A VERY LARGE SCALE INTEGRATION IMPLEMENTATION
OF AN ON LINE ARITHMETIC UNIT

Dean Michael Tullsen June 1986
CSD-860094

ABSTRACT OF THE THESIS

A Very Large Scale Integration Implementation of an

On-line Arithmetic Unit

by

Dean Michael Tullsen
Master of Science in Computer Science
University of California, Los Angeles, 1986

Professor Milos D. Ercegovac, Chair

The design of an on-line arithmetic unit to compute AX+B is given here, with
A and X on-line and B off-line and the result produced on-line a small delay after the
initial inputs. On-line arithmetic has the potential advantages of high concurrency,
few inter-connections, and fast operation of complex arithmetic functions. The pur-
pose of this project is to produce performance and cost measurements of an actual
VLSI implementation of an on-line arithmetic unit. Other goals of the project include
providing a modular design and limiting connections to nearest neighbors in order to
be able to use the unit for any size operands. Results of the project include timing and
area results for the chip as well as a measure of speedup results for some applications

of the on-line arithmetic unit over conventional arithmetic solutions.

vii

UNIVERSITY OF CALIFORNIA
Los Angeles

A Very Large Scale Integration Implementation of an

On-line Arithmetic Unit

A thesis submitted in partial satisfaction of the
requirements for the degree of Master of Science

in Computer Science

by

Dean Michael Tullsen

1986

© Copyright by
Dean Michael Tullsen
1986

The thesis of Dean Michael Tullsen is approved.

WOW

Vance Tyree
f\.\/\ o /&'\q
Tomas Lang \

Milos D. Ercegovac, Committee Chair

University of California, Los Angeles

1986

i

TABLE OF CONTENTS
page

1 INTRODUCTION o cemrsnmsesmesesessesmesemenssmsssssssnssasnsssassssassas ssses s mses - 1
Basic TheOry ...cccemsemseimsssscmsiemens eemeuims et aepaetoh e aeosa 4 e 1O b RS e Re i R b £ ks ser s 2

2 FUNCTIONAL DESCRIPTION cicreecseeece e sreecmsce s masrmsssnssssssesoms se sose s o mmesemnsssensssesas - 7
2.1 OPERATION OF THE ARITHMETIC UNIT ..cooccmerrreermesimerssasasessmesmensssescesessosseses 7
Signed-Digit to Two's-Complement CONVEIELuiwrivismsermscsmrsssrssssessssassnsssmessins 3

Addition and SEIECHON .cocremimeoeserrmsesmrstssnrssissmersmessmrsratsrasmess messmesembssmmtsaresesmrsssmens 12

Nearest Neighbor OrEaniZationccemecesmcemsssmssmssssssmresmass sessssssamasassssnmmassosas 21
2.3 BIT SLICE OPERATION ..oocevemcermasemrremnsssssssvonssesnssmsnsmessssmssmsnssnssamsesans esens sossas smsses 28
2.4 THE REST OF THE CHIP oo ceeet e meevsence e sese s smems s sesasases seseasasemsaseseseesessmasasms snsmasasmas 30
(78T BILS rcmncesensceeseemssessssnesesvemesemavammsvasmssssmsesessesenstarsss sonansnsansmsarsessn cerenenen 30
S2220HOM LOBIC weorarermrecnsecrcarsrmevemirtssrisiussemesessrs messsmssemess sssssersssrssssmssssms sasesss sossssmass seees - 31

3 CIRCLUIT LEVEL DESCRIPTION ...ooneivmvmeermecams 33
A and X REBISIEIS crvrcvrimermimrmrsrmmsesmrssmssnmnssmmnss sessases — 33
MUIITHEED ccvrmersnessssortssonsissonmassomnsssmasssessn sossnsms sasmasssmesmmessnses eeneene 35
FIISE ACJRE covvvdermrsemrsrmisssmessmmssamasssassssssssmessorssermessmrsases o remnns - 36
Secend Adder and FINal REZISIEIS ..oimericereeceacsc e csesecrerarsssmsrss s rasssssssasamsarsss st ssssssmassmmssssers 38
SeIECHON LLOBIC fivimererereermermeeermare s s mrscmeees masssrsstmsasssssssmsssasras stsnssansssus s sassmeeshmossnent semesssmmnsasenes 40

BEVALUATION e esrs s nrss s sas s s essesms e ss snasaems s st sns s soa 40814 s st 00 s sae s e s s sesn snns e 41
41 AREA ANALYSIS ottt sies st s s s s s s e o snssesenanrans s se s sssaasssrasastssvoress - 41
4.2 TIMING ANALYSIS ociirrisnenessesnissesssmssssnsssissssssssiossssssssmesresssmss esassaes smesssessssossames 46
4.3 FUNCTIONAL VERIFICATION ...oiimuciiecssicsssioninmmnsesvssmsssemmsssmssssessssssssseassanssamsssnes 48

5 EXAMPLES OF APPLICATIONS ..o et seeacanerssoneresesasassessmessssses mass sesareseasessasesssses st sisseses 50

iii

LIST OF FIGURES
page

Figure 1.1 -- An On-ling Arithmetc UNILmucceeemccsmsssmesemessmessmsnsomsasorssssesensissessssesersesesessesssese 1

Figure 1.2 -- Block Diagram of the On-line Unit etsssesimsassst s ns o s s ra e e 6

Figure 2.1.1 -- Pipelined Operation of the URIt ...u.usiemrimsssmensmnmissmisssonos serensassnssssssessans sosesss - 18

Figure 2.2.1 -- Intermodule RelAtIONSRIPS ..vcvrremeremeremmssmeesmnsesmasssmsesmmssssnsss seversms seersass srsrassarassresss 19

Figure 2.2.2 -- Intermodule COMMUNICAHON .voernrieinssemesemesesmenmmnssmesssesessosssmsssssnsss sessssmssesmssessssns 20

Figure 2.2,3 -- Timing for High-to-Low Scheme With Extra Pipeline Stage 23

Figure 2.2.4 -- Module Utilizing Nearest-Neighbor CONNECONScveecemeemrsrsmmsremsremmsemessnens - 24
Figure 2.2.5 -- Inter-Module COMNECHONS ...cccviicrreneesnreermsermssmsommessmesssesss messsnssusesssssasammasessens mons 27
Figure 2.3.1 -- Operation of @ Bit SLICEcviicermrrrrrrmerrmsrsresrsssrssmssssmesssare sassmmssassssseesesserssars s smnss 29

Figure 2.4.1 -- SeleCtion OPEratiOnc..ucicissmsermsercmsssmssssseerssssssssrmssssessserssmassmssstsstssssssrmessesases 5 32

Figure 3.1 -- X Register F1ag CIrCUIL .ovmmrvreromreceresessesemesesssemsssmeanmesssssasasenes 34

Figure 3.2 -- X Register CICULL ...viemseemmrermmnssmenssmmesemenesns . - v 34

Figure 3.3 -- Load SigNal CITCUIL .c.ouuiicieecerrnrsrmrremisrrsremesserssameresss messorssasessssss somessssssemresmmsremess 35 -
FigUre 3.4 «- MUIPLEE ...ceecrnermrereseeetiossesessemesenresseessssssssons sesessssunssssssssms seses sosessssssssansassesasarsssmiassanses 36
Figure 3.5 -- First Adder Sum GENBIALOT .uerireescemereiesssrerersesmssssmssssmssssrsessissssms s ssnsasessesmassonssssmaeses 37
Figure 3.6 -- First Adder Carry GENBIALON .ovmiveoveriiiessercemssssssssmesssmmenssmssasesesessosssmsesesssnsnesesesass 38
Figure 3.7 -- Second AGQGET e eeeoceeeeee e semenes e ees s et e e st et e st mes ot e e sr e s 39
FIGUIE 3.8 = CREGISIEL 1ureiveiccverecmsesmeenrensensesensssseseseesossaese sesaseesesss e set st sossesss sasenasass st s v snsas s e snovmsiens 39
Figure 4.1 -- Layout of a Bit Slice .. 43
Figure 4.2 -« Layout Of the CHIP .cvcrcireirecerimncrmesesrermsnsmessmaremsssmers smasesrs emesemars messssssassssssasses 44
Figure 4.3 -- FIOOrplan Of the CRIP .cuieomeviriarimecm i eisisssssmstasssses oot st s s sm b sbs o sba st snt st entatcetann 45
Figure 5.1 —- On-line Network for Polynomial Evaluation ...emesecsricmir e imsmeonscmsnrecnnsenes 51
Figure 5.2 -- Timing of Polynomial EvalUator ... st sessms s ssssssesans 51

Figure 5.3 -~ Solution for the Root of a Polynomial EQUALONcciimiesrssinscrmcnesresmness savesnaraes 55

iv

Figure 5.4 -« Timing of ROOt FINAELc.ocvreieccs sttt csmsrimisrmrer e mesaser s mess et s sms snssssrarassmasssanas

Figure 5.5 -- Conventional SOIUHON OF PL{X) .cccirrrneecmmeamnci o s mrssms s tssnssssssrsssmssesmossssssssasas

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor, Prof. M. D.
Ercegovac for his help, guidance and encouragement, without which this work would

have been neither begun nor completed.

I am also grateful toward the rest of my Thesis committee members, particu-

larly Dr. Lang for his encouragement and close scrutiny of the manuscript.

Not enough can be said about my loving wife, Nancy, and her support and pa-

tience in the completion of this project.

But most of all, I must thank my Lord and Savior Jesus Christ, without whom

all successes would be meaningless.

