JEFFREY'’S RULE AND THE PROBLEM OF
AUTONOMOUS INFERENCE AGENTS

Judea Pearl June 1986
CSD-860099






TECHNICAL REPORT
R-62

CSD-860099

June 1986

JEFFREY’S RULE AND THE PROBLEM OF AUTONOMOUS INFERENCE AGENTS*

Judea Pearl
Cognitive Systems Laboratory
UCLA Computer Science Department
Los Angeles, California 90024
(judea@LOCUS. UCLA.EDU)

ABSTRACT

Jeffrey’s rule of belief revision was devised by philosophers to replace Bayes condition-
ing in cases where the evidence cannot be articulated propositionally. This paper shows that
unqualified application of this rule often leads to paradoxical conclusions, and that to determine
whether or not the rule is valid in any specific case, one must first have topological knowledge
about one’s belief structure. However, if such topological knowledge is, indeed, available, be-
lief updating can be done by traditional Bayes conditioning; thus, arises the question of whether
it is ever necessary to use Jeffrey’s rule in formalizing belief revision.

*This work was supported in part by the National Science Foundation, Grants #DCR 83-13875
& 85-01234.



JEFFREY’S RULE AND THE PROBLEM OF AUTONOMOUS INFERENCE AGENTS

Judea Pearl

The three-prisoners puzzle shows that, when a new fact is added to our knowledge base,
its implications depend critically on the process by which the fact was learned and, in particular,
on the collection of all other facts that could have possibly been gathered in that process. Such
detailed knowledge may not always be available; we are often required to respond to new infor-
mation without having the slightest idea of how it was collected. Situations of this kind occur
when the task of gathering information is delegated to autonomous agents, each using its own
covert procedures which, for various reasons, cannot be explicated in full detail.

Richard Jeffrey ( The Logic of Decisions, McGraw-Hill, 1965, Chapter 11) was the first
to recognize the importance of this problem, and he devised a rule for handling it. The auto-
nomous agents used in Jeffrey’s original example are our sensory organs, as described in the
following quotation from Jeffrey’s book:

Observation by Candlelight

‘““The agent inspects a piece of cloth by candlelight and gets the impression that it is
green, although he concedes that it might be blue or, even (but very improbably), violet.
If G,B and V are the propositions that the cloth is green, blue and violet, respectively,
then the outcome of the observation might be that, whereas originally his degrees of be-
lief in G, B and V were .30, .30 and .40, his degrees of belief in those same propositions
after the observation are .70, .25 and .05. If there were a proposition E in his preference
ranking (i.e., knowledge framework) which described the precise quality of his visual ex-
perience in looking at the cloth, one would say that what the agent learned from the ob-
servation was that E is true. If his original subjective probability assignment was prob,
his new assignment should then be probg, and we would have

prob G =.30 prob B =.30 probV =40

representing his opinions about the color of the cloth before the cobservation, but would
have

prob(G\E)=.70 prob(BIE)=.25 prob(VIE)=.05

representing his opinions about the color of the cloth after the observation’....*“When
the agent looks at the piece of cloth by candlelight there is a particular complex pattern
of physical stimulation of his retina, on the basis of which his beliefs about the possible
colors of the cloth change in the indicated ways. However, the pattern of stimulation
need not be describable in the language he speaks; and even if it is, there is every reason
to suppose that the agent is quite unaware of what that pattern is, and is quite incapable
of uttering or identifying a correct description of it. Thus, a complete description of the



pattern of stimulation includes a record of the firing times of all the rods and cones in the
outer layer of retinal neurons during the period of the observation. Even if the agent is
an expert physiologist, he will be unable to produce or recognize a correct record of this
sort on the basis of his experience during the observaton.”

With this story in mind, Jeffrey then poses the question of how the new information
should be used to influence other propositions which depend on the color of the cloth. In his
words: ‘‘Then the problem is this: Given that a passage of experience has led the agent to
change his degrees of belief in certain propositions B, B 5, .., B, from their original values,

prob By, prob B,, ..., prob B,

to new values,
PROB B, PROB B,, ..., PROB B,,

how should these changes be propagated over the rest of the structure of his beliefs? If the ori-
ginal probability measure was prob, and the new one is PROB, and if A is a proposition in the
agent’s preference ranking but is not one of the n propositions whose probabilities were directly
affected by the passage of experience, how shall PROB A be determined?’’

