AN 0(n2m?/2) DISTRIBUTED MAX-FLOW ALGORITHM

John M. Marberg January 1987
CSD-870002

An O(n?m"?) Distributed Max-Flow Algorithm t

John M. Marberg
Eli Gafni

Computer Science Department
University of California
Los Angeles, CA 90024

Technical Report CSD-870002
January 1987

Abstract

A distributed algorithm for finding maximum flow in a network is

presented. The message complexity of the algorithm is O(n Zm™), where

n and m denote the number of nodes and the number of links in the

. . n .
network. This is an improvement by a factor of —~ upon the previous
m

best complexity.

T Work supported by NSF grant DCR-84-51396 and by IBM grant D840622.

1. Introduction

Consider an asynchronous point-to-point communication network. Each node is an
independent processor. The processors communicate by sending messages over the links of the
network. One approach to the design of algorithms for this computation model is to take a cen-
tralized (single-processor) algorithm for the problem at hand and adapt it to the distributed
environment. Inherent parallel properties of the algorithm can then be fully exploited, whereas
the implicit centralized control can be replaced with synchronization. It this paper we present a
distributed algorithm for maximum flow that is based on Cherkasky’s centralized method {3, 9].

Finding maximum flow in a network is a well-known problem in combinatorial optimiza-
tion. It has been extensively studied, resulting in a plethora of centralized algorithms (see [11]
for the most current survey of results). In recent years, a number of distributed algorithms for
the problem have been developed. Table 1 summarizes these works. Message and time com-
plexities are expressed in terms of the parameters n and m, denoting, respectively, the number of
nodes and the number of links in the network.

Algorithm Messages Time Centralized Method
Cheung [4] On’m?) On3m) Edmonds & Karp [6]
Segall [13] O(nm?) O(n2m) Dinic [5]

Marberg & Gafni [12] On?) O(n3) Shiloach & Vishkin [15]
Awerbuch [1] on3) O(n*logn) Shiloach & Vishkin [15]
Goldberg & Tarjan [11] O(n?) O(nflogn) Goldberg & Tarjan [11]
This Paper On2m*) O(n?m*) Cherkasky [9]

Table 1. Survey of Distributed Max-Flow Algorithms

All the algorithms listed in Table 1 are based on the approach mentioned above, that is,

they are distributed implementations of some centralized method. The algorithm presented in

_n

this paper is the most efficient in the number of messages, improving by a factor of —~ the pre-
m

vious best result.

The distributed max-flow algorithms of Awerbuch [1] and Goldberg and Tarjan [11]
have better time complexity than our algorithm. This is since the methods upon which these
algorithms are based are highly parallel-oriented. Cherkasky’s method, on the other hand, has a
critical part which seems to be inherently sequential, hence the time complexity of our algorithm
is the same as the message complexity.

The max-flow algorithms in [1, 11] were actually designed for a synchronous network,
then superimposed with a global synchronization mechanism [2] that simulates each synchro-
nous step on the asynchronous network. Interestingly, we have not been able to employ this
strategy in our algorithm without compromising the complexity. Instead, we use local synchron-
ization mechanisms that are tailored for the specific needs of the algorithm.

The remainder of the paper is organized as follows. Section 2 defines the max-flow prob-
lem and our notation. Section 3 describes Cherkasky’s algorithm. The distributed implementa-
tion is presented in Section 4. Concluding remarks are given in Section 5.

2. The Max-Flow Problem

A flow network consists of a connected directed graph with no self loops or parallel
edges, and two distinguished nodes called source and target, denoted s and ¢, respectively. Each
edge e=v—w is associated with a positive value c¢(e) called the capacity of the edge, and a non-
negative value f(e) called the flow of the edge. The flow is outgoing from v and incoming into
w.

Let V denote the set of nodes, and E the set of edges of the graph. Also, let INFLOW (v)
be the sum of all flows incoming into node v, and QUTFLOW (v) the sum of all flows outgoing
from v. A legal flow in the network must satisfy the following conditions.

1. 0=f(e)<c(e)forall ecE.
2. INFLOWW)=OUTFLOW(v) for all ve V{5, t}.

The value of the network flow is defined as the quantity OUTFLOW (s)-INFLOW((s). The largest
possible flow value is called the maximum flow of the network. The max—flow problem is to
assign flows to the edges of the network such that maximum flow is achieved.

