TLOG -- YET ANOTHER LOGIC SYSTEM IN LISP?

Walter Read April 1986
Michael G. Dyer CSD-860070

TLOG -- Yet Another Logic System in Lisp?

Walier Read
California State University, Fresno
UCLA Artificial Intelligence Laboratory
Michael G. Dyer
UCLA Artificial Intelligence Laboratory
Abstract

This paper deséribes TLOG, an implementation of logic programming in T, an object-oriented, lexically-
scoped Lisp in the Scheme family. TLOG is designed to support Al research in the Artificial Intelligence
Laboratory at UCLA. It is, as far as we know, the only object-based logic programming system imple-
mented directly via objects. This object-orientation allows the development of useful experimental

features, including trace/debug and compilation techniques for logic programs.

-l

TLOG == Yet Another Logic System In Lisp?

Walter Read
California State University, Fresno
UCLA Artificial Intelligence Laboratory
Michael G. Dyer
UCLA Artificial Intelligence Laboratory --
1. Introduction

At the UCLA Al lab, like other labs, we have feit the need for a logic programming facility. Our
environment currently consists of two dozen Apollo workstations running our internally developed tools
environment called GATE (Graphical Al Tools Environment) [Mueller & Zernik 1984] a graphics and
demon-based [Dyer 1983] facility built on top of T [Rees & Adams 1982]. T is a member of the Scheme
family of lexically scoped Lisps [Abelson and Sussman, 1984], but also has a number of features that go
beyond Scheme,_ including explicit objects constructs with message-passing and also named environ_ments

[Rees, Adams & Meehan 1983).

1.1. G’oal'

We want our logic programming system to be fully embedded in T so that T functions, demons
and our other entities can freely be defined in terms of, and have access to, one another. This requires
that (1) the database be represented and manipulated in T, (2} the theorem prover be run from T, and

(3) that T code be called from logic clauses.

TLOG is intended to be a superset of Prolog were the user can experimel-lt with alternate in-
terpretation disciplines. However, TLOG also currently provides a standard Prolog syntax and seman-
tics. The main goals of the TLOG project are: (1) to provide a useful and attractive logic programming
system for Al researchers, (2) to explore the potentials of T as a language for implementing logic pro-

gramming, and (3} to serve as a testbed for experiments in logic programming. The initial objectives

9.

were to lay the foundations for future development and to provide a full-featured logic programming sys-
tem, one that would give the user much of the flexibility and support provided by the environment al-
ready in use. This required good trace/debug and edit facilities. TLOG has now completed its first
stage of development and is currently in use in the lab, running on Apollos and also on Vaxen under

Unix.

1.2. Some T Background

There are several extensions to SCHEME in T. The extensions which are used most heavily in

"the implementation of TLOG are OBJECTs and SETTABLE access methods.

T provides a convenient syntax for declaring CBJECTs (i.e. LAMBDA closures). The way a user

makes 2 new OBJECT type in T is demonstrated by the following example:

(DEFINE (MAXE-RECTANGLE length width)
(CBJECT ()
((GET-WIDTH self) width)
((GET-LENGTH self) length)
((GET-AREA self) (s width length))
{ (PRINT self streanm) .
(PRINT (LIST ’RECTANGLE a1 a2) stream)})))

where {(OBJECT ...) introduces an object definition. Each of the method clauses, ({method-name .
args) code), defines a method on the cbject, which is executed for example by executing the operation
{(GET-AREA rectangle). Key system functions, like PRINT, are also implemented as operations so

that users can write object definitions which integrate well with the rest of the T environment.

Users can also write accessor methods which are SETTABLE For example, one can can say

(SET (GET-WIDTH rectangle) new~width) if the object is defined as below:

(DEFINE (MAXKE~RECTANGLE length width)
(OBJECT ()
{ (GET-WIDTH self) width)
({ (SETTER GET=-WIDTH) self value)
(SET length (» (/ length width) value))

(SET width value)) ...)

This defines 2 SETTABLE accessor method for ‘width’ which preserves the aspect ratio of the rectan-

gle.

T also provides named enviroaments. This makes it easy to access bindings in other environ-

ments while at the same time maintaining a proper discipline of procedure and data abstraction.