Jeffrey’s solution is based on the critical assumption that ‘‘while the observation
changed the agent’s degree of belief in B and in certain other propositions, it did not change the
conditional degree of belief in any propositions on the evidence B or on the evidence B."" Thus,
if By,B, -+ - B, are a set of exhaustive and mutually exclusive propositions (like the colors
‘green,’ ‘blue’ and ‘violet’ in the candlelight example), Jeffrey maintains that for every proposi-
tion A we should write:

PROB (A|B;)=prob (AlB;) i=12,...n 03}
This, together with the additivity of PROB , leads directly to

PROB(A) =Y prob (AlB;) PROB (B;), )

a formula that became known as Jeffrey’s Rule of updating probabilities. The convenience of
the rule is enticing; we need not know a thing about the process by which the updating from
prob (B;) to PROB (B;) took place -- only the net result matters. We simply take PROB (B;) as a
new set of priors, and we apply to them the textbook formula (2). A strict probabilistic analysis
will, of course, question the universal validity of (1); for, if we denote by e the evidence actual-
ly observed and identify PROB (A ) with prob (A e ), we then get

prob(Ale) =Y prob(A|B;,e) prob(B; le) (3)

which coincides with (2) only when A and e are conditionally independent, given B;.



To demonstrate the rationale behind Jeffrey’s Rule and some of its weaknesses, let us re-
turn to the candlelight example and examine three cases where different meanings are assigned
IA.

Case (a)

Assume that the proposition A in (2) stands for the statement ‘*The cloth will be sold the
next day,”” and that we know that the chances of selling the cloth depend solely on its
color, via:

P(Algreen)=.40 P(Al|blue)=.40 P(Alviolet)=.80
Eq. (2), then, permits us to calculate the updated belief in the salability of the cloth,

based only on the conclusion of the test process. Whereas, prior to the test, our belief in
selling the cloth measured

PAY=(4)(3)+ (4(3)+(.8).4)=.56,
once the test results become known, our belief should change to:
P(Ale) = (AT + (4)(.25) + (.8)(.05) = 412.

This reasoning would pass the scrutiny of even the strictest Bayesian because
stating that the salability of the cloth depends only on its color amounts to asserting the
conditional independence of A and e in (3)

P(Alcolor,e) =P (Alcolor),
which legitimizes Jeffrey’s assumption

PROB (A|B;)=prob (AlB;)
and, hence, his updating rule.

To demonstrate the volatility of this assumption, let us examine an extreme ex-
ample where it is obviously violated.

Case (b)

Imagine that the main interest of our candlelight observer lies not in the color of the cloth
but rather in the chemical composition of the candle’s wax. Let A be the proposition
that the candle’s wax belongs to one notoriously cheap brand, known to produce flames
deficient in violet content. Under these circumstances, are we justified in using Jeffrey’s
Rule? Now the situation is completely reversed; the actual colors of the cloth (B;) are of
no relevance to A prior to the observation; so, prob(AlB;) =prob A. If we blindly ap-
ply Jeffrey’s Rule (3) to this situation, we obtain a paradoxical result:



PROB (A)=Y prob(A) PROB (B;)=prob (A). (4)

No matter how violet or greenish the cloth looks under the candlelight, the observer’s be-
lief regarding the spectral content of the flame ought to remain unaltered.

The lesson here is that, even though we lack the knowledge required for precise
description of the measurement process, our common-sense understanding of the process
is sufficient to alert us to the falsehood of P(A1B;,e)=P(A1B;) and thus protect us
from drawing a wrong conclusion as in (4). Qualitatively speaking, we normally sum-
marize the difference between the two situations above by saying that in case (a), the
color of the cloth ‘‘stood between’” the evidence and the proposition A (the salability of
the cloth), while in case (b), it was the evidence which mediated between the colors and
proposition A (the brand of wax), as in Figure 1. Before giving these notions precise
definitions and formal graphical representations, let us consider a third case (correspond-
ing to Fig. 1 (c)) where, again, Jeffrey’s Rule leads to false conclusions.

Case (¢)

Imagine that the candlelight observer is color-blind but can judge the colors (B;) by
closely examining the texrure of the cloth, knowing that all green cloths turn out coarse
in texture, while 64.2857% of all blue cloths and 94.64% of all violet cloths are fine tex-
tured. Initially, the agent’s opinions about the color of the cloth,
prob (B;) = (.30, .30, .70), were based purely on frequency information. From this infor-
mation the agent may infer that the proposition A: *‘the cloth is coarse’’ deserves a be-
lief

prob (A) =Y prob(A|B;) prob (B;) = (1)(.30) + (.35714)(.30) + (.0536)(.40) = .4286

After examining the texture of the cloth by candlelight, the agent becomes abso-
lutely sure of its coarseness (i.e., PROB (A) = 1), from which, using some covert mental
process, he infers and reports PROB (B;) = (.70, .25, .05). The question is, can we re-
cover the concealed value of PROB (A ) from the reported values of PROB (B;), using
Jeffrey’s Rule?

Applying the rule to this situation, gives:
PROB(A)=Y, prob(A |B;) PROB (B;) (5)

= (1)(.70) + (.35714)(.25) + (.0536)(.05) = .7919

The correct analysis should yield PROB(A) =1, not .7919 as in (5). In general, the
correct updating formula for this case is more complicated than Eq. (5), but it can be ob-
tained using Bayes Rule if only we are given only the parameters prob(A!B;), prob (B;)



and PROB (B;).