A flow network is layered if it has the following properties.

V is the union of disjoint sets Ly, L1, . . ., L called layers.
Lo={s}; Ly={z}).
For any edge e=v—owekE, ve L; and we L;,; for some 0<i<k-1.

o=

Each node ve V is on a directed path from s to ¢.

Clearly, a layered network is acyclic. We say that layer L; is downstream form any layer L;,
J<i. Similarly, L; is upstream form any layer L;, j>i.

We also use the following terminology. The residual capacity of an edge ¢ is the quan-
tity c(e)—f{e). If the residual capacity is 0, e is said to be saturated. A node v is closed if every
directed path from v to ¢ contains a saturated edge; otherwise v is open. An edge e=v—ow is
closed if w is closed or if e is saturated; otherwise e is open. A flow in the network is maximal if
s is closed (note that a maximal flow is not necessarily maximum).

An augmenting path from node v to node w is a directed path from v to w in which all
edges are open. The capacity of the augmenting path is the smallest residual capacity of any of
its edges.

During the execution of the max-flow algorithm, condition 2 in the definition of legal
flow may be temporary violated at some nodes. Specifically, it can be that
INFLOW (v)>OUTFLOW(v). The quantity INFLOW(v)-OQUTFLOW(v) is called the excess
flow of v. When a node other than s and t has nonzero excess flow, it is unbalanced; otherwise it
is balanced. Nodes s and ¢ are always considered balanced, regardless of any excess flow.

3. Cherkasky’s Algorithm

Our description of Cherkasky’s algorithm [3] follows Galil [9]. The algorithm is based
on a general scheme by Dinic [5], in which maximum flow is achieved by iteratively construct-
ing a layered network from the original network, finding maximal flow in the layered network,
then updating the flows in the original network. We assume the reader is familiar with Dinic’s
scheme (see also [7]), hence our discussion will focus only on finding maximal flow in a layered

network.

Some of the layers in the layered network are designated by the algorithm as special. We
will show later how to select the special layers. At this point it is only important to know that the
first and last layers (Lo and Ly) are special, and that the distance between any two consecutive
special layers is upper-bounded by the parameter x.

Two consecutive special layers and all the non-special layers between them comprise a
super layer. We denote the super layers by SL{, SL4,...,SLy, in order of their distance from
the source. The special layers located at the upstream and downstream ends of SL; are called the
rear layer and the front layer of SL;, denoted RL; and FL;, respectively. Notice that by
definition FL; =RL;,;.

At the beginning of the maximal flow computation, all edge-flows in the layered network

are 0, and node s contains a (dummy) excess flow of ¥ ¢’(s—v) units, where ¢’(e) denotes the
S—v

capacity of edge e in the layered network.

The algorithm uses two procedures, called PUSH (i) and BALANCE(i). PUSH (i) moves
as much excess flow as possible from open nodes in RL;, via SL;, to open nodes in FL;, When
PUSH (i) is invoked, all the nodes in layers downstream from RL; are balanced. Upon termina-
tion of the procedure, all the nodes in RL; that are still unbalanced are closed. Also, some open
nodes in FL; may become unbalanced.

BALANCE (i) attempts to reroute as much excess flow as possible from closed nodes in
FL; to open nodes in that layer, via alternative paths in SL;. Any remaining excess flow of
closed nodes in FL; is then returned to closed nodes in RL;. When BALANCE (i) is invoked, all
nodes in layers downstream from FL; are balanced, and all unbalanced nodes in the network are
closed. Upon termination of the procedure, all closed nodes in FL; are balanced. Also, some
open nodes in FL; and some closed nodes in RL; may become unbalanced.

The general scheme for the maximal-flow computation is shown in Figure 1. It should be
noted that the scheme differs slightly from that of Cherkasky. Specifically, our scheme iterates
in the loop labeled PLOOP until i =k’, whereas in the original scheme the loop is exited as soon
as the current PUSH (i) fails to push any flow to FL;. In other words, in our version, some calls
to PUSH are redundant because there is no excess flow to push. The reason for using the
modified scheme is that it lends itself easier to distributed implementation. However, there is no
change in the complexity of the centralized implementation.

5

i:=1;
PLOOP: while i <k’ do
PUSH (i),
i=i+l
end;
if there are no unbalanced nodes
then stop (* flow is maximal *)
else do
i=max{J| FLJ- contains unbalanced nodes };
BALANCE(i),
i=i+l;
goto PLOOP
end

Figure 1. Finding Maximal Flow in a Layered Network

PUSH (i) works by iteratively finding an augmenting path from some unbalanced open
node in RL; via internal layers of SL; to an open node in FL;, then increasing the flow on each
edge of the path by the capacity of the path. This continues until either all excess flow of nodes
in RL; has been pushed to FL;, or there are no more augmenting paths. Augmenting paths are
constructed using depth-first-search (DFS), similar to Dinic’s algorithm [5]. Additional imple-
mentation details of PUSH (i) are given in [9].

Let us denote the layers of SL; as RLi=L, , L, 41,...,Lq.1, Ly, =FL;. BALANCE()
starts by returning the excess flow from qu, to qu,_l, thereby balancing all the nodes in L, and
unbalancing some nodes in L, _;. On which edges flow is to be reduced, and by how much, is
determined from flow-history records that are maintained for each node (see [9]). It should be
noted that flow reduction does not result in reopening any previously closed node or edge.

After all excess flow is returned one layer backward, an attempt is made to reroute the
flow to open nodes in FL; by means of augmenting paths from L, ;. Excess flow in L, that

cannot be rerouted is then returned to L, ., from where rerouting to FL; via augmenting paths is

6

again attempted. The process continues iteratively, going backwards layer after layer, until all
the excess flow of closed nodes in FL; has been either rerouted to open nodes in FL; or returned
to some (closed) nodes in RL;. We call the task of rerouting flow from a given internal layer to
the front layer a micropush, because of the resemblance to PUSH. Further implementation
details of BALANCE({) are given in [9].

We now calculate the time complexity of the maximal flow computation, Recall that x is
an upper bound on the distance between two consecutive special layers. Also, let us denote by f
the total number of nodes in all special layers, and by f; the number of nodes in special layer
FL;. The following claims have been proved in [9].

Claim 1. For each given i, BALANCE(i) is invoked at most f; times. Overall, BALANCE is
invoked at most f-2 times. ®

Claim 2. The loop labeled PLOOP is entered at most f—1 times. Hence, PUSH is invoked a
total of O(fz) times, M

Claim 3. The total number of elementary steps involved in finding augmenting paths and push-
ing flow forward is O(f2x+mx). m

Claim 4. The total number of elementary steps involved in reducing (returning) flow on edges is
O@(mx). =

From these claims, the time complexity of finding maximal flow in a layered network is
T=0(fx+mx). We now describe a method to select the special layers so that T is minimized.
Our method is different from Cherkasky’s original, the reason being that the latter does not have
an efficient distributed implementation.

For 0<i<x-1,let V;= L;. In other words, the set V; is the union of the layers that
J=imodx
are at distance 0, x, 2x, 3x, - - - from layer L;. Clearly, there exists some 0<i’<x—1 such that

1V |<Z . The special layers are those that comprise V- (plus, of course, layers Ly and Ly).
x

Given any reasonable representation of the layered network, i’ can be easily determined in O (n)

time, i.e., at no added cost.

Hence, we have fSIV,--I+2=O(%). Substituting for f in the complexity, we get

2

n . e . n
T=O(T+ mx). This expression is minimized when x={

m” . Consequently, T=0 (nm .

Dinic’s scheme uses at most n—1 iterations of layered network construction followed by
finding maximal flow. A layered network can be constructed in O(m) time using breadth-first-
search (BFS). The total time complexity of Cherkasky’s max-flow algorithm is therefore
O(n*m™).

4. Distributed Implementation

4.1, Preliminaries

The distributed computation model we use is an asynchronous point-to-point communi-
cation network. Each node of the network is an independent processor. Each link provides a
bidirectional communication channel between the two nodes it connects. Processors communi-
cate by sending messages over the links. Messages incur finite but unbounded transmission
delay.

There are two performance measures: message complexity — the number of message
transmissions during the computation; and time complexity — the time it takes to perform the
computation. In calculating the complexity we assume that each message arrives within one unit
of time after it has been sent, and that local computation time is negligible. Also, each message
is limited to O(log max{n, c}) bits, where ¢ denotes the maximum link capacity.

To define the flow problem on the communication network, each link is associated with a
capacity and a direction, known to both nodes on which the link is incident. Notice that mes-
sages can be sent in both directions of a link, regardless of the flow direction.