2. Basics of the Implementation

a. Top Level Embedding of TLOG in T: When TLOG is loaded at the beginning of a session, ;cx
special environment is created and all TLOG functions are loaded into that environment. Oaly those
functions needed are made available to (i.e. exported to) the user's own environment. The T read-eval-
print loop READ and EVAL are then redefined so that T can include TLOG assertions or queries as part
of the function definition. The TLOG=READ peeks at the frst character of the input to determine wheth-
er Prolog or T syntax follows. In either case the output of TLOG-READ is conventional T code. The
TLOG=EVAL then decides, based on the function name, whether to interpret the expression as a TLOG
c.lause ot a8 ordinary T code. This allows TLOG to be fully embedded in T and permits the user to in-

termix T and TLOG code.

b, Clauses: TLOG clauses are represented as T objects, with a variety of methods. In particular,
the head and body of each clause are stored under settable access functions. Actually, there are two
copies each of the head and body. One is generally left alone except while editing. The other is the
"renamed” version used by the unifier. The clauses themselves are indexed fully by clause head within a
discrimination net (d-net). The clause object also keeps a number used by the d-net to keep clauses in
the order specified by the programmer for when standard Prolog interpretation is desired. The clause
object also maintains a flag for deletion used by the discrimination net FETCH to note what clauses are
still considered "in" the database. When the clause is loaded into the database the set of variables in the

clause is computed for use by the "rename-variables” function.

¢. The database: In TLOG the database is organized as a discrimination net with discrimination
on the head of the clause. In order to keep the fetching efficient, whenever the number of sons passes a
cutoff number, the discrimination net creates a hash table for that set of sons. The d-net also keeps

track of the number of sons at each node.

Each clause is given a precedence number when it is added to the database. This allows the
fetch to return clauses in the order in which they were entered into the database. This also allows

TLOG to implement ASSERTA even though d-net organization is not by order of loading.

The decision to implement a full d-net with dynamic hashing, precedence ordering, and other

structural information was based on three goals:
(1) Use the d-net to support unification.

The d-net already provides some support by filtering out many impossible unifications that would be
considered in other Prolog systems. There are plans to better the cooperation between discrimination
net and unifier: Optimally, either the unifier should make use of bindings produced by the result of a
FETCH, or unification should be so integrated with indexing that unification is already completed by the

time FETCH is done.
(2) Use the d-aet to direct literal selection withia a clause or clause selection within a procedure.

In Prolog, an ‘incorrect’ ordering of goals can result in very inefficient execution. By adding information
at ach node (nodes themselves are implemented as objects) it becomes possible to dynamically select the

goal requiring the least amount of potential backtracks.

(3) Use the d-net to make complex structures an attractive option.

—-

Most Prologs index on the predicate and perbaps the first argument. This seems somewhat ad hoc. For

instance, imagine impiementing one or more a logic interpreters in TLOG. This could result in many

-5-

clauses each with the predicate CLAUSE. In systems that access the database by indexing on the predi-
cate name efficient database access is defeated. As a more complicated example, suppose the database
information is a story represented as many instantiated and interconnected frames [Dyer 1983|. If we
need to find all occurences of something said to Mary, then the discrimination net will filter out all but
the possible clauses. Simple indexing will only find all clauses that are indexed under the concept (predi-
cate) representing "saying” and the unifier will have to check each one. The advice that such frame
structures be represented as a series of bipary relations {Kowalski 1979; Nilsson 1980| seems to require a
very large database and an unnecessarily complicated search. Either we have to look for every clause
that involves "saying” and then see if the object was Mary or we have to look at every clause involving
Mary as a target and then see if the action was "saying”. What complex structures within clauses allow
us to do is to specily the most relevant indices for accessing associated relations. The practice of map-
ping to simple binary relations appears to be influenced as much by the limitations inherent in most Pro-

log indexing schemes, as by purely theoretical consideratioas.

d. Renaming variables during unriﬁcation: TLOG renames variables for uniﬁéation by getting the
set of variables from the clause object, generating new names and mapping the resulting bindings into
the clause object. The more common method of searching a clause and doing renaming requires that the
program check at each stage whether the variable currently under consideration has already been
renamed. By using the fact that a variable set has already been generated, the renaming can be done
once and, when the clause is searched later, only the substitutions need be done. This efficiency in pro-
ducing variant closures is important in the efficiency of the overall system,-as variants have to be pro-

duced at each unification [Kahn and Carlsson 1984, p. 119).

