THE WORLD’S SHORTEST PROLOG COMPILER

Charlie Dolan April 1986
Michael G. Dyer CSD-860068

The World's Shortest PROLOG Compller?.
Charlie Dolan
UCLA Artificial Intelligence Laboratory
Hughes Aircraft Al Center
Michael G. Dyer
UCLA Artificial Intelligence Laboratory
ABSTRACT

This paper presents a compiler for TLOG, an implementation of TLOG in T [Rees et. al. 1983}, a version
of SCHEME [Abelson and Sussman 1984]. Itself is a dialect of LISP. In this compiler TLOG clauses are
translated into T code. The compiler is presented as a simple efficient way of doing logic programming in
LISP. The compiler uses the continuation passing method for building the proof tree on the execution
stack [Kahn and Carlson 1984, Mellish and Hardy, 1984]. