow
directionality to distinguish between dependencies in various contexts. For instance, if the sound of a bell
is functionally determined by the outcomes of two coins, we will use the network
coin 1 —» bell « coin 2, without connecting coin I to coin 2. This pattern of converging arrows is inter-
preted as stating that the outcomes of the two coins are normally independent but may become dependent

upon knowing the outcome of the bell (or any external evidence bearing on that outcome).

This paper treats directed graphs as a language of expressing dependencies. Section 2 presents
formal definitions for two models of data dependencies (Probabilistic and EMVD) and two models of
graphical dependencies (undirected and directed). An axiomatic definition is then provided for a relational
structure called semi graphoid which covers all four models, thus formalizing the general notion of medi-
ated dependence. Section 3 compares the expressive power of directed graphs to that of undirected graphs
and shows the superiority of the former. Section 4, explores the power of directed graphs to cover data
dependencies of the type produced by probabilistic or logical models. The main contribution of the paper
lies in showing that directed acyclic graphs (DAGs) are powerful tools for encoding and inferring data
dependencies of both types, identifying the source of that power, and highlighting its limitations.

2. DEPENDENCY MODELS, MAPS ANd GRAPHOIDS

Definition: A Dependency Model (DM) M over a set of objects U is any subset of triplets (X, Z,Y)
where X, ¥ and Z are three disjoint subsets of U. The triplets in M represent independencies, that is,
(X,Z,Y)e M asserts that X and ¥ interact only via Z, or, "X is independent of Y given Z". This state-
ment is also written as I (X, Z, Y) with an optional subscript to clarify the type of the dependency when
necessary.

Definition: A Probabilistic Dependency model (PD) M is defined in terms of a probability distribution
P over some set of variables U, i.e. a function mapping any instantiation of the variables in U to a non-
negative real number such that the sum over the range of P is unity. If X, Y and Z are three subsets of U
and x,y and z any instantiation of the variables in these subsets, then by definition / (X, Z, Y)p iff

Pxlzy)=P(xlz))

This definition is equivalent to that given in (1) and conveys the idea that, once Z is fixed, knowing ¥ can
no longer influence the probability of X .

Definition: A dependency model M is said to be in PD, M e PD, if there exists a probability distribution
P such that the definition above holds for every triplet (X, Z, ¥). Thus, PD (and, similarly, PD", UGD,
DAGD, SG, and G defined below) represents a class of dependency models, all sharing a common cri-
terion for selecting triplets in M.

Definition: A Non-Extreme Probabilistic Dependency model (PD™) is any model Mp in PD where the
range of P is restricted to the positive real numbers, (i.e., excluding 0’s and 1°s).

Definition (Fagin, 1977): An Embedded Multivalued Dependency mndel (EMVD) Mp, is defined in terms
of a database R over a set of attributes U, i.e. a set of tuples of values of the attributes. The notation
<Ay Gp " y> is-conventionally used to denote that the tuple is in the relation R. If X, Y and Z are three
disjoint subsets of U and x; and x, are any instantiations of the attributes in X, y, and y, are any instan-
tiations of the attributes in ¥ and z is any instantiation of the attributes in Z, then by definition
I1(X,Z,Y)y iff

<X Y12>& <X3¥22> D <Xxy1y2> (3)

In other words, the existence of the subtuples < x;y;z > and <x,y, z > guarantees the existence of
<x,y,z > EMVD is the most general class of dependencies used in databases and it conveys the idea
that, once Z is fixed, knowing Y cannot further restrict the range of values permitted for X. This
definition was also used by Shenoy and Shafer [1986] to devise a ‘*qualitative’” extension of probabilistic
dependencics.

Definition: An Undirected Graph Dependency model (UGD) M is defined in terms of an undirected
graph (UG) G. If the function A(n) denotes the set of nodes which are adjacent to n in G then by
definition I (X, Z,)¢ iff every path between nodes in X and Y contains at least one node in Z. In other
words, Z is a cut-set separating X from Y. A complete axiomatization of UGD is given in [Pear] and Paz,
1986].

Definition: A Directed Acyclic Graph Dependency model (DAGD) M; is defined in terms of a directed
acyclic graph (DAG) G. If the function C (n) denotes the set of nodes which are direct descendants of
node n in G and the function D (n) denotes the set of all n’s descendants, then by definition /(X ,Z,Y)¢
iff there is no sequence of nodes {m; }{* (with possible repetitions) for which all of the following hold:

1. ;meX

2. n,eY

3. M e CMyy) or My e €M)

4. e CMup)NCM)=>M€Z or DMHNZ =D

5 ;e CMupnC)=>n;¢ 2)
In other words, parts 1-5 forbid the existence of a bi-directed path starting from a node in X' and ending at

anode in Y (part 1-3) along which every node with converging arrows cither is or has a descendent in Z
(part 4) and every other node is outside Z (part 5).