3. Some Comments on Compiling Logic Programs

"There is no general agreement on what "compiling” a logic program should be, except that it

should resuit in the program running faster, possibly at a cost of time while loading. The common ap-

proach is to translate clauses or predicates into a procedural language. This may be either an existing

language or an abstract machine language [Warren 1977].

If we want to consider compilation within the paradigm of logic programming, we must consider
where to improve the performance of common functions in the interpretations of logic. Two of the most
important places where improvement can be made are unification and renaming variables. Speeding up
renaming depends partly on the representation used for variables but TLOG's way of handling renaming

shows a general method that should improve performance no matter how variables are represented.

TLOG also supports unification by using the discrimination net. The net "compiles out” many
pon-unifications that would otherwise have to be checked by the unifier. Indexing clauses, as is done in
many Prologs, achieves some of the same eflect. In either case, structuring the database contributes to

compilation.

4. "Soclety of Experts” Programming

The "Society of Experts” approach refers to a general model of cooperati\;e problem solving in
which different parts of the overall system are seen as "experts”, each knowing how to solve a piece of
the problem and each able to communicate questions and answers to other parts of the system. As such
it is closely related to the idea of procedure abstraction, in that details of an individual expert’s reason-
ing are hidden from other experts. This type gf factoring requires that other experts need know only the

form of the interface to their 'colleagues’.

TLOG currently supports this model of programming through 'II"s named environments and a
built-in TLOG predicate called RPQUEST. The database corresponding to a given expert's kpowledge
can be created within an environment named for that expert. If, in the course of answering a query,
another expert needs information from that expert, it can issue a REQUEST, which takes as arguments a

query and a named environment. TLOG then runs the query in the named environment and passes the

-7

answer back to the calling environment as the value of the predicate (i.e. as either a binding list or the

*FATL signal).

As a simple example, we coastructed a student database, whose knowledge is of the form "if you
are asked a physics question, then ask a physicist”. Clauses in this database would just call REQUEST
referring to another {i.e. the physicist} database. The physicist database hase clauses describing solution
methods for suqh queries. In our example, the physicist database also knows how to do elementary arith-
metic, but to take square roots it needs a calculator. Thus some of the clauses in this database have 2
RPQUEST to a calculator database. The user queries the student, who may then query either the physi-
cist or the calculator, and so on. The system makes the necessary connections and the answer is re-

turned in the original environment,

If the calling expert needs an explanation, either of a success or a failure, it can call the ad-

vanced debugging features of TLOG within the consulted expert’s environment. In this way the cailed

expert can either show its reasoning in case of success or show the failure points in case of failure.

This can be done somewhat awkwardly in Prolog by, for example, representing clauses in a given
database, say ‘db1’, as ‘db1(clause)’. But this fails to give the abstraction provided by TLOG and
may in large part defeat the indexing commonly used in Prolog by forcing each clause to have a new
predicate. Other approaches involve building an entire object-oriented semantics on top of Prolog [Kahn

1982].

In TLOG distributed theorem-proving is almost trivially implemented by having REQUEST call a
simple 3-line-long T function. This is because T allows setting variable values and evaluating expressions
in named environments. Futhermore, since named environments are system objects, jumps to these en-

vironments are very efficient.

5. Special Features of TLOG

a. Integration: TLOG is fully embedded in T in a way that allows the user: (1) to treat TLOG as
a "stand-alone” programming language, {2) to call TLOG as a theorem prover or deductive retrieval sys-
tem from T, or (3) to call T code from TLOG. Since TLOG accepts Prolog syntax it can also be used

immediately by someone familiar only with Prolog.

b. Predefined predicates: the TLOG-to-T connection: TLOG provides the user with a basic set of
predefined (evaluable or built-in) predicates for arithmetic, 1/O, file manipulation, etc. But TLOG, un-
like most Prologs, allows the programmer to extend this list of built-in predicates arbitrarily by a simple

procedure: It is only necessary to build a list associating the predicate with an appropriate T function

and these new predicates will be defined as built-in.

.

This is an important feature of TLOG, especially for the uses for which it was designed, because
it is through the predefined predicates that the TLOG-to-T part of the integration is implemented. This
allows the TLOG programmer to call graphics functions [Mueller & Zernik 1984|, spawn demons for pars-
ing [Dyer 1983|, or direct customized output to a newly opened window. The extendible predefined

predicates allow T and TLOG to interact fully.