I would also like to thank the Office of Naval Research for their support. This
research was supported in part by the ONR Contract N00014-85-K-0159 "On-Line
Arithmetic Algorithms and Structures for VLSL"

vi

ABSTRACT OF THE THESIS

A Very Large Scale Integration Implementation of an

On-line Arithmetic Unit
by

Dean Michael Tullsen
Master of Science in Computer Science
University of California, Los Angeles, 1986

Professor Milos D. Ercegovac, Chair

The design of an on-line arithmetic unit to compute AX+B is given here, with
A and X on-line and B off-line and the result produced on-line a small delay after the
initial inputs. On-line arithmetic has the potential advantages of high concurrency,
few inter-connections, and fast operation of complex arithmetic functions. The pur-
pose of this project is to produce performance and cost measurements of an actual
VLSI implementation of an on-line arithmetic unit. Other goals of the project include
providing a modular design and limiting connections to nearest neighbors in order to
be able to use the unit for any size operands. Results of the project include timing and
area results for the chip as well as a measure of speedup results for some applications

of the on-line arithmetic unit over conventional arithmetic solutions.

vii

CHAPTER 1
INTRODUCTION

The purpose of this project is to design an on-line (most significant digit first)
arithmetic unit, to be implemented and tested, so as to study the performance and
analyze the usefulness of on-line arithmetic in VLSI implementations. For the pur-
poses of this project, we implement the very basic function ¥ = AX +B, with operands
A and X on-line and B off-line. The result, Y, is produced in an on-line manner.
Although this is a very simple function, it is designed in such a fashion that several
levels of these chips may be applied to implement more complex functions

[ERCE75].

By on-line arithmetic we mean those algorithms in which the operands as well
as the results flow through the arithmetic unit in a digit-by-digit fashion, most
significant digit first. These algorithms are such that the jth digit of the result is gen-
erated after j + 8 digits of the corresponding operands are input, where & is the on-

line delay or latency [ERCES84].

@j s~ ONLINE
X AU

B

Figure 1.1 -- An On-line Arithmetic Unit

The use of redundant number representations is mandatory for on-line algo-
rithms because with conventional number representations it is usually impossible to
know digit i of the result until the entire operation is completed due to the possibility
of carry propagation. For this arithmetic unit the inputs and outputs are in binary
signed-digit format [AVIZ61] rather than the more conventional two’s complement
or, more generally, range complement representations. In this (signed digit) represen-
tation, each digit has three possible values (1, 0, -1) and is represented by two bits,
which could be considered a sign bit and a magnitude bit. (-1) is represented by 11,

(0) by 00, and (1) by O1.

This arithmetic unit is designed in modules so that any length operand may be
accommodated by putting together the correct number of identical modules. The sin-
gle module must be able to perform the operations needed by modules at any position
within the array of modules (for example first, last, middle). An alternative to this ap-
proach would be to use three types of modules. The basic complexity differences

between these alternatives are discussed later in the paper.
Basic Theory

The arithmetic unit implements the arithmetic expression AX+B with A and X
on-line, most significant digit first, in a radix-two signed-digit format. B is assumed
to be available off-line in two’s complement form. Qutputs are produced on-line in

signed-digit form. The derivation of the algorithm follows [ERCE75, TRIV77].

The operands A and X are of the form:

X=3¥x27 X € {-—1, 0, 1}

i=0

m -
A= Za,-z", a; € {—1, 0, 1}

i=0

In on-line form

i .
X;=¥Yx27"=X; | +x;27
TS ! (1.1)

i . .
Aj = .zoa,-Z“‘ =Aj_1 + ajZ‘J
1=l

Notice in the notation that A; is the vector of digits O through j and a; is the jth digit

of A.
Therefore, the product at the jth step is:
XA;+B =X, 1A +X;01a;27 + A; %27 +x;0;,27% +B
=X;_14;_ + (Xja; +Aj1x)27 + B (1.2)
Let P; be the scaled partial product at step J:
P;=X;A;2' +B (1.3)
Then the partial product recurrence is:

Pj =XJ'_1AJ,'_[2j + (Xjaj +Aj_1xj)2_j2j +B (1'4)

= 2Pj—1 + (Xja} +Aj_1xj)

where P4 =B.

Let d; be the ith computed product digit. Then

. Jj-1 .
W =Pj _ZJDJ'—I ’ Dj—l = Ediz-‘s dl' € {_1’0’1}

i=0 (1.5)

is the jth residual, i.e., the difference between the true and computed partial product.

The residual recurrence is:

wi = 2Pj_1 +Xjaj +Aj_1x_,- - Zij_z - Zdj_l (1.6)

wj = 2(Wj_1 - j—l) +Xjaj +Aj..1x}' (1.7
or, defining z; = w; —d;:
wi =2(Zj_1)+Xjaj +Aj_1xj

Atstepm

ApX+B = ﬁd,.z-" + (22"
: i=0 (1.3)
In order to ensure that the output, D; converges toward the desired value of
A;X; + B, we must choose d; each step such that z;, the residual, is no greater than
half the value of the current digit position. To accomplish this, we must insure that
w; be less that 3/2 since 4 is a multiple of 1, and the result digit d; is selected accord-

ing to the following rule:

. 1 3
d; =sign(wy* | |w;| + =1, fw;| < —
p) J [7 2J J 2 (19)

1 no ..
Consequently |wj -d ; iSE , and Y 4;27 represents the most significant
=0

half of the productY =4,X,,+8.

In practice we have to introduce some allowable error in the selection of 4 to

be able to use carry-save addition. It is sufficient for convergence that |w;| always

1
be less than 3/2, and ideally we could always guarantee that [w;—d;| < £) but to do

that we would have to compute w; exactly. But we would like to use v'vj, an approxi-

. - ; 1 a
mation to w;, and choose d; so that |w;—d;| is less than > but have w be accurate

enough to insure that the actual [w;—d;]| be less that % + E.

Let Al <K, |X|<K

Since {w;| < -Z—-and |lw;—d;| < %+e

it follows from equation 1.7 that

Wit < 2Aa4e) +K+K S 1+
2 2 (1.10)

or 2£+2KS-;-

This is most conveniently satisfied with € = -;- and K= —;—- so that our bounds

to insure convergence are:

1 1
IALIX] < —= e

8 8 (1.11)

The value of € means that the fraction part of w must be computed to three

binary places for selection of d. That is, lw—w| < % The operands A and X must

also be scaled to satisfy the condition (1.11). The only other requirement is that since
Py =B, B must meet the same requirements that govern w. In this implementation,
the first bit of B is considered to be the sign bit, so that the first magnitude bit of B is

the 1/4 bit, giving B a maximum absolute value of < 1/2.

Figure 1.2 gives a block digram of the arithmetic unit.

d

a,-. Xj
A X
Y
Xj———a muit muit l——a;
Adder
:
Select = W,
id
B

Figure 1.2 -- Block Diagram of the On-line Unit

CHAPTER 2
FUNCTIONAL DESCRIPTION

First we consider the overall operation of the on-line unit, then we will look in

more detail at the modules themselves and then the individual bit slices.
2.1 OPERATION OF THE ARITHMETIC UNIT

Each cycle, the unit must evaluate the equation (1.7):

w; = 2(2_,'_1) +Xjaj +Aj_1xj

Zjop =Wy —dj

This will be done in several parts. There is the input of ¢; and x;, combining
them to A and X, then the multiplication to produce X;a; and A;_;x;. Upon adding
these to z;_; to determine wj, all that remains is to select the proper d; according to

formula (1.9), output it, and subtract w; ~dj.

It is not actually necessary that the inputs be in signed-digit (or any other
redundant) representation for the algorithm to work, but only that the outputs be in a
redundant representation. However, if the on-line unit is to be useful at all, one unit
must be able to accept the output of another unit as input. For that reason, it must be
allowed for on-line inputs to be in signed-digit form. Although our inputs and outputs
are both in signed-digit format, it was found to be simpler to use two’s-complement

arithmetic for all internal operations as explained in the next section.

Signed-Digit to Two’s-Complement Converter

One of the problems that must be overcome is that the on-line inputs come in
signed-digit form, but it is more convenient to do internal arithmetic in two's compie-
ment form for two reasons: the two’s complement representations require fewer bits,
and a signed-digit adder is more complex than the equivalent two’s-complement
adder. In order to take advantage of the simplicity of two’s-complement arithmetic,
we construct a simple on-line signed digit (SD) to two's complement (RC) converter
that is fast and whose time for execution doesn’t depend on the length of the
operands. This converter would need to make available at each cycle Ape and Xpe
that are exactly equivalent to that part of Agp and Xsp that has been input up to step i.
The algorithm used is functionally equivalent and derived from the algorithm in
[ERCESS]. The differences were not fundamental but made interconnections and lay-

out simpler.

Because there is no redundancy in the RC form, it is not always possible to tell
whether bit i will change after its value is determined at step i. For instance the
number 1011 (where 1is -1) will be translated as 0111 after four steps, but if the next
digit is -1 making our number IO-I'IT, our new number will be translated as 01101.
Notice that bit four was changed when digit five appeared, but bits one through three
weren’t. Another more extreme example: 1000000 translates to 1000000, but
10000001 translates to 01111111. In general, whenever a -1 appears every bit up to
and including the last nonzero bit is complemented, and a 1 is saved in that last posi-
tion. To implement this, with each bit is associated a flag indicating whether it is
confirmed or unconfirmed. Then, when a 1 appears, every previous bit is confirmed
and will not change. When a 0 appears, all previous bits remain as they were, either

confirmed or unconfirmed. When a -1 appears, all previous unconfirmed bits are

complemented, then confirmed and will not change. The current bit is always marked

unconfirmed and won’t become confirmed until the next nonzero digit is input.

Table 2.1.1 specifies the converter when applied to each bit individually, The
init signal applies to all bits at the same time, but the ld signal is applied to each bit in
succession (i.e., the 1d signal is applied to bit { when the ith digit is available). In oth-
er words, the init signal is a one-time signal that begins the process, and the 1d signal

is applied to a bit position when the digit corresponding to that location 1s available.

Takble 2.1.1 -- Converter Transition Table

" nrevious 0 1 -1
; Cc Cc Oc Cc
Ou Cu e lc

lc. Ic Ic 1c

lu lu lc Oc
init Oc Oc Oc

Id Ou lu lu

The following algorithm illustrates how this conversion works across the en-
tire length of the operands. In this algorithm » is the length of the operand, S and D
are the sign and digit part of the current signed-digit (SD) input (for example, if the
curre-nt input is 1, then S=1 and D=1), respectively. A[i] and F[i] are the digit part of
the two’s complement number at bit position i, and the corresponding
confirmed/unconfirmed (c/u) flag for that bit. A[0] is the single bit to the left of the

radix point.