This criterion was called d-separation in [Pearl, 1986]; part 5 corresponds to ordinz;ry vertex
separation in undirected graphs while part 4 conveys the idea that the inputs of any causal mechanism be-
come dependent once the output is known. In figure 1, for example, X ={2} and ¥ = {3} are d -separated
by Z ={1} (ie. (2, 1,3) e Mg) because both paths between 2 and 3 are "blocked". HoweverX and Y are
not separated by Z’ = (1, 5} because node 5, as a descendent of 4, "unblocks" the connection between the
converging arrows at 4, thus opening a pathway between 2 and 3.

1

4

5
Figure 1

Definition: An /-map of a dependency model M is any model M’ such that M < M . For example, the un-
directed graph X-——Z—Y is an/-map of the DAGX —Z « Y.
\-—/

Definition: A D-map of a dependency model M is any model M’ such that M’ 2 M . For example, if a re-
lation R contains all tuples having non-zero probability in P then Mp is a D -map of Mp.

Definition: A Perfect-map of a dependency model M is any model M’ such that M *=M . For example,
the undirected graph X—Z—Y is a perfectmap of the DAGX - Z 7Y .

We will be primarity interested in mapping data dependencies into graphical structures, where the
task of testing connectedness is easier than that of testing membership in the original model M. A D-map
guarantees that vertices found to be connected are, indeed, dependent, however, it may occasionally
display dependent variables as separated vertices. An/-map works that opposite way: it guarantees that
vertices found to be separated always correspond to.genuinely independent variables but does not guaran-
tee that all those shown to be connected are, in fact, dependent. Empty graphs are trivial D -maps, while
complete graphs are trivial / -maps.

Definition: A semi-graphoid (SG) is any dependency model M which is closed under the following pro-
perties:
Symmetry: . ®.ZY)eM <=> (¥.Z,X)e M

Decomposition X,Z,YW)eM = X,Z,Y)e M

Weak Union X,Z,YW)eM = X,ZW.Y)e M

Contraction . X,ZY WY& X,Z,Y)eM = X,2,YW)e M (5)

It is straight forward to show that all of the specialized dependency models presented thus far are semi-
graphoids, and in view of this generality, these four properties are selected to represent the general notion
of mediated dependence between items of information.

With the exception of UGD, none of the specialized dependencies possesses complete parsimoni-
ous axiomatization similar to that of semi-graphoids. EMVD is known to be non-axiomatizable by a
bounded set of Hom clauses [Parker, 1981], and a similar result has recently been reported for DAGD
(Geiger, 1987]. PD is conjectured to be equivalent to SD (i.e., M € PD <=> M € SG) but no proof (nor
disproof) is in sight.

Definition: A graphoid (G) is any semi-graphoid M which is also closed under the following property:

Intersection: X,ZY WY& X,ZW ,Y)e M =X ,Z,YW)e M (6)

It is straight forward to show that classes PD", UGD, and DAGD are all graphoids of G. Only EMVDs
and pure PDs do not comply to this axiom.

The most important properties of graphoids [Pearl and Paz, 1986] is that they posses unique
minimal /-maps in UG, and permit the construction of graphical /-maps from local dependencies. By
connecting each variable x to any subset of variables which renders x conditionally independent of all
other variables in U, we obtain a graph that is an 7/ -map of U. Such local construction is not guaranteed
for semi-graphoids. The reason this paper focuses on semi-graphoids is to include dependency models
representing logical, functional and definitional constraints; such constraints are excluded from PD". In
section 3, we will show that the use of DAG’s provides a local construction of /-maps for every semi-
graphoid.

Definition: Let M be a dependency model from some class M of dependency models. A subset B c M
of triplets is a M —basis of M iff every model M’ e M which contains B also contains M . Thus, a basis
provides a complete encoding of the information contained in M ; knowing 8 and M enables us, in princi-
ple, to decide what triplets belong to M.

One of the main advantages of graphical representations is that they posses extremely parsimoni-
ous bases and extremely efficient procedures for testing membership in the closures of these bases. For
example, to encode all dependencies inferable from a given undirected graph G = (V, E) we need only
specify the set of neighbors N (x) for each node x in G, and this corresponds to specifying a neighborhood
basis:

By ={(x,N(x),U —x —N{x)),Vx eV})

Testing membership of an arbitrary triplet (X,Z,Y) in the closure of By simply amounts to testing
whether Z is a cutset of G separating the nodes in X from those in Y.