The model assumes no central control or global clock. Hence, we must provide a means
of synchronization among nodes. We use a mechanism called PIF (Propagation of Information
with Feedback) [14], described next.

Let S be a set of nodes connected by a spanning tree rooted at a given node r. Each node
knows which of its incident links leads to the parent and which to a child. A PIF on § is a distri-
buted protocol which enables r to broadcast a message to all the nodes in S and then verify that

8

each node has indeed received the message. The protocol consists of two phases, referred to as
shout and echo.

In the shout phase, the broadcast message is propagated from r top-down over the span-
ning tree. Each node, upon receiving the message from its parent, sends it to all its children. In
the echo phase, an acknowledgement message (ack, in short) is propagated bottom-up from the
leaves to the root. A leaf sends an ack to its parent spontaneously upon receiving the broadcast
message. An internal node waits until it has received an ack from each of its children, then pro-
pagates the ack to its parent. When 7 has received an ack from all its children, it knows that the
broadcast message has been received by all nodes. It is easy to see that the complexity of the
PIF protocol is O (1S |) messages and time,

Among the many applications of PIF are: termination detection; signaling; and summa-
tton. In termination detection, the root node r is responsible for detecting that each node in § has
completed a given task (e.g., a phase of an algorithm). To this end, r initiates a PIF, broadcast-
ing a request for termination detection. A node propagates an ack to its parent only after having
completed the given task (and received ack from all its children). Thus, when the PIF ter-
minates, r knows that all the nodes have completed the task.

In signaling, r is responsible for notifying all the nodes in S to start a given task. Again,
this is done by a PIF from r; only the shout phase is necessary. Where applicable, signaling and
termination detection for the same task can be combined into one PIF. The shout phase initiates
the task, and the echo phase verifies termination.

Finally, in summation, the task is to evaluate the expression a®a,@® * - - ®a 5\, where
each g; is a local value of some node in §, and € is a commutative and associative operator (e.g.,
“4”, “max”, etc.). This is accomplished as follows. The root r initiates a PIF. In the echo phase,
a leaf sends its local value g; to the parent (as part of the ack message). An internal node sums
up (using @) the values received form the children and its own local value, then propagates the
result to the parent. When r has received values from all its children, it computes the total sum.

4.2. Description of the Algorithm

As in Section 3, we focus only on finding maximal flow in a layered network. Each node
knows its layer number and which incident links lead to upstream or downstream neighbors. We
assume that a spanning tree of the layered network, rooted at the target node ¢, has also been

9

constructed. Also, each node knows the values # and x.

The first task is to select the special layers. Node ¢ initiates x summation protocols to find

the number of nodes in each subset Vg, ..., V,_; (recall that V; = Lj) Inthei’th summa-
j=imodx

tion, the local value used by nodes of V; is 1, whereas all other nodes use local value 0. Upon

completion of the summations, node ¢ finds the index i’ such that |V | is minimum and broad-

casts it to all nodes. Each node can then determine to which super layer(s) it belongs, and

whether or not it is in a special layer.

PUSH (i) is implemented as follows. Each node in layer RL; is responsible for finding the
augmenting paths originating from itself. An augmenting path can be found by a DFS process.
This is simply a token that is routed over SL; in DFS order. At each point, the token carries the
capacity of the path between its origin node and its current location. When the token reaches a
closed node it backtracks on the last link, marking the link as closed. When the token reaches
layer FL;, it backtracks to the origin over the augmenting path, increasing the flows on the links
by the capacity of the path,

Once a link has been closed, it is never traversed again by any token. To avoid conten-
tion among tokens of different parallel paths, nodes forward only one token at a time over each
link. If tokens have been forwarded on all open links of a given node, additional tokens arriving
at that node are delayed until some token backtracks. A node in RL; ends its part in PUSH (i)
when it has no more excess flow or when it becomes closed.

In the centralized algorithm, PUSH (i+1) is invoked after PUSH (i) has terminated. In the
distributed implementation, we simulate this implicit order of events by means of synchroniza-
tion. For this purpose, a spanning forest is constructed in each super layer, with the tree roots
located in the rear layer. This can be done by applying the MST algorithm of Gallager, Humblet
and Spira [10] on each super layer.