1. A[O,1,...,n] =(0,0,...,0); /* initialization
F[0,1,...,n] = (u,c,...,c);

2. Forld=1ton /* For each input digit,
{ Input(S,D) /* adjust previous bit
Foralli=1ton /* according to table 2.1

{if Fli]==uand D ==
then { F[i] =c;
Alil=A[i]-S}

}
Alld]l =D, /* Load the current digit
F{ld] = u;
3. End

Conversion Algorithm

Of course, in the actual circuit, the operation at each bit slice is done in paral-
lel, since the operation at each bit position never depends on the operation or values at

another bit position, but only on its current value and the latest input.

This scheme, then, requires two registers to store each bit of our converted
number, one to store the digit value (0/1) and one to store the confirmed flag (u/c).
One bit slice of our arithmetic unit will require four registers, two for A and two for
X. As shown later the logic can be implemented quite easily with pass transistors and

some flip-flops.

Here is an example of how the conversion would work on the input

10

101100111;

Table 2.1.2 -- Conversion of 101100111

k | A, Alklpc Value Used

1 1] 1u 0.100000000
2 0| lu Ou 0.100000000
3 1] 1l 0O 1u 0.101000000
4 1{1lc 0O 1l 1lu 0.101100000
5 0{1lc O 1lc 1lu OQu 0.101100000
6 0{1lc 0O 1lc 1u Ou Ou 0.101100000
71 -1 {1l 0O 1l¢c G 1le Ilc 1lu 0.1010111C0
3 -1 le 0Oc le Cc le Ic Oc 1Iu 0.101011010
9 1 e Oc lc Oc lc le 0O¢ ¢ 1lu | 0.101011011

In order to insure that the sign of the number is correct, it is necessary to ini-
tialize the leading bit (which will be the sign bit) to OQu, as was done in the algorithm
given previously. In that case, if the first nonzero bit is negative, then the sign bit will
be set to 1, otherwise it will be set to 0, as desired. In fact, any number of leading bits
can be added in the same manner without affecting the value of the number. Let’s

look at a shorter example with the leading nonzero bit equal to -1. Consider the

number 01011.
Table 2.1.3 -- Conversion of 01011
k| A Alklpr Value Used
0 Ou 0.00000
1 0| Ou Ou 0.00000
2 -1 Ic lc lu 1.11000
3 0| le le lu Qu 1.11000
4 -1 ¢ le Oc 1c lu 1.10110
5 1 lc le Q¢ lec Ic Iu 1.10111

It is important to note that although bits of the SD number may change at step

i + n after being used at step {, there is no error introduced. This is because at each

11

step the value of the converted number, call it Apc,, is exactly equivalent to the value
of the incomplete SD number, 4;, as defined by equation (1.1). This follows directly
from the definition of the conversion algorithm. Therefore, using Agc, at step i, even
when some of the bits may change at step i+1 or later, is exactly the same as adding
the current SD number, shifting, then adding the SD number again with the next digit
added on. Since the signed digits never change, then as long as the two’s complement
number is equal to the current part of the SD inputs the recurrence relation is not

violated.
Addition and Selection

To avoid full-precision computation of w in the recurrence equation (1.7), it
will be represented as the sum of two values, the carry part (C) and the sum part ()
so that carry-free addition using carry-save adders may be used. Because we allow an

error in the selection of d, we only need to compute an estimate of the actual w to
. . . 3.
make the selection. Since the absolute value of w is guaranteed to be less than -5; it

is sufficient to represent all numbers with two bits to the left of the radix point. We
also use two’s complement form. With this in mind, we only need five bits of C and S
to compute w and select the digit. In fact, we only need add the first 3 bits (up to the
1/2 place, positions i= -1, 0, 1) --since the digit being selected is an integer, additional
precision would be useless-- of C and § plus a carry bit from the rest {up to the 1/8
place, positions 2 and 3).

C.1Cy.C1CrC5

+ S__]_So. Sl 3253
W_ Wy W,

Cin

where ¢, =C257 + (Cy +52)C355 and w, the truncated value of w (W_|WoW),

12

is simply the sum of the three most significant bits of C and §.

The recurrence formula (1.7) requires that the chosen value of d each cycle
must be subtracted from w. Since the highest three bits of w must be calculated for
selection of 4, it is not necessary to subtract 4 from the carry-sum representation of w.
Instead calculate w—d (since d is 0, 1, or -1 subtracting it from the most significant
portion of w will not affect other bits), keep track of that value separate from C and §
and set the most significant three bits of C (C_y0,;) and S equal to 0. The result is a

different representation of w that is equal to z or w-d.

So far, the basic cycle of operation which limits the maximum speed of the
chip is defined by the recurrence formlzla and involves two steps of carry-save adders,
the computation of W_,; o1 and the ¢, bit, the selection of 4, then finally the computa-
tion of w—d. It will soon be seen, however, that it will be much simpler than that,
inasmuch as 1) it is actually possible to calculate w—d before knowing d, and 2)
surprisingly enough, the information needed to compute w-d at step i does not

depend on the result of w—d from step i —1.

Let’s see just why this occurs while looking more closely at our selection
mechanism. Here are the possible ranges of w and the corresponding values of 4 we

want to select.

1
< 1=
W < 2
d=< 0 if ——-1--$w<L
2 2 2.1.1)

1

. 1
- f —1— -
1 1 2<w<

2

13

Based on these requirements, we come up with the following table for all pos-

sible values of W and c;, and the resulting values of d and w—d (which is z).

Table 2.1.4 -- Digit Selection

‘1:1} Cin d “A’—d
00.0 0 0 000
1 1 11.0

00.1 0 1 1Ll
1 1 11.1

01.0 0 1 000
1 - J——

01.1 0 - ----
1 - ——

10.0 0 - e
1 -1 11.0

10.1 0 -1 111
1 -1 1L1

11.0 0 -1 000
1 ¢ 110

11.1 0 0 1Ll
0 0 111

This table also facilitates a proof of the fact that we are considering a

sufficient number of bits of w. Recalling that our conditions for convergence were

that |w; —d;| < %+£wherea=%,ourconditionis |lw; —d;| < %+% From the

- <
above table it can be seen that in each possible value of w, the value of w —d + Tm

or w*, is either 00.0 or 11.1, so that:

-1 - Cin
Swk=w-d+—50
2 oY 2

(2.1.2)

Now from here, additional possible errors come from two sources, the differ-
ence between w* and C + .§‘, the truncated values of C and S, and the error incurred by
truncating C and S. The error in w* resuits when using ¢;, for the last two bits of

" C +§5 instead of calculating a five-bit w. This error will always be positive since we

14

always underestimate c;, (in other words, if ¢;, is 1 then Cy 3 + 52,3 is 1 or greater).
Since the possible values of Ca3 + S33 range from O to (011 + .011 =) 6/8 by
eighths and ¢;, is in the 1/2 position, the maximum difference between (C + 5), 3 and

¢, and therefore between w* and C + S = dis 3/8. Therefore:

0SC+5-d)~wrs>
8 (2.1.3)
The last error is that caused by truncating both C and S. This error will also
always be positive since both positive and negative range-complement numbers are
reduced by truncation. The greatest error possible here occurs when all truncated bits
are 1’s. Since we are using three bits to the right of the radix point, the maximum

possible value of the truncated portion is 1/8, so the maximum error from truncating

both is 1/4. Therefore:

OSw—(b+.§)<%

(2.1.4)
Combining all three of these results produces:
L Sw-d< El
2 8 (2.1.5).
which satisfies our convergence requirement, [w —d | < -%— + %

The simplicity of this recurrence does not become clear until we look at the
equations for the individual bits of z = w=d from table 2.1.4. The resulting expres-

sions are:

(2.1.6)

15

Now we see that z=w—d is actually simpler to compute than 4, and since only
z is critical to the recurrence formula and thus the principal cycle, we can even delay
the selection of d until later without affecting the speed of the main cycle. What isn’t
so obvious is that the computation of Z does not depend on the result of computing 2

in the previous cycle. To see this, we must look at the actual computation of w.

-1 20

C_,Co.C1C5C3

+ S-1 S(). S1 8253
W_WoW,
€in

In order for this to accurately represent w, the most significant two bits of C and S
must not duplicate the information in z. For that reason, in those bits, the previous C
and § are not added in because they are include in 2z For example,
2Co + So = apx; +x0a; + Cipr (1), Where ¢y (1y is just the intermediate carry from bit
position 1. Now z, as seen in equation 2.1.6, only depends on W and c;,, which only
depend on the previous C; and §y, C3 and S3, C3 and S3. What this really means,
then, is that once we have produced C and § from the carry save adders at step Z, we
have all the information needed to begin computing z in step i+1. Theoretically, it

could be done without ever computing z at step i.

To illustrate this, suppose after the additions at step i we had the results
C=11.0101100... and S$=00.1100100... and z =00 The computation of z would

proceed like this:

00

11.0 10 1100...
00.1 10 0100...
[1.1

Cin=1

16

On the other hand, if in the previous cycle, we had delayed the computation of z, then
the first two bits of w could not immediately be computed. In that case, the computa-

tion of z would start out like this:

n

11.0 10 1100...
00.1 10 0100...
1

Cia=1

But based on the knowledge that w = 1 and ¢;,=1, we can still compute:
z_; =1, zg=1, 2 =1

which when shifted in the next cycle would become (z_; is shifted out) z = 11,

This allows us to also take the computation of z completely out of our main
cycle (as well as the computation of w and c;, along the way). Therefore, the opera-
tion that limits the speed of our step cycle is just two parallel carry-save adder steps
{to reduce four summands, A j-1%j, X;a;, C, and § to two, C and §). The most
significant bits of w are important, however, for the selection of 4 at each step. In
fact, here are the formulas for computing d, based on w and ¢, derived from Table

2.1.4. Since d is in signed-digit format, there are two components of d, a sign com-

ponent, ds, and a magnitude component, dy.

dd =Wov_vlc,-,, +\T)0w1 +ITJ_1W0 +W0VT'IE‘.;” +W1‘P_V0

(2.1.7)

d.s‘ = W—I‘T’IEEA + w_lv_vo

What can be done, then, is at each step produce the least significant bits (all
those to the right of the radix point) of the results C and S by carry-save addition, and

then send those to the next step to be added again to Ax and Xa. At the same time

17

produce incomplete values of the most significant bits of C and § (by assﬁming that
the most significant bits of the last w (C and S) were zero, since they’ll be added again
later). All this information is passed on to the next stage of the pipeline which com-
putes z and d from the information available (that information being the incomplete C
and S, the previous z = z_; and zg), while the previous pipeline stage produces anoth-

er C and S.

cyclel cycle2 cycle3d cycled cycleS
input '}——-——{' ‘ ' ' '

conversion p—
Ax, Xa : : —
z : f R
I Z I I b ‘
d |
2 Z Z : I ', ,

Figure 2.1.1 -- Pipelined Operation of the Unit

Figure 2.1.1 shows the pipelined operation of the unit, showing when each of
the important operations take place: input of the operands, conversion to two’s com-
plement representation, multiplication of the vectors by the current digit, the two
adders, and finally the computation of z and 4, the next output. New digits are input
every cycle and similarly a result digit is output every cycle. The first adder step
spans two stages. This is necessary becuause in order to complete the addition it needs
C produced by the second adder from the previous trip through the pipeline. This is
not available until the beginning of cycle four; therefore, as much of the addition as
possible is done in the previous cycle (generating all possible results from the other

two operands so that when C is available it need only choose between them).