We can use this example to demonstrate another difficulty associated with Jeffrey’s Rule
-- Why can’t we apply the rule again on the updated probability PROB (A ) to obtain a doubly-
revised value for PROB (B;).

Imagine that we have two agents: one color-blind who conducts coarseness tests and
one color-sensitive who conducts color tests. The first agent examines the cloth and reveals to
us PROB(A). Agent 2 combines this revelation with the available frequency information
prob (A 1B;) and forms an opinion prob,(B;). He then conducts a color test and revises his
opinion prob ,(B;) to PROB 4(B;). How can we use this new information to update the belief in
A ,the coarseness of the cloth? Brute-force application of Jeffrey’s Rule:

PROB(A) =Y, prob(A|B;) PROB 4(B;) (6)

would negiect the fact that part of the belief represented by PROB 5(B;) actually originated from
A and should not be counted twice. A more careful approach will take this into account by also
updating the conditional probability in (6) from its original value of prob (4 1B;) to
' ' ~ ~ PROB(A)

prob(A)

where a is a normalizing constant. However, such a procedure would mean that each time new
evidence arrives we need to update the conditional probabilities for all pairs of propositions that
may be of interest in the future. It is a difficult computational task and is certainly not Tepresen-
tative of the way humans deal with multiple evidence. It is possible to show' that Jeffrey’s
Rule can be modified to handle multiple updatings without changing the conditional probabili-
ties prob (A|B;). The modification required is:

PROB |(A|B;)=P (A|B;, e)=prob(AiB;)

PROB ,(B;)
| prob (A1B;)+A(1-prob (A1B,))

PROBA)= prob (A|B;) 7

where A is the solution to:

(8

PROB, (B;) }

PROB, (A)= zi:prob (41B;) prob (A 1B;) + AM(1—prob (A1B;)

Thus, in our previous example we had PROB | (A) = 1, which yields A = 0 in (8) and, when sub-
stituted in (7), maintains PROB (A ) = 1, regardless of PROB »(B;). This result supports our in-
tuition that, once the coarseness is established by direct methods, it ought not to be challenged
by indirect information, such as color examinations.

* Based on distributed schemes of belief-propagation (Pearl, Proc. AAAI Conf., pp. 133-136, 1982).



The example of case (c) carries two messages: First, we demonstrated again that the
semantic elements of the story are sufficient for judging whether Jeffrey’s assumption, the
conditional-independence P (A|B;.e) = P (A|B;), is reasonable or not, even when we have no
idea how to give a precise description for the observed evidence e. In case c, the conditional-
independence assumption is obviously false because it implies that, no matter how skilled our
agent or how bright the candlelight is, there is no way to increase his confidence in the coarse-
ness of a green cloth beyond the initial degree of belief, prob (coarse Igreen). The correct in-
dependence relation in this case is P(B; |4 ,e) =P(B;lA), as illustrated in Figure 1(c). But
Jeffrey’s independence assumption is invalid not only when A lies directly on the inference path
from e to B; it is enough that A branches off someplace in the middle of that path, as in Figure
1(d). In the case of the color-blind observer, for example, if A stands for the proposition that
the cloth will sell tomorrow, and if customers buy cloths on the basis of their texture (see Fig,
1(d)), then Jeffrey’s rule will again lead to contradictions.

The second point of this example is to show that even in cases where a full description of
e is impractical, explicating just a small part of the agent inference process may yield the
desired result. Although the process by which our color-blind agent updates his belief in the
coarseness of the cloth will forever remain a mystery, knowing only how the agent perceives the
connection between coarseness and color was sufficient for recovering his: belief in the former
from the reported belief in the latter, using Bayesian conditioning.

A general pattern emerges from the graphic representations of the three examples (Figure
1); whenever the inference path from the evidence e to the updated proposition B shares a seg-
ment with the path from B to the proposition we wish to update, A, Jeffrey’s rule yields errone-
ous (i.e., paradoxical) results. When these two paths are disjoint, sharing no other node besides
B, Jeffrey’s rule is applicable and is identical to Bayes conditioning. In simple terms, Jeffrey’s
Rule makes sense only when B separates A from e and, in all faimess to Jeffrey, perhaps this is
what he meant by saying that A is ‘‘not one of the propositions whose probabilities were direct-
ly affected by the passage of experience.’”

The fact that simple criteria based on graph topology lead to conclusions that match our
intuition (about the soundness of Jeffrey’s rule) suggests that human intuition itself can be
represented by a graph of relations and that intuitive judgements themselves involve mental trac-
ing of those graphs. These suggestions motivate the study of another topic, dependency-graphs.
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