¢. Trace/debug facilities: TLOG has a trace package modelled on the trace in Edinburgh Prolog
and C-Prolog and thus provides the usual options (i.e. creep, skip, quasi-skip, leap, retry, etc.). TLOG
also provides trace options that go beyond most logic programming systems. These options include algo-

rithmic debugging aad editing.'

(1) Algorithmic debugging: In TLOG this facility is based c;n Shapiro’s work in this area
[Shapiro 1983]. It is basically an explanation system. In case of unanticipated success TLOG can be
queried as to its reasoning and it will backtrack from the goal, asking the user at each stage whether the
predicate it is using is true or not. If a predicate is false, TLOG asks for a ground instance which is false.

—_—

It.continues until it finds a clause in the database which is false. In case of unexpected failure, TLOG

switches to a special purpose trace monitor and reexamines its attempt at a proof. The new monitor re-
ports to the user each point at which the proof attempt failed. Once a lailure is reported, remaining
backtrack failures are ignored until another line of proof is started. These features, corresponding to
Shapiro's false-procedure and incomplete-procedure, are available both as T functions and as options in

any runping trace,

(2) Editing in TLOG: TLOG provides facilities for editing the database and for "in-core” editing
of individual clauses. In addition to the ysual ASSERTA, ASSERTZ and RETRACT, TLOG provides RE-
MOVE and RESTORE. REMOVE marks a clause as "removed” in such a way as to allow it to be restored
later at the same position in the database. This gives the programmer the possibility of experimenting
with the database, whether in debugging or in analyzing the code, without changing the structure of the
database. Using RETRACT and ASSERTA/Z to do this sort of experiment by contrast makes significant
and potentially serious changes in the program. REMOVE and RESTOR® can be called both from T as
functions and called as options in a running trace. This feature of TLOG uses thg fact that in TLOG
clauses are objects with a DELETED? m;at.hod which can be set to T or NIL. Marking a clause as d elet-

ed simply causes the fetch from the discrimination net to skip that clause.

To edit individual clauses, TLOG provides a CLAUSE-EDIYT feature, which also is available either
as 3 T function or as an option in a rupning trace. The programmer can modify the head, body or any
part of the head or body and the resulting clause is stored in the database in place of the original clause.
TLOG implements this editing by using the fact that in the clause the head and body are settable access

functions of the clause-object.

8. Future Work.
There are several future projects for TLOG, some of which are already underway.

a..Current projects:

{1) Compiting TLOG directly into T: Since T compiles very well (and version 3.0 of T is expected
to produce significantly faster compiled code) this pre-compilation should speed up TLOG substantially.
One approach to this is already implemented [Dolan & Dyer 1984] and this TLOG compiler has resulted

-
in a speed improvement a factor of 3. We expect further improvements iu this area.
(2} Continuation passing: There is current work on building a continuation passing theorem

prover [Mellish & Hardy 1984]. We expect that this will speed up TLOG as well as being of research in-

terest.

(8} Graphical trace/debug: The Al Laboratory at UCLA is continuing development on its Graphi-
cal Al Tools Environment {GATE [Mueller & Zernik 1984]). E.g. we are current working on adding a
graphical trace facility to the existing trace. Eventually, we hope to extend this to allow graphical in-
teraction between a TLOG program and the programmer, including graphical editing and graphical

display of unification and backtracking.
b. Longer-range projects include:

{4} Using the discrimination net to support unification: A fetch from the discrimination net
currently does a "partial unification” by checking for all "constant-to-constant” matches and allowing
variables to match anything. We are interested in developing a unifier that can use this information to
improve its performance, possibly using extra information about the clause from the clause object. Alter-
natively, consideration has been given to integrating the unifier with the discrimination net so that the

fetch does unification.

{5} Using the clause object to support unification: At the cost of taking more time to add clauses
to the database, the clause object could store more information local to the clause. For example, the
directed acyclic graph (dag) structure of the head or all or part of the body of the clause could be com-

puted and used by a unifier based on the dag structure [Patterson and Wegman 1976).

-11-

(6] Metalevel control: TLOG, like Prolog, currently always chooses the next clause as listed in the
database and the next literal in the body of the clause to be resolved on. Suggested methods for giving
the programmer more control over these selection rules include annotating the variables and extending
the interpreter to use "control clauses”, instructions with the syntax of Prolog clauses which change the
path of clause or literal selection {Gallaire and Lasserre 1982}, We are currently looking into adding some

sort of metalevel control to TLOG.