18

2.2 MODULAR IMPLEMENTATION

One of the goals of this project is to produce the arithmetic unit in a modular
fashion so that modules of the unit can be connected so as to handle inputs of any size
without significant degradation in speed. The module produced will be an 8-bit
module which can serve as the highest byte, lowest byte or any intermediate byte.
This means that all modules will produce output digits, but only the digit output by
the highest order byte will be meaningful. There will also be communication between
modules, which is basically the same as the communication between bit slices. There
is shifting of data (w in each step) and the passing of an intermediate carry bit to the

next slice in each carry-save addition step.

Figure 2.2.1 shows communication between two neighbor modules, the left
one being the highest order byte. The X’s and A’s represent the computed values of
Xjaj and A;_yx;, respectively. The capital C and S are the final components of w, and
the lower case c and s represent the intermediate carry and sum results from the first

addition step.

XK XXXXXXXX XXXXXXXX
AAAAAAAAAA AAAAAAAA
CC.CCCCCC CCCCCCCC
$S5.5858S5855S SS5SSS5SS
cc.ccccccece ccecececcce
SS.SSSSSSS SSSSSSSS
SS.855888S8S SSSSSSSS
CC.CCCCCCC CCCCCCCC

Figure 2.2.1 -- Intermodule Relationships

At each step exactly four bits from module 2 are needed by module 1: two bits
of C, one bit of S and one bit of the intermediate carry must be passed between the

two modules, from less significant module to more significant. The passing of these

19

bits is shown in Figure 2.2.2.

XXXKXXXXXXX XXXXXXXX
AAAAAAAAAA AAAAAAAA
CC.CCCCCC CC_ <«<--_CCCCCC CC <--
$5.S8558S888§8§ SSSSSSSS
cc.cccecccec cC <= cccccece c <-
SS.SSSSSSS S <- SSSSSSS S <
SS.SSSSSSSS SSSSS5SSS
CC.CCCCCCC CCCCCCCC

Figure 2.2.2 -- Intermodule Communication

Since all modules are identical, each module must be able to do the following:
1} Compute w in two parts (C and §) in parallel across the whole module, 2) keep
track of the bits to the left of the radix point for sign extension purposes, and 3) select
d and keep track of the most significant bits of w. It also must be able to pass and ac-

cept the necessary information between modules.

Each module, then, must perform two different sets of functions-- those per-
formed by each chip in parallel each cycle, and those specialized functions only need-
ed by particular chips like digit selection in the highest byte or adjustment for comple-
mentation in the lowest byte. The reason the adjustment for complementation can al-
ways be done in the lowest byte is because the operands are always assumed to be as
wide as the number of modules allow. In other words, all operands are filled with
zeroes until those bits receive a value as more of the inputs are received. When a
number is complemented, then, all the zeroed bits are complemented and become ones
so that by just adding one to the lowest digit position in the lowest module, the
equivalent of the complement of the number will be obtained. For example, if the load

signal is being applied to bit /, then all bits beyond / have both a;,, and x;,, equal to

20

zero. So for instance, A; = aga;...q;00...0. The complement of A;, then, would be:
Z“ = aoal...a,-ll...l
+

with the 1 added later to avoid the carry propagation.
Nearest Neighbor Organization

One problem that on-line arithmetic units must overcome, particularly when
dealing with modular units, is the problem of high fanout in off-the-chip connections
for the input operands. The chief reason for this is the need to broadcast the inputs

across all modules of the unit in parallel, as is the case here.

Assume, for instance, we are dealing with more than one arithmetic unit and
64-bit operands from 8-bit modules arranged such that the output of one multi-module
unit was the input of another. In this case the result of one unit would be sent as input
to the next on-line unit which would consist of 8 chips. Since the inputs are needed
by each module in the unit at the same time, the result of the first unit must be broad-
cast across 8 chips, and thus our chip’s outputs would have to be able to accommo-

date such a load and more, which would be quite difficult.

, One way to achieve nearest-neighbor connections in this case would be to send
the inputs only to the first module and then have that module send them to the next on
the following cycle and let them ripple through all the meodules in that way, rather
than broadcasting them. If such a scheme is to be used, the question arises as to
whether to begin with the highest order byte or the lowest. It turns out that both have

their respective advantages and disadvantages as discussed next.

21

If the inputs begin with the highest module, then the second module (and like-
wise on down the line) will be operating one cycle behind the first. This means that
when the adders in bits 7 and 8 (past the radix point) are ready for inputs, the inputs
shifted from the second module will not be ready. This does not present & major prob-
lem, however, since bit—values are not critical until they migrate as far as the 3rd
binary place. This means that they can be added in later after they do become avail-
able. As shown before, there are four bits passed from the lower module to the higher
each cycle, one to the seventh binary place, and three to the eighth. If we delay adding
these bits in for, say, one cycle, th- ey double in value, and must be added in at a
different place. Consequently, tii. :ould no longer fit in conveniently to our two-
level carry-save adder; in fact, tho-2 vould be 6 operands to add at the seventh binary
place bit, rather than four. There is 1w way to'add this in, then, without adding at least
one more level to our carry-save idder, so as to accommodate five operands. This
could be achieved by adding the four bits to get one 3-bit value in one cycle, allow
another cycle to transfer the values across chips, and then add that value in at binary
places four through six in the mext cycle. Remember that as long as the bits are added

in before they affect the third binary pliace, we will not lose any accuracy.

The obvious drawback of this scheme is the fact that it adds an extra adder
step to our main ¢ycle, and would thus add more than 50 percent to our cycle time, a
considerable cost. Of course, one other option would be to add another stage to the
pipeline in such a way that there would be three levels of carry save adders in three
pipeline stages but the critical cycle remains the same. Letting p be the three-bit sum
of the passed bits, this could be done by adding Ax, Xa and p to get the the first inter-
mediate carry save result, small ¢’ and s’, which would be added to C to get the

second intermediate result, small ¢ and s, which are finally added to S to get C and S.

The entire operation would look like this:

AXXXXKXX
AAAAAAAA
+

5555 88SSs
c’c’c’e’e’e’e’
+CCCCCC
SSSS5SS8S8S
cccecccc
+SSSSSSS
SSSSSSSS

CCcccccce

This timing for this scheme, using three adders rather than two, is illustrated in Figure

2.2.3.

cyclel cycle2 cycle3 cycled cycle5 cycle6
input

conversion —_—y
Ax, Xa . : —_
I ' ' N e B
L —
A . — .
d]
z _ .

Figure 2.2.3 —- Timing for High-to-Low Scheme With Extra Pipeline Stage
With this scheme the delay between productions of C and § in one cycle and the next
is exactly the same as in the original scheme, so the cycle speed remains the same, but
the single module latency is increased by one cycle. Unfortunately this scheme is not
possible in an 8-bit module. In order to not introduce any errors with this scheme, p
must be added in before it would influence the computed bits of w, namely bits -1 to
bit 3, so that the latest it could be added is when it would span bits 5-7. This is be-

cause there are two levels of carry save adders between p and w (C and S), allowing

23

the carry bits affected by p to migrate two positions. If added in immediately, p
would be added in at bits 6-8. It is delayed two cycles, however, one to reduce the
four bits to three, and one to pass the data chip-to-chip. At this point it could be ad-
ded in at bits 4-6 if added in at the same pipeline stage, but according to this scheme it
must be added in at a point one or, more likely, two pipeline stages earlier. Therefore,
p would have to be added in at bits 2-4 or 3-5 and our value of w each step would be

inaccurate, causing a possible overflow in our recurrence relation.

This scheme would, however, be quite possible for a larger chip like a 16-bit
module. The cost involved would be 1) increase of latency time by one cycle and 2)
departure from a bit-slice architecture, since bit slices are no longer equivalent, mak-
ing it more difficult to extend the basic design to different sizes (even impossible in
the 8-bit case), although the byte- or module-slice architecture would still be

preserved and the bit slices themselves would not be very different from each other.

The other option (illustrated in Figure 2.2.4) is to migrate the inputs right to
left, or from the least significant module, then on one module at a time to higher order
modules. In this case, the higher of two neighbor modules will be one cycle behind
the lower, which means that the bits needed to complete the add step at the lower bit

places in each module will be ready one cycle early.

2
. < < e S A
MSB - LSB x

n+

Figure 2.2.4 -- Module Utilizing Nearest-Neighbor Connections

24

This gives us the luxury of taking one full cycle to transfer the bits and still
have them ready to be added at their proper place. The penalty in this scheme is the
latency time. In other words, where in the first scheme, or without nearest neighbor
connections, the first digit of the result would be ready five cycles after the arrival of
the first digit (that means a latency of five cycles) of the inputs, in this scheme, the
first digit of the result would arrive five Cyclels after the first digit arrives at the highest
module, or 5 + M - 1 (where M is the number of modules) cycles after the inputs first
arrive at the lowest module. As an example, if we have 64-bit operands and 8-bit
modules, then the latency would increase from 5 to 12 cycles. If we implemented
16-bit modules, the latency would improve to 8 cycles for the low-to-high scheme be-
cause there would be 4 modules instea:i of 8. On the other hand, if we were working

with 16-bit operands, then the latency would be 6 for 8-bit modules and 5 again for

16-bit modules.