Assume PUSH (i) is in progress. It is easy to see that a sufficient condition for a node in
RL; .1 (=FL;) to start PUSH(i+1) is that all nodes in its connected component in SL; have ter-
minated their part in PUSH(i). To this end, each root of the spanning forest of SL; initiates a
PIF to detect the termination of PUSH (i} in its component. A node in RL; delays its ack until all
its augmenting paths have been completed (i.e., all tokens have returned). All other nodes can
send ack immediately. Upon detecting termination, the roots, which are in RL;, send a signal to

10

the nodes in RL; (using a second PIF) to start PUSH (i+1).

This synchronization scheme propagates downstream from one super layer to the next,
thereby implementing the loop labeled PLOOP (see Figure 1). When the start signal reaches
node ¢, the entire loop has completed (notice that SL;- consists of exactly one connected com-
ponent).

Node z then initiates a summation protocol to find the index of the highest front layer
with unbalanced nodes. Unbalanced nodes in FL; use as their local value for the summation the
index i; balanced nodes use local value 0. The summation operator is @=max. The result, say
index i’, is broadcast over the network, thereby signaling the nodes in FL; to start
BALANCE((i").

BALANCE (i) is implemented as follows. To perform flow reduction on edge e=v—ow,
node w sends a message to v containing the amount of flow to be reduced. For purpose of syn-
chronization (see below), an acknowledgement is sent from v to w. To perform a micropush, we
use DFS tokens, similar to PUSH.

In the centralized algorithm, reduction followed by micropush is performed iteratively
layer after layer. We need a mechanism to synchronize the distributed iterations, similar to the
mechanism in PUSH. To this end, we construct a spanning forest in each pair of adjacent layers
Lj JLj+1, 0<j<k—1, with the roots located in Lj,;.

Assume a micropush from some level L; in SL; is in progress. The roots of the spanning
forest of L;_1_L; initiate a PIF to detect termination. A node in L; delays its ack until all its
augmenting paths have been completed and all flow reduction messages it sent to L;_; have been
acknowledged. Upon detecting termination, the roots (which are in L) signal the nodes in L;
to start their micropush.

The synchronization scheme propagates upstream layer after layer within SL;. When the
start signal reaches layer RL;, a PIF is initiated by the roots of the spanning forest of SL;, to
detect termination of all the micropushes of the super layer (recall that the roots of SL; are in
RL;. Subsequently, a signal to start PUSH(i+1) is propagated to RL;, thereby initiating
another pass over PLOOP.

11

4.3. Complexity

Essentially, every elementary step that is involved in pushing or retuming of flow is

implemented by a message. Following Claims 3 and 4 (see Section 3), the number of messages
2

used in flow-related activities is O(nT+ mx). The delays that are imposed on DFS tokens due to

contention among augmenting paths create bottlenecks during PUSH and micropush. This

renders the progress of the tokens, in the worst case, completely serial. Consequently, the time

2
. . n
spent on flow-related computation is also 0(T+ mx).

Other activities in the network include the PIFs that are used in selecting the special
layers. These incur a total cost of O(nx) messages and time. In addition, before each BAL-
ANCE, two PIFs are performed to find the index of highest layer with unbalanced nodes and to
propagate that index. By Claim 2, there are f-2 executions of BALANCE. Hence these PIFs

2
. n .
incur a total cost of O (nf)=0(—) messages and time.
X

We now calculate the costs of synchronization. Each execution of PUSH (i) requires two
PIFs over SL;, which cost O(1SL; I) messages and time. Consequently, each pass over PLOOP

has a synchronization cost of O(E |SL;1)=0(n) messages and time. Following Claim 2, the
Jj=1

2
total synchronization cost of all executions of PUSH is O(nf)=0(n7) messages and time.

Each execution of BALANCE (i) entails two PIFs on each pair of adjacent layers in SL,
and two PIFs on the entire super layer, for a cost of O(ISL; 1) messages and time. Following

Claim 1, the synchronization of all executions of BALANCE requires a total of
n2

O(E Fi1SL; D=0 (nf)=0 (—) messages and time.
j=1

Finally, there are setup costs for the synchronization, namely the construction of the
spanning forests. A spanning forest in a subnetwork with p nodes and ¢ links can be constructed
in O(g+plogp) messages and O(plogp) time, using the MST algorithm of Gallager, Humblet
and Spira [10]. Since each node in the layered network participates in at most four different
spanning trees, the total cost of constructing all the spanning forests is O(m+nlogn) messages
and O(nlogn) time.