DAGs also possess efficient bases; to encode all dependencies inferable from a given DAG G, we
need only specify the parents PA (x) for each node x € G. To encode those in the form of a basis we ar-
range the nodes in any total orderx, - - - , x, consistent with the arrows of G and construct the set:

B ={(x;, PA(x;), {xq,..., X} —~PA(x})), i=1,...,n} ®)

B is a DAG-basis of G since the closure of B coincides with the independencies displayed by G .

3. HOW EXPRESSIVE ARE DAGS?

One would normally expect that the introduction of directionality into the language of graphs
would render them more expressive, capable of portraying a more refined set of dependencies, €.g., non-
monotonic and non-transitive. Thus, it is natural to ask:

1. Are all dependencies representable by undirected graphs also representable by a DAG?
2. How well can DAGs represent the type of data dependencies induced by probabilistic or logical
models?

The answer to the first question is, clearly, negative. For instance, the dependency structure of the
diamond-shaped graph of Fig.2(a) asserts the two independencies: /(A, BC,DYand I(B,AD,(C). No
DAG can express these two relationships simultaneously and exclusively. If we direct the arrows from A
toD,weget{(A,BC,D)butnot/(B,AD, C); if we direct the arrows from B to C, we get the latter but
not the former. This limitation will always be encountered in nonchordal graphs (Tarjan & Yannakakis,
1984); no matter how we direct the arrows, there will always be a pair of non-adjacent parents sharing a
common child, a configuration which yields independence in UGs but dependence in DAGs.

This problem does not exists in chordal graphs and, consequently, we have

Theorem 1: UGD and DAGD intersect in a class of dependency models representable by chordal
graphs,

Non-chordal graphs represent the one class of dependencies where undirected graphs exhibit ex-
pressiveness superior to that of DAGs graphs. However, this superiority can be eliminated by the intro-
duction of auxiliary variables. Consider the diamond-shaped graph of Figure 2(a). Introducing an auxili-
ary variable £ in the manner shown in Figure 1(b) creates a DAG model on five variables which also as-

i0

sens I (C, B, D).
A A A
B ¢ B c B c
1 \
¥ \
0 5> > e,
(a) (b) (<)
Figure 2

If we *‘clamp’’ the auxiliary variable £ at some fixed value E =e¢,, as in Figure 2(c), the dependency
structure projected on A, B,C, D is identical to the original structure of Figure 2(a), ie,I(A,BC,D)
and /(B,AD,C).

In general, one can show that the introduction of auxiliary variables renders the DAG representa-
tion more powerful than undirected graphs:

Theorem 2: Every dependency model expressible by an undirected graph is also expressible by a DAG,
with some auxiliary nodes. :

Another method of improving the expressive power of DAGD (without introducing auxiliary
nodes) is to permit both directed and undirected links (but no directed cycles) and use a separation cri-
terion similar to that of DAGs. One can show, indeed, that the expressive power of hybrid graphs is
greater than UGD and DAGD combined (Verma, 1987).

4. HOW FAITHFUL ARE DAG’S?

Suppose someone (e.g., an expert) provides us with a list L of triplets representing a set of in-
dependencies in some (undisclosed) dependency model M, of a known type. Several questions arise:

1. How can we test whether L is consistent and/or non redundant?
2. How can we deduce all the implications of L, or, at least test whether a given triplet is logically
implied by L?

3. What additional triplets are required to make the model completely specified?

11

These questions are extremely difficult to answer if M does rot possess a convenient basis orif L
does not coincide with that basis. Even in a neatly axiomatized system such as semi-graphoids the
answers to these questions involve intractable proof procedures.

Graph representations can be harnessed to alleviate these difficulties; we construct a graph model
that contains L and draw inferences from G instead of L. The quality of inferences will depend, of
course, on how faithfully G captures the closure of L. The following results (see [Verma, 1987] for
proofs) uncover the unique powers of DAGs in performing this task.

Let U g(») represent the set of elements smaller than n under some total ordering 6 on the elements
of U,ie.,{u e UlBu)<0(n).

Definition: A recursive protocol L g of a dependency model M is any set of pairs

Lg={(x,8;)] VxelU})]
such that
(I,SX)E L9=>(x,Sx,U9(,)—S,)eM (10)

Intuitively, L lists, for each x € U, a set of predecessors S, of x which renders x conditionally indepen-
dent of all its other predecessors (in the order 8). In causal modeling, L 4 specifies the set of direct causes
ofevent x.