The two schemes which are possible for 8-bit modules are compared here.
The third scheme (adding another carry-save adder in a separate pipeline stage to ac-
commodate high-to-low connections) would certainly need to be considered for a par-
ticular application where size of operands are known and the size of the modules does
not need to be as flexible. For the purposes of this project, however, we desire a
module that is small enough to be tested easily, but has a design which could be easily
extended to larger modules. Another consideration is that this scheme does not have
an advantage over the low-to-high scheme until the unit is three or more modules
wide. Thus, for the large modules that are needed to implement the scheme, this only

happens with very wide operands.

We need to determine, then, which cost is greater, the cost in cycle time for

the high-to-low scheme, or the cost in tatency for the low-to-high scheme. In the case

25

of the low-to-high scheme the total time of operation for one level with operands of

length N would be 4 + y +N -1 (% is the number of modules needed, assuming

8

8-bit modules) and for L levels of arithmetic units it would be L (4 + -%l-) +N-1

clock cycles. For the high-to-low scheme or for units without nearest-neighbor res-
trictions, the delay would come to 5L + N — 1 clock cycles. We introduce the factor
K which represents the increase in cycle time caused by the high-to-low scheme. Then

the question to be answered is under what conditions is:

4L+ﬂ+N<K(5L+N)

8 (2.2.1)
Assuming, as we did before, that X is greater than 1.5, then we find that the left hand
of the equation is smaller for all cases when L<4. It would still be smaller in some
cases for even more than 4 levels. If we had been assuming 16-bit modules, in fact,
then the low-to-high scheme would be faster in all cases where L<8. This means that
for configurations of 4 levels or less for 8-bit modules or 8 levels or less for 16-bit
modules, it would be more advantageous to use the low-to-high scheme for nearest-

neighbor connections.

Consequently, if we are to implement nearest neighbor connections to the
modules, then in most configurations it would be less costly to send the inputs first to
the lowest byte and let them propagate one module at a time toward the highest

module. This is the methed that has been chosen for this implementation,

Another cost in implementing nearest neighbor connections would be an in-
crease in the number of module-to-module interconnections and thus pins. Namely,
there would be five more pins: A,,; (2), X, (2), and init,,,. This increases the total

pin count from 29 to 34 for 8-bit modules and from 37 to 42 for 16-bit modules. Fig-

26

ure 2.2.5 shows what a single arithmetic unit, made up of several modules (the most
significant on the left) would look like, with the corresponding interconnections
shown. Some of the control signals shown are inir, which signals the beginning of
operation for the entire unit, /d, the load signal sent to each module when it should be-
gin accepting inputs (the first module stores A,X g7, the second stores A;X 8-15, €ic.)

and lob which is only high to mark the least significant module.

¥ it init; e T TTI 7 TT I - UL, init;,mea—init
Id,, Id, ., id., d, — ald, ld,
Aout Ajpe——Aow Apye—S— - Ajpfe——A
K s X=X, :Xin‘ = <3—Wou Xipa—X
Caur Ciaps—c ow Cin—— o ‘*Cam Cin
1S our Sinbe out S inpe—— ‘—_F‘M Sin
CPow Cpinfes Pow Cpinte—— —CPowt Cpin
4 B 7 B 7 B

lob ‘}L lob 1ob

(’) By (IJ By s ! B

Figure 2.2.5 -- Inter-Module Connections

The speed of operation of the unit is now somewhat dependent on the length
of the operands and the width of the modules we have chosen to implement, but the
cycle time is still completely independent of the size of the operands. This will also
change the thinking in determining the size of the module to implement. QObviously,
we can speed up the operation of the unit as a whole by increasing the width of the
modules. For our purposes the 8-bit chip will be sufficient, but for commercial pur-
poses, it would certainly be more advantageous to implement much wider chips of

say, 16 or 32 bits. Since the chip is designed in bit slices, the conversion of the VLSI

27

layout to a wider chip would be trivial.
2.3 BIT SLICE OPERATION

The module implements equation (1.7),
wj = Z(Wj_l - dj—l) +Xjaj + Aj—lxj

including the selection of d; each step.

This will be done in two parts, in different pipelined stages. The first will do
the part that is performed across all bit slices--the adding of A;_jx; + X;a; + 2w. The
rest, which only concerns the most significant bits, is done in the second part, namely
the selection of 4 and the computation of w—d. It was shown before that these opera-

tions can be done independently.

The principal section of the module will be made up of 8 bit slices so that the
design could be easily expanded to implement 16-bit modules, etc. Each slice will im-
plement several functions, namely those functions that need be carried out across all
bits. Each bit slice will be comprised of five principal sections as shown in Figure

2.3.1.

The first section contains the A and X registers. This section will not only hold
the values of A and X but will also contain the signed-digit-to-two’s-complement
conversion logic. It must contain, as mentioned before, not only a register to store the
current values of x; and a;, but also registers to store a flag bit for each showing
whether that bit position is confirmed or not. There must also be a traveling load sig-
nal across the slices to control the loading of the current a; and x; at the correct slice.
Because of the nature of the recurrence relation, it is important that a; be loaded one

cycle after x; so that A is actually A;.; as in the recurrence equation.
Y J ¥y ajq q

28

a; X

L

AX
Registers

a;(RC) x(RC)

Multiplier (fe——a;, x;

ain x,-aj

M 42

Sbu: Cim(i +1)

pmmmm S

oh R

C.S
Registers

Bit Slice i at Time Step j

Figure 2,3.1 -- Operation of a Bit Slice

The next section of the bit slice is the multiplier. This section implements the
multiplications X;a; and A;_;x;. This is simply a multiplexor which can select the
proper multiple of each bit (e.g. it selects x;, 0, or the complement of x; depending on
whether g is 1, 0, or -1). There n:lust also be some logic in the low order module to

compensate for the complementation in two’s-complement arithmetic.

29

The next section is the first of the two carry save adders. This one adds the
two outputs of the multiplier (Ax and X« for short) with C, the carry part of the output
of the final carry save adder from the last cycle. These produce two intermediate out-
puts, Sy and C . These two are added (with C,y shifted) in the second carry save

adder array to S and produce the two components of w, C and S.

The last section of the bit slice is the C and S registers. The outputs of the
adders are shifted to the correct slice (at which they will be used in the next cycle) and
stored in registers. Inidally the S registers are set to 0 and the C registers are set to

the value of B (B is available off-line and in two’s complement form).
2.4 THE REST OF THE CHIP

In addition to the eight bit slices contained in each chip, there are also several
other sections of logic important to the operation of the unit. Each chip has routing of
several control signals, like initialize and the load signal at each bit position. There is
also that circuitry that is specialized for one module in each unit, for example, the
selection logic for the output in the most significant module, the adjustment for com-
plementation in the lowest, and two bits of sign extension in the highest, all of which

are contained in all modules.
Other Bits

Each module contains 8 bit slices operating in parallel. However, each also
contains two other bit slices that are only used if the module is in the most significant
position. These are the two bits to the left of the radix point. These two bit positions
are necessary to accommodate the maximum possible absolute value of w, 1 1/2,
which can be represented in two’s complement with two bits to the left of the radix

point. They are similar to the other bit slices, except for a few minor changes.

30

Since the first two bits of C and S (w) are not completely calculated until the
next stage in the pipeline, zeroes are added in where C and S would be. So the out-
puts of the first two bit slices are simply the values of a;x; +x;a; in each place plus
any carries from other bit positions. Obviously, since neither C nor S are inputs to

these slices, there is no need for those registers in these bit positions.

The outputs of these bits are stored elsewhere for future use, namely in the

selection of 4 and the updating of w—d.

Selection Logic

The last section of the chip is the selection logic. This selection chooses d and
subtracts it from the most significant bits of w. This logic, although it will of course
be repeated in every module of an arithmetic unit, will only be meaningful in the most
significant module. This logic must take the inputs C_y to C3, S_; to S3 (10 inputs)
and z_;, zg from the previous cycle and then produce 4, the current output, and z to
be used next cycle. To do this, the first threé bits of C and S are added to the two bits
of z to get w as previously defined. Meanwhile the next two bits of C and S are added
to determine the carry bit, ¢;,. Then, with those results, 4 and z can be determined ac-

cording to equations 2.1.7 and 2.1.6. These operations are shown in Figure 2.4.1.

This figure illustrates the reason that selection can be pipelined after the re-
currence formula implemented in the bit slices. Although results of the bit slice
operation are needed for selection, the bit slice operation is not dependent upon any
results of the selection process as illustrated in Figure 2.4.1. The adder in this figure

could more accurately be considered two adders in parallel, one for w and one for ¢;,.

31

Adder

=
3
5

Select S

N

reg

Figure 2.4.1 -- Selection Operation

32

CHAPTER 3
CIRCUIT LEVEL DESCRIPTION

Following is a circuit-level description of the chip in the 4-micron nMOS tech-
nology. Although part of the purpose of this project is to have a design that could also
be implemented in better and faster technc;logies, like CMOS, at the level of circuit
design full advantage was taken of nMOS circuit characteristics. A great deal of pass
transistor logic is used which, in particular, doesn’t port well to CMOS. On the other
hand, the logic description itself, at a level one step above the circuit design does not
change according to implementation. The following descriptions are of the five basic

elements of each bit slice.
A and X Registers

The first cell in the bit slice is where the A and X operands are stored. It also
contains the signed-digit to two’s complement conversion logic. As mentioned be-
fore, this section contains four register flip-flops: one each to store 0/1 and another to

store the u/c flag for both A and X.

The circuit for the two u/c registers is shown in Figure 3.1. It implements
Té.ble 2.1.1. These diagrams are for X, but the diagrams for A will be nearly identical.
Notice that x4 is the digit part of x (0 or 1) and x; is the sign part (1 corresponds to -,
0 corresponds to +). Also notice that the value of U does not change until ¢;. This in-

sures that the changing of U/ will not affect the value of x until the next cycle.