12

Summing up all the costs, the complexity of the maximal flow computation is
2

O(nT+mx+n10g n) messages and time. This is minimized by x= L“HT/;J yielding a complexity
m

ofO(an’).

A layered network can be constructed in O(nm”?) messages and time using
Frederickson’s BFS algorithm [8]. As Dinic’s scheme uses n—1 iterations of layered network
construction followed by maximal flow computation, the total complexity of our distributed
max-flow algorithm is O(n 2ml‘é) messages and time.

5. Conclusion

Since the centralized complexity of Cherkasky’s algorithm is O(n%m™), our distributed
implementation of it optimal in the number of messages. Yet, the time complexity is essentially
as high as can be, namely equal to the message complexity. The critical part of the algorithm,
which causes the slow progress, is the construction of augmenting paths. We have not been able
to implement multiple DES processes in parallel without contention among tokens. It seems that
the augmenting path mechanism is inherently sequential.

Our results improve the message complexity of the max-flow problem by a factor of

_nl?. It is an open question whether further improvement is possible. There exist several max-
m

flow algorithms (see [11]) which have better centralized complexity than Cherkasky’s algorithm.
However, these algorithms use sophisticated data structures to make “shortcuts” in the network.

It seems that such mechanisms cannot be implemented distributively.

13

References

(1]

[2]

[3]

[4]

[3]

(6]

7]

(8]

[9]

[10]

(11]

Awerbuch, B., “Reducing Complexities of the Distributed Max-Flow and Breadth-First-
Search Algorithms by Means of Network Synchronization,” Networks 15, 4 (1985), pp.
425-437.

Awerbuch, B., “Complexity of Network Synchronization,” JACM 32, 4 (Oct. 1985), pp.
804-823.

Cherkasky, B.V., “Algorithm of Construction of Maximal Flow in Networks with Com-
plexity of O(VZE") Operations,” Mathematical Methods of Solution of Economical
Problems T (1977), pp. 117-125. (In Russian).

Cheung, T., “Graph Traversal Techniques and the Maximum Flow Problem in Distri-
buted Computation,” IEEE Trans. Software Engineering SE-9, 4 (July 1983), pp. 504-
512,

Dinic, E.A., “Algorithm for Solution of the Problem of Maximal Flow in a Network with
Power Estimation,” Soviet Math. Dokl. 11 (1970), pp. 1277-1280.

Edmonds, J. and R.M. Karp, “Theoretical Improvements in Algorithmic Efficiency for
Network Flow Problems,” JACM 19, 2 (April 1972), pp. 248-264.

Even, S., Graph Algorithms, Computer Science Press, Rockville, Maryland, 1979.

Frederickson, G.N., “A Single Source Shortest Path Algorithm for a Planar Distributed

Network,” in Proceedings 2nd Ann. Symp. on Theoretical Aspects of Computer Science,
1985, pp. 143-150.

Galil, Z., “An O(V%E 2"3) Algorithm for the Maximal Flow Problem,” Acta Informatica
14, 3 (Sept. 1980), pp. 221-242.

Gallager, R.G., P.A. Humblet, and P.M. Spira, “A Distributed Algorithm for Minimum
Weight Spanning Trees,” ACM TOPLAS S, 1 (Jan. 1983), pp. 66-77.

Goldberg, A.V. and R.E. Tarjan, “A New Approach to the Maximum Flow Problem,” in
Proceedings 18th ACM Symp. on Theory of Computing, 1986, pp. 136-146.

14

[12]

[13]

[14]

[15]

Marberg, J.M. and EM. Gafni, “An O(N3) Distributed Max-Flow Algorithm,” in
Proceedings 1984 Conf. on Information Sciences and Systems, Princeton Univ., Prince-
ton, NJ, 1984, pp. 478-482.

Segall, A., “Decentralized Maximum-Flow Protocols,” Networks 12, 3 (1982), pp. 213-
230.

Segall, A., “Distributed Network Protocols,” IEEE Trans. on Info. Theory IT-29, 1 (Jan.
1983).

Shiloach, Y. and U. Vishkin, “An O(n?log n) Parallel Max-Flow Algorithm,” J. of Algo-
rithms 3, 2 (June 1982), pp. 128-146.

15