Recursive protocols were used in [Pearl 1986] to construct DAG representations (called Bayesian
Networks) of probabilistic dependencies by connecting the elements in S, as direct parents of x. The fol-
lowing results justify this construction and generalize it to any semi-graphoid, including, in particular, the
qualitative dependencies of EMVD.

The first results states that the DAG constructed in this fashion can faithfully be used to infer
dependency information; any independence inferred from that DAG must be true in M and, furthermore,
every independence which is implied by the protocol will be displayed in the DAG.

Theorem 3: If M is any semi-graphoid then the DAG generated from any recursive protocol Lg of M is
an/-map of M.

Corrollary: If L is any recursive protocol of some dependency model M, the DAG generated from Lg
is a perfect map of the semi-graphoid closure of L.

12

Note that, since the topology of the DAG depends only on the set of child-parents pairs contained
in the protocol, the order 6 used in generating Lg need not be known; Theorem 4 holds for any generating
order. Note also that the interal consistency of any recursive protocol can be verified by simply testing
whether {(y, x)y € S, } constitutes a partial order.

The second result states that every independence in a semi-graphoid can be inferred from at least
one recursive protocol.

Theorem 4: If M is any semi-graphoid then the set of DAGs generated from all recursive protocols of B
is a perfect map of M if the criterion for separation is that d -separation must exist in one of the DAGs.

CONCLUSIONS

This paper demonstrates that directed acyclic graphs (DAGs) possess powerful inferential proper-
ties. If the input set of dependencies is given in the form of a recursive protocol, then all implications of
this input can be deduced efficiently, by graphical manipulations, instead of logical derivations.

No equivalent protocol of similar parsimony is known to work for undirected graphs, unless the
generating model is a full graphoid, namely, unless logical, functional and definitional constraints are ex-
cluded from the model. Thus, DAGs appear to provide powerful inference tools for handling data depen-
dencies of the type encountered in logical reasoning and truth maintenance systems. This feature help ex-
plain the prevailing use of DAGs in causal reasoning and semantic nets.

13

REFERENCES

R. O. Duda, P. E. Hart & N. J. Nilsson, ‘‘Subjective Bayesian Methods for Rule-Based Inference Sys-
tems,”” Proceedings, 1976 National Computer Conference (AFIPS Conference
Proceedings), 45, 1075-1082, 1976.

R. Fagin, ‘‘Multivalued Dependencies and a New Form for Relational Databases,”’ ACM Transactions on
Database Systems, 2, 3., September 1977, pp. 262-278.

U. Montanari, *‘Networks of Constraints,”” Information Science, Vol. 7, 1974, pp.95-132.

S. Parker and K. Parsay, ‘‘Inferences Involving Embedded Multivalued Dependencies and Transitive
Dependencies,”’ Proc. International Conf. on Management of Data (ACM-SIGMOD),
pp.52-57, 1980.

1. Peard, **Fusion, Propagation and Structuring in Belief Networks,” Artificial Intelligence, Vol. 29, No. 3,
September 1986, pp. 241-288,

. Pearl & A. Paz, ‘GRAPHOIDS: a Graph-based Logic for Reasoning about Relevance Relations,””
Proceedings, ECAI-86, Brighton, UK., June 1986; also, UCLA Computer Science
Department Technical Report 850038 (R-53).

R. Schank, “*Conceptual Dependency: a Theory of Natural Language Understanding,”” Cognitive
Psychology, Vol. 3, No. (4), 1972.

P. Shenoy and G. Shafer, **Propagating Belief Functions with Local Computations’’ /EEE Expert 1, (3),
pp- 43-52, (1986).

J. F. Sowa, *‘Conceptual Structures: Information Processing in Mind and Machine,”’ Addison-Wesley,
Reading, Mass. (1983).

Tarjan & M. Yannakakis, ‘‘Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity
of Hypergraphs and Selectively Reduce Acyclic Hypergraphs,’’ SIAM J. Computing,
Vol. 13, 1984, pp.566-579.

T. S. Verma, ** Causal Networks: Semantics and Expressiveness,”’ UCLA Cognitive Systems Laboratory
Technical Report (R-65), Los Angeles, California, 1987.

W. A. Woods, ‘““What'’s in a Link? Foundations for Semantic Network,”’ Bobrow and Collins (Eds.),
Representation and Understanding, Academic Press, Inc. 1975.