33

init ¢1

1 1
y vaid—J T [
£
DT 1 | o~ [
i
xT init ¢2_IE

-T-
i “>>—=U

Figure 3.1 -- X Register Flag Circuit

The circuitry for the bit value of x (shown in Figure 3.2) is more critical with
respect to time, because it is x and X that get carried on to the next level. That is why
Id and U are generated in the ¢, cycle so that when ¢, comes high, the next value of x
(if it is to change) will have settled waiting just on the other side of the ¢, pass

transistor. Of course, x; and x; must settle during ¢, as well for this to be the case.

init ¢1
A1 4
y ano—T L TL > =3
1
T 4”"{
4 L
; T <}
=1 init
¢2—|
S X

I . L i
T T 1
U x; d

Figure 3.2 -- X Register Circuit
Notice that it is necessary to have access to the previous value of x (actually x), since

x is complemented in some cases. Also, both x and x are passed on to the next stage.

34

The traveling /d signal is generated by a shift register (Figure 3.3) that travels

across the bit slices from high to low. The extra inverter is used to make sure /d and

Id are consistent at both clock phases.

) ¢
1 1
;th_L_|>‘ ‘l_l_l>.a Id, (i +1)
ld ld

Figure 3.3 -- Load Signal Circuit
This is the case for X, but A must be loaded one cycle later, so the /d signal from the
next bit slice must be brought back to be used for A. Also, the values for ¢4 and a;
must be one cycle old so that the value used in the next step is A;_; rather than A; to

be consistent with the recurrence equation (1.7).

Muitiplier

The next cell of the bit slice is the multiplier. This section implements the
multiplications X;a; and A;_x;. We will just look at the computation of X;a;, since
the other will be identical. In a single bit slice (bit i in this case) the actual computa-
tion implemented will be x;a;, where x; is the ith bit of the two’'s complement

representation of X, and g; is the current on-line digit of the signed-digit value of A.

This simple multiplication is implemented by a multiplexor as shown in Fig-
ure 3.4. There are three possible values of a; (-1, 0, 1), so it needs more than just an
AND gate. Since we have both x and x from the previous section, it is easy to gen-

erate all multiples of x. Whenever possible, the effort was made to generate both the

result and its complement in parallel, since in almost all cases both were needed by

the next section and it saved much time against just complementing the result.

s
1. a4
L
il_ =
S L apl
T
g OND— —
BN
a4
L
a vad—J L
L —_
3 — 7!
Ll
R T
T a4

Figure 3.4 -- Multiplier

At the end of this section, then, we have two products, p 1 (a;x;) and p 2 (x;a;),

as well as their complements, ET and p—i

First Adder

This next cell is the first level carry-save adder (Figures 3.5 and 3.6). It will
add the products p 1 and p 2 with the carry half of w, which is C. It will produce two
outputs, an intermediate C and S,_ call them C;,, and §;,. We add C in first rather

than S because C is calculated a bit earlier, as we’ll see later on.

This is the beginning of the "critical cycle”, which is that part of the computa-
tion that must be done every cycle and cannot be overlapped with any part of itself.

Thus, this is also the division between two different stages of the pipeline. The

36

conversion of A and X and the multiplication, etc. can all be done beforehand, be-
cause none of it depends on the computation of w (C and S). In fact, it can be seen
that this adder was actually designed into two parts so as to make as little of the adder
dependent on C as possible. This allows us to minimize the second pipeline stage,
which is our critical one as far as design decisions go. The division between these two

pipeline stages is the ¢ signal which is applied to the outputs of this first adder.

Vdd T Ydd
l
J35 &= =
HH: #- T T_[_{]h
() I 3 d, b2
L 1 _t L

T T T T
¢z L 9 7 L)
Figure 3.5 -- First Adder Sum Generator
Notice again that all possible values of ¢, and s, are computed in parallel, so that

when ¢ becomes available, it need only choose between the options.

The outputs ¢, and s, are passed to the next adder stage with c;, shifted
one place to the next bit position. Before that, however, so that all necessary inputs
are available to the next adder, all outputs are clocked by ¢; and c,, is inverted,

which isn’t shown here.

37

Ydd T vdd

X AL Tt [1h
T
p1i— [pi— —[JdF——*?
pZﬁIl—li

Figure 3.6 -- First Adder Carry Generator
Second Adder and Final Registers

This adder (Figure 3.7) is a bit more conventional, as all inputs are available at
approximately the same time. This adder takes the inputs Cy,, S, and § and pro-

duces the final output w, which has two components, C and S.

In designing this, the assumption is made that ¢, is the latest arriving of the

three inputs.

The outputs of this adder, ¢ and s, are shifted before being stored in flip-flops
to be used for the next cycle. c is shifted two places to the left, and s one. The ¢ regis-
ter looks like Figure 3.8. The s register is identical except that the input is actually s
instead of s, and it is thus initialized to O (all 1’s, instead of B; in the figure). Thus w
(C + 8) is initialized to B. Notice that the output of the second adder was actually the

complement of s and thus it makes sense that s is initialized to all 1’s.

38

<
&
[— 2= U}

vdd vdd

ml! all e and [1h

fu | [= A0 dF A0 I
L I] Sarf [o

Figure 3.7 -- Second Adder

B.

| |stan

T 1 ‘l>b——a-?:'

=~

Figure 3.8 -- C Register

[k
Fe

With B available off-line in two’s complement form, it is easiest to let B be the
initial value of w (in fact, the initial value of C), and then just add the first products to

it. As long as |{B | is bounded by the same bounds that limit |w-d | (< 1/2), this will

39

work. As mentioned before, B is guaranteed to be within these bounds because bit O

is considered the sign bit, giving the most significant magnitude bit a value of 1/4.
Selection Logic

The selection logic was implemented using two programmable logic arrays
implementing the computation of w and ¢;, and then & and z from the equations 2.1.6
and 2.1.7 as illustrated in Figure 2.4.1. The motivation behind this implementation is
simply the speedup available using PLA’s. The reason the PLA’s provide a faster im-
plementation is that in nMOS conventional logic gates are generally limited to two
transistors in series between Ground and the depletion device, thus limiting the size of
a product in a logic equation realizable by a single gate to two terms. Consequently,
several levels of logic gates would have been necessary to implement the logic equa-
tions. The result of this b;aing that more than one clock cycle would have been re-
quired to do the selection. If the equations for w and c¢;, were to be inserted into
equations 2.1.6 and 2.1.7, it is immediately seen that the logic is far too complex both
in the number of gates required (number of products) and the levels of logic (size of

largest product).

The PLA’s were generated from logic equations by VLSI PLA-generation
tools after first having the logic minimized. The equations were too complex to be
implemented by a single PLA, but by splitting the logic into two parts PLA’s of rea-
sonable size were produced. The splitting was done to try to produce PLA’s of ap-
proximately the same size and to produce products from the first PLA that are used
most frequently by the second. This was accomplished quite well with the first pro-
ducing partial sums from the different operands, and the second finishing the addition

and doing the selection)

40

CHAPTER 4
EVALUATION

4.1 AREA ANALYSIS

The chip implemented in 4-micron nMOS (the minimum feature size is 4 mi-
crons) measures 1866 microns by 1838 microns without pads for the 8-bit chip. It is
composed of 1957 transistors. With the input and output pads the area is increased to

2646 microns by 2568 microns (shown in Figures 4.2 and 4.3).

The com:sponding measurements for the 16-bit module chip are 3002 microns
by 1838 microns without pads, 3694 microns by 2568 microns with pads, and a total

of 3165 transistors.

What this corresponds to, then, for any size chip is an overhead of 730 by
1838 microns plus 142 by 1838 microns for each bit slice. In other words, the size of
a b-bit module would be 730+5*142 microns by 1838 microns. With pads, it is less
exact, but it comes out to an overhead of about 1598 microns by 2568 microns plus
about 132 microns by 2568 for each bit slice. Looking at transistors, there is an over-
head of 749 transistors plus an additional 151 transistors per bit slice. The layout of a

bit slice is shown in Figure 4.1.

Of those 151 transistors in each bit slice, they are broken up as follows: the
largest portion, 60 transistors, are used for the signed-digit to range complement
conversion and A and X registers. The multiplier uses 16 transistors, all enhancement

pass transistors. The two carry save adders combined represent 55 transistors. Final-

41

ly, the C and S registers are formed from 20 transistors. Looking at it another way,
each bit slice is comprised of 27 logic "gates,” determined by counting the number of
depletion mode transistors. The rest of the transistors are enhancement mode transis-
tors that are either part of a logic gate or are pass transistors. Of the large overhead of
749 transistors, a large part of that are the two PLA’s that make up the selection logic.
They combine for 168 transistors, or more than 20%. The two extra bit slices to the
left of the radix point account for another 212 transistors, or another 30% of the over-
head. The rest of the transistors are used for input and output buffering, and control

signal generating and routing.

Of the area actually used (i.e. ignoring empty spaces), approximately 43% of it
was used by the 8 bit slices, 28% was used for the various control signals and on- and
off-chip communication, 19% for the digit selection logic (this is rather high because
it was done with PLA’s), and 9% was used by the two bits of sign extension. Of
course, tha_t is for the 8-bit module. For the 16-bit modules, the 16 bit slices represent

60% of the useful area.