{7) Shared TLOG code: At the moment, when TLOG is running in several environments the full
TLOG code is copied into each environment. We would like to have the core code running in a single

environment using the various distributed databases.

(8) Using the discrimination net for litersl selection: Consideration is being given to storing extra
information in the disctimination pet, for example, the number of clauses under a given node. Then

literals could be chosen in a "fewest possible unificants first” manner.

—

{8} Cencurrent TLOG: Of course, many people are working on concurreat logic programming.
We expect that the message passing object semantics of T along with named environments will open up

possibilities for concurrency that would be more difficuit in other languages.

7. Conclusions

Our initial goals for TLOG have largely been achieved. TLOG exists as a logic programming
system fully embedded in T and provides users with features not generally available in other pure Prolog
systems. It is already serving as a base for further experiments in compilation, alternate theorem
provers, and graphical trace/debugging.

)
The most interesting result may be the use of objects to implement logic. Treating clauses as

objects, for example, allows the implementer to support the rename.variables function, database manipu-

lation and in-core editing of clauses. The message-passing semantics of objects provides a uniform way

of adding information to various entities in a logic system, such as clauses, d-net nodes and variables,

and also in making that information available to other parts of the system.

*
As far as we know, TLOG is the only object-based logic programming system in existence .

8. Acknowiedgments

We would like to gratefully acknowledge contributions in both design and implementation made
by Charlie Dolan, Maria Fuenmayor, Hamid Nabavi, Kurt Stoll and Scott Turner on the TLOG com-
piler, unifier, trace package, d-net, and Prolog front-end, respectively. In addition, we also want to

thank Charlie Dolan for his valuable editorial and substantive aid in the preparation of this document.

9. References

Abelson, H., Sussman, G. J. with Sussman, J., Structure and Interpretation of Computer Programs.
MIT Press, MA, 1985, :

Dolan, C. and Dyer, M. G. "The World's Shortest PROLOG Compiler?” UCLA Al lab memo, 1934.
Dyer, M. G. In-Depth Understanding. MIT Press, MA, 1983.

Gallaire, H. and Lasserre, C. "MetaLevel Coatrol for Logic Programs”, in K. L. Clark and S. -A. Tarn-
lund (eds.). Logic Programming. Academic Press, NY, 1982.

Kahn, K. M. "INTERMISSION — Actors in Prolog”, in K. L. Clark and S. -A. Tarnlund {eds.). Logic
Programming. Academic Press, NY, 1982,

Kahn, K. M. and Carlsson, M. "How to implement Prolog on a LISP Machine", in /mplementations of
PROLOG. J. A. Cambell (ed.), Ellis Horwood Limited, NY. 1984.

Kowalski, R. Logic for Problem Solving. North Holland, NY 1979.

Mellish, C. and Hardy, S. "Integrating Prolog in the Poplog Environment”, in Implementations of PRO-
LOG. J. A. Cambell (ed.), Ellis Horwood Limited, NY. 1984.

Mueller, E. and Zernik, U. "GATE Reference Manual”. UCLA Al lab, tools note 6, Oct. 1984.

—
“The next most likely candidate appears to be LM-Prolog, which is implemented in Zetalisp [Weinreb
and Moon 1981] but its implementers apparently did not use Zetalisp flavors [Kahn and Carlsson 1984].

<13~

Nilssor, N. J. Principles of Artificial Intelligence. Tioga Press, Palo Alto, CA. 1980.

Paterson, M.S. and Wegman, M.N. "Linear Unification”, Proc. Annual ACM Symposium on Theory of
Compufing, 1976.

Rees, J. A. and Adams, N. I. "T: a dialect of LISP, or lambda: the ultimate software tool”, in
Proceedings of the 19582 ACM Symposium on LISP and Functional Programming. August, 1982.

Rees, J. A., Adams, N. . and Meehan, J. R. The T Manual, Computer Science Dept. Yale University,
1983.

Shapiro, E. Y. Algorithmic Program Degubbing. MIT Press, MA, 1983.

Warren, D. H. D. Implementing Prolog -- Compiling Logic Programs, Vol 1 & 2, D. A. L. Research Re-
ports 39 & 40, University of Edingurgh. 1977.

Weinreb, D. and Moon, D. LISP Machine Manual. MIT, 4th edition, 1931.