In light of the fact that such a large proportion of the chip area is taken up by
the overhead needed for the most significant module of the on-line unit, it would seem
that it might have been more advisable to implement two different types of modules,
one that could operate in the most significant place and one that could operate in any
other place (least significant or in the middle). In this case, however, the size of the
chip is completely determined by the input and output pads as can be seen from Fig-
ure 4.2. Therefore, a simple 8-bit slice without digit selection logic would take up
nearly the same area (it would require two fewer pads -- dy and d;). The most
significant module would require several fewer pads but would still be about the same

area due to the size of the logic. Therefore, the only advantage gained in implement-

EE] } Load Signal Generator

‘\‘l
= > SD to RC Convertor
)l
_J
; I
f
> A and X Registers
2 A
: 7 '\I
Tl i .
= S Multiplier
L’
m 5
e
- > First Adder
_
f ™
12 i % Second Adder
P ~
& 7 =z =)
C V4|
?ﬂ A4 E

C and S Reqgisters

2 2 Yy, 7 7 i

Figure 4.1 -- Layout of a Bit Slice

43

S EE]

I

Figure 4.2 -- Layout of the Chip

[E

GND
clock Xdip | inityn | 1din Jinitgyt| 1dgyt 830 | 9%qut [Xsout
Xe:
~1mn
*dout _ =
— T
- o lob
8 £E 5
L] - .W w
T
|| 22 8 bit slic ® :
£ -] it slices ® “Mip
8dout sl 5T o
3 3
“out - Hin
-
ot
€ Sin
Chout 3
Sout Digit Selection Cintyp
Ydd
n:_::.:
dg ds Bo | B B> | B3 B4 |Bs |Be |[B7

Figure 4.3 -- Floorplan of the Chip

45

ing separate module types would be a slightly increased chip yield due to less surface

area used. The same would be true for 16-bit modules, as their size is also deter-

mined almost completely by the number of pads.
4.2 TIMING ANALYSIS

The chip will operate in a pipelined manner with a maximum clock cycle of
about 110 nanoseconds in the 4-micron nMQOS implementation. For a less
technology-dependent comparisen, that figure corresponds to three gate delays per
clock cycle, plus a few pass transistors that contribute a small percentage of that de-
lay. These results were obtained by using "mextra” [MAYQOS83], a circuit extractor,
and Crystal [OUST83], a timing analysis program which finds the worst case path in a
circuit, The longest pipeline stage, which identifies the maximum speed of the circuit
is found by identifying the longest path between two successive ¢, or two successive
&, signals, which may be the same signal in circular circuitry, In this case the worst
case path travels through the C register (loaded at ¢), enabling S ;,,, which is input to
the adder gate that produces S to be loaded in the S register at ¢5. The signal path
travels through three gates, two for the register and one for the adder, plus a few pass

transistors.

Although the chip was much too large to use SPICE [NAGE73] for simulation
purposes, the following method was used to facilitate the use of SPICE to verify max-
imum cycle speed results. The importance of this method is that Crystal is a generic
program for predicting delays, but with SPICE we were able to use transistor models
that more accurately reflected the actual fabrication process to be used. Using Crystal
to find single slowest paths and modifying the circuit to speed these up, it was assured
that the slowest path during each clock cycle (and in different pipeline stages) was

through repeated circuitry (in other words, the slowest path was through the bit slice,

46

rather than through irregular circuitry). It was then possible to extract a single bit
slice, modified to accurately reflect inter-slice connections and routing, and simulate it
through SPICE. As it turned out, the worst case path occurred in one particular slice,
bit slice 1, because several of its outputs had larger loads, since they were routed not
only to the digit selection logic, but also to super buffers to be sent off-chip the next
clock cycle. To accommodate this, Crystal was used to find that the worst path
through a regular digit slice was about 100ns. Since the digit slice ran under SPICE
perfectly with a variety of inputs at this speed, it is safe to assume that the slowest bit
slice would run at the speed Crystal predicted, 110 ns, possibly less. In order to veri-
fy that the results of the simulation were correct, the bit slice was simulated at 100ns
and a much longer clock cycle to insure that all signals had plenty of time to become

stable, then the two results were compared.

One other way that we double-checked Crystal results was to run SPICE on
Crystal output of just the worst case paths, to see if they stabilized within the time that
Crystal claimed. Using this method, Crystal results were verified by SPICE to be ac-

curate to within about 1 nanosecond.

To again get results that are less dependent upon the implementation technolo-
gy, the chip was simulated in 1-micron technology, which is about the state-of-the-art
in nMOS at the moment. Although no accurate SPICE parameters were known, again
the worst case delays were found through the circuit extractor and Crystal. In this
technology it was found that the chip would be able to operate at a cycle time of less
than 10 nanoseconds. This means that, for instance, a 64-bit operand would complete-
ly cycle through the unit (assuming four 16-bit modules) in 720 ns, or with 8-bit
modules, 760 ns. Of course, in such a technology the assumption that a signal can be

sent off-chip and received in one clock cycle may no longer be valid, which would

47

mean that the speed of a multi-module unit would be limited by the chip-to-chip

transfer time.
4.3 FUNCTIONAL VERIFICATION

In order to verify that the chip operates correctly functionally and logically, a
couple of tools were used. These were 1) a program in C to simulate the desired
operation of the chip, implementing the bit-level algorithm of the on-line module and
2) the switch-level logic simulation program "esim"” [MAYO83] which takes as input
the results of the circuit extractor "mextra." In other words, esim simulates the actual

circuit as defined by the VLSI artwork.

The first step was to test the C program to ensure that it produced the desired
correct results in all cases. After this was done, this program produced results that
could be checked against other simulations for both debugging purposes and
verification. The next step, then, involved comparing esim results with those predict-
ed by the C program for particular inputs. This was done quite carefully, checking
not just outputs, but many intermediate results within the circuit. After this, the cir-
cuit was again simulated by esim, but now paying attention primarily to the inputs and

outputs and checking them for accuracy. This was done for a large variety of inputs.

All simulation up until this point had been assuming that the unit consisted of
only one module, in other words that the operands were only eight bits wide and
therefore there was no concern about intermodule communication. The next step was
to modify the C program to operate with the same algorithm, but now 16 bits wide.
Then the circuit was simulated, first acting as the low order byte and keeping track of
all the outputs to the higher order byte (also agazin checking intermediate values as

well against the correct bits in the C simulation). Next the high byte was simulated

48

with the outputs of the low byte as inputs. The outputs of this module were then
checked to be accurate. In this way the correctness of the module was verified in all

special cases and positions that it could occupy within 2 unit.

Several of these results are included in [TULL86]: the C simulation program,
results of this simulation for three different inputs, and esim outputs on the identical

inputs. The results of the two simulations can therefore be cross-referenced.

Also included are esim outputs for three different inputs, as well as the 16-bit
simulation results for both the C simulation and and the esim 2-module simulation. In

addition, [TULLS86] includes Crystal and SPICE outputs to verify timing results.

49

CHAPTER 5
EXAMPLES OF APPLICATIONS

In order to understand more fully how this arithmetic unit could be used, and
also to see more clearly some of its advantages, we would like to look at how the on-

line arithmetic unit could be applied ¢ . :!ve a particular class of equations.

Although certainly the un:: could be used to solve equations like

G =((A*B + CY*(D*E) + F) that fi: > a tree-like structure with several inputs and

one output, a much more useful apriication would be polynomial evaluation, which
could be solved using the following method, given in [ERCE75, ERCE77]. Assume,
for instance, that we were interested in evaluating the following third-degree polyno-

mial P 3(x), with pg.4 being constant coefficients:
P3(x)=p3x3+p2x2+p1x-i-po (5.1)

This equation could be translated into the following system of linear equations:
Pi(x)=yo=xy1 +po (5.2)
Y1=xy2+p)

Ya=p3x+psg

Equations 5.2, then, could be solved iteratively, the most significant digit first,
with three on-line arithmetic units arranged linearly in the manner illustrated by Fig-

ure 5.1. Each of the arithmetic units shown in Figure 5.1 would consist of one or

50

Po P1 P2

! ! !

Py(x) < AUl le— AU2 je—| AU3 fo—p;
! i !
X 4 X

Figure 5.1 -- On-line Network for Polynomial Evaluation
more of the on-line modules. In a similar manner, then, these arithmetic units could
be used to solve a number of polynomial equations as well as series approximations to

more complex functions.

Assume that the units are being used to compute a third degree polynomial in
the manner of Figure 5.1 and that the operands (pg.3 and x) are each 32 digits wide.
Also assume that 32 digits of the resuit are required and 16-bit modules are used. In
this case, the timing would be as given in Figure 5.2, where AU3 inputs x and p3 and

outputs y2, which is input by AU2, and so on.

AU3 x R N N R SO N N T O T 2y T O T T N O T T O T 2 I Y
e T rrrrerrrrre ety i
¥ S T I D Y I T T NN T N T U DU O A JN N T T T Y N N T Y JOU O T N Y
2 Frerrfrrrrrrrrerrrrrer Ty rr ot
AUZ x N T N S N N . O N N O N N T T N U N T T O |
Frrrryrtrrryfrlrrryrrrrer et
¥ NN . T S Y T N N T N TN N N WO O A O |
1 r TV Pl T titrrrtrrrorrrrrorrrrorrrrr—TT
AU] x I N N I TN TS N 2N Y N O T T O O N T T O S O OO |
fTTrrPrrrrrryveritt L O L L L T L L . B I e o |
¥y T S T T A T T O Y NI R TN S T T YO AN R 1 U Y O Y
0 LI D I T L O D DL I L DL L L L L T L L L L LR

Figure 5.2 - Timing of Polynomial Evaluator
Off-line inputs are ignored in this timing diagram. x (and p3;) can be in either
signed-digit or two’s complement representation because any two’s complement
number is equivalent to the same signed-digit number with the sign bit always zero.

In fact, if both the inputs and the final outputs need to be in range complement form,

51

the only requirement is an extra device similar to the signed-digit to two’s-
complement converter described previously which would produce the output in the

desired form after only one additional step.

With these parameters the polynomial evaluator would require 49 steps after
the first inputs are available (3 levels, 6 steps latency each, and 32 digits of results
minus 1) to produce the final product using 16-bit modules (55 steps for 8-bit
modules). It is assumed that the coefﬁ;:ients and the independent variable x are in the
range given in [ERCE75] and do not violate the bounds given in Chapter 1. With the
timing limits from Chapter 4, this would amount to 5500 nanoseconds (5.5 mi-
croseconds) to evaluate a third degree polynomial to a precision of 32 digits. This
configuration would require two on-line modules per arithmetic unit connected as in

Figure 2.2.4 and thus a total of six on-line modules.

Table 5.1 gives an example of this scheme using 16-bit operands and 8-bit

modules, so that the latencies are the same as the above discussion. The operands are:

po=1.1111101011010010
p1 =1.1111000010110111
p2 =0.0010111011011101
p3 =0.0010111011011101

x =0.0001110111000101
and the 16-bit result is
P3(x) = 0.0000110101110001

This result translates to -0.0187836, which differs from the actual value by a rounding

52

O SO -

£EP

uotlenteag Tetwoudi(og jo eTdwexy -- 1°G¢ oTgel

TO00TI0OTTOTOOTT 00
00TOTTO000000TTIO 00
O0TTTTO0TIOTITOTO0 00
000000TTT0000TO0 00
000000000TTT0000° 10
00000000TTIO000T"TT
0000000TTITO000TT 00
0000000TTOOTTOTO 00
0060000000T000TO0"TT
00000000TO0TCOOT 11
0000000TOOTOCCTT "00
000000TOOTOTOTTIO " TT
00000TOOTOTTITIOT"TT
0000TOOTOTTOTOTT " TT
000TOOTOTTOTOTIT 1T
O0TOOTOTTOTOTTITT 1T

M

oo o

ep

000000TTOCOTOTTIT " TT
00000TTOQOTOTTIT 00
0C00TTO00TOTITLIO 00
QCOTTQO0TOTTIITOO0 TT
OOTTOO0OTOETITITOOT 00
OTTOQOTOTITIOOTIO TT
TTO0OTOTTTITOOTOT 00
00T0000TOOTIOTTIOTT
0GO0OTOOTOOTTTOT 00
00000000T00000T0"IT
0006000T00000TOT"TY
000000TO00000TOTT " 1T
00000000TTOTOTTT 1T
00000000T000T000°TT
0000000000TO0TOT"TT
0000000TTTIOTOTITIL "TIT
000000TITTIOTOTTITIL 1T
00000TTTOTTITITOIT TT
0000TTTOTTIOTTIOET " OY
000TITTOTTOTO000T " TT
O0TTIOTTOTO000TT 1T
OTTTOTTIOTOQ00TTIT 11

oM

P

000000000000TOTO 0O
00000000000T0T0D" 1T
0000000000TO0TO0OT"TT
000000000TOTOOTT 1T
C0000000TOTOOTTIT 1T
00CG0000TOTOOTTIIT 0O
000000TOTOOTTILIOTT
0000OTOTOOTITITOT 00
0000TOTOOTITITIOQTO 00
000TOTOOTTIEIOT0G 00
00TOTOOTTITTOTO000"TT
CTOTOOTTTITOTO00T 00

T0TO0TTITTOTO00TO " TT

00TTOTOO0ITIGTITOT 00
ODTOTTTTIOTTIGTIO 00
0000000TTO000TO0 0D
000000TT0000TO00 00
000000TOTTOTO000 TO
00000G0TO00TO00T 00
0000000TO0OTOTOTO 0O
0GO0000OTOTTITTIO0 " T1
0000000TOTITOTOT"IT
00000CTOTTITOTOTT LT
000COTOTTTIOTIOTT 00
0000TDTTTIOTTIONO " TT
O0CTOTETOTITTITOL " TT
COTOTTITOTITTITIONT ‘00
OTOTTTOTITITOTITIO Q0

™

53

error of 0.016%. Most of that is the rounding error from considering only 16 bits of
the final result. The accumulated rounding error if the 32-bit result is used is only

0.0006%.

The first result of AU3, 4}, is actually output 5 cycles after the initial inputs,
which isn’t obvious from the table, and the final output begins 12 cycles later and

finishes after a total delay of 33 clock cycles.

Similarly the unit could be used to find a root of a polynomial equation by an
iterative method. For instance, the root of a fourth degree polynomial like equation

5.3 could be found by solving for x iteratively.

x=paxt +p3x’ +paxl +pix+py (53)
Of course, this equation and the initial value of x would have to satisfy certain conver-
gence conditions that are well documented in numerical analysis texts. The
configuration in Figure 5.3 utilizing buffers for x would solve equation 5.3 iteratively
and continuously, once every n cycles, where »n is the length of operands (or desired
output). In Figure 5.3, n is assumed to be 32, again using 16-bit modules, resulting in
a six cycle latency between one unit and the next. In this configuration, the new x
would be produced beginning 24 cycles after the old is input to module AU4. After
eight more cycles AU4 would be ready to begin to input the new x, which it could do
without influencing the outputs at AU1 before it finished producing all 32 digits of the

current x, The timing of the four units in terms of their inputs is shown in Figure 5.4.

This would be possible because when a new inir signal arrives at 3 2-module
unit, the next five outputs will remain unaffected and the sixth will be the first digit of

the next output. This means that even if x3; and py,, are followed immediately by

init and x and p4, (which are always input simultaneously), y3; of AU4 will be pro-

54

Po Pi P2

AUl = A2 l= AUJ 1=

P23

AU4 [y

Figure 5.3 -- Solution for the Root of 2 Polynomial Equation

X Xy
AU4||| PRV ET ST T T SN TNE UR A O NN T A TS U N A S WA AN AT ST SRS kL S SN AR T NN ST SO Y W EN A A B A A
LI N L I JO L J J S N N
Xo X
AU3 B o A o e
Xu Xl
AU2 A A
AUl }z(ioiil!:H!:HH%H""""' L

Figure 5.4 -- Timing of Root Finder

duced five cycles later unaffected, followed by the next y;

on the sixth. The same is

true for each module so that AU will produce the new x; immediately following the

last x33. In this manner, this configuration after an initial setup time of 23 cycles

(four times the latency minus 1), will then complete an iteration of the fourth degree

polynomial every 32 cycles. In that case, for instance, 10 iterations would require 343

clock cycles. In comparing this scheme with one using conventional arithmetic chips

several differences are seen. One is that although four different units are operating in

a pipelined manner on the output of the pipeline, they are all operating 100% of the

55

time. With conventional methods, none of the units could operate until the previous
one completed, and the whole process could not be restarted until AU1 completed.

Therefore, each of the modules would be operating only 25% of the time.

Another difference is the small number of connections between units (and
modules within each unit). There are only two lines between each unit in this
configuration, and there is never any single line having to broadcast signals. With
conventional chips, there would have to be 32 lines between each two chips for the

pipeline to run as efficiently as possibly.

Each of the on-line clock cycles corresponds to approximately one carry-save
adder step and a register. A 32-bit module to compute AX + B in the conventional.
manner would require 32 similar clock cycles, or if some simple radix-4 recoding was
used, it would require 16 add-store steps. If computed with a similar configuration,
these modules would then require 64 clock cycles, because no overlap would be pos-
sible. To minimize delay, a tree-like structure could be used to evaluate the polyno-
mial in three steps rather than four as shown in Figure 5.5 (Estrin’s method). In this
case, the time to complete one iteration would be 48 steps. Since the next iteration
could not be started until the previous one completed, the time for 10 iterations would

be 480 clock cycles.

In addition, the performance of the on-line method can be improved by adding
more hardware. If we duplicated the hardware of Figure 5.3, the output of the first
polynomial evaluator could be sent as input to the second, to avoid the 8-step delay as
x waits in the buffer for the pipeline to be ready for new inputs. In this way, the
second could begin immediately after 24 cycles accepting the new x, and 24 cycles
later, it would produce the first bit of x5 to be input to the free first evaluator. Thus,

with multiple on-line evaluators, an iteration could be begun every A steps, where A is

56

Figure 5.5 -- Conventional Root-Finding Solution of P,(x)

the total latency of one evaluator. Therefore, with this scheme, 10 iterations could be
completed in 271 cycles. This improvement is even greater when n, the width of the
op-Jerands, is much larger than A, as is the case when n = 64, resulting in A =32, With
64-bit operands, it could still be done at maximum speed with two evaluators (because
A is exactly half of n), but with any larger operands, more than two evaluators would
be necessary). The total delays for M iterations of operands M bits wide for the con-

ventional {conv), on-line (ol), and on-line with multiple evaluators (olm) schemes are:

Doy = 2M D =NM+A=1, Dy =NA+M-1

2 (5:4)
Table 5.2 summarizes the time to complete the evaluation for the three different
schemes varying the number of iterations and the size of the operands. From this it

can be seen that with multiple on-line configurations, the speedup approaches a max-

57

imum of 3 in the 64-bit case.

Table 5.2 -- Comparison of Root Solving Implementations

32-bit Operands 64-bit Operands
Number
of Multiple Multiple
Iterations | Conv | On-line | On-line | Conv | On-line | On-line
1 48 55 55 96 91 91
10 480 343 271 960 667 383
100 4800 3223 2431 9600 6427 3263
REFERENCES
[AVIZ61] A. Avizienis, "Signed Digit Number Representations for Fast
Parallel Arithmetic," IRE Transactions on Electronic Cormnputers,
pp. 389-400 (1961)
[ERCE75] M. D. Ercegovac, "A General Method for Evaluation of Functions
and Computations in a Digital Computer,” Ph.D. Thesis, Report
No. 750, Department of Computer Science, University of Illinois,
Urbana, August 1978 ‘
[ERCE77] M.D. Ercegovac, "A General Hardware-Oriented Method for
Evaluation of Functions and Computations in a Digital Comput-
er,” IEEE Transactions on Computers, Vol. C-26(7), pp. 667-680
(July 1977)
[ERCERg4] M.D. Ercegovac, "On-Line Arithmetic: An Overview," Proceed-
ings SPIE Conference on Real-Time Signal Processing, San
Diego, 1984
[ERCES85] M.D. Ercegovac and T. Lang, "On-the-Fly Conversion of Redun-
dant into Conventional Representations,” Report No. CSD-
850026, UCLA Computer Science Department, August 1985
[MAYQO83] R. N. Mayo, J. K. Ousterhout, W. S. Scott, editors, "1983 VLSI
Tools" Report No. UCB/CSD 83/115, Computer Science Depart-
ment, University of California, Berkeley, March, 1983
[MEADE&0] C. Mead and L. Conway, "Introduction to VLSI Systems,”

Addison-Wesley, 1980

58

[NAGE73]

[OUST81}

[OUST33]

[TULLZR6]

[TRIV77]

L. Nagel, D. Pederson, "Simulation Program with Integrated
Ciruit Emphasis (SPICE)," 16th Midwest Symposium on Circuit
Theory, Waterloo, Ontario, April 12, 1973

I. K. Ousterhout, "Caesar: An Interactive Editor for VLSI", VLSI
Design, Vol II, No. 4, Fourth Quarter, 1981, pp. 34-38

J. K. Qusterhout, "Crystal: A Timing Analyzer for nMOS VLSI
Circuits”, Third Cal Tech Conference on Very Large Scale In-
tegration, 1983, pp. 57-69

D.M. Tullsen, "Simulations of an On-Line Arithmetic Unit
Design,” Internal Memorandum, UCLA Computer Science
Department, May 1986

K.S. Trivedi and M.D. Ercegovac, "On-Line Algorithms for Divi-

sion and Multiplication" IEEE Transactions on Computers, Vol.
C-26, No. 7, July 1977

39

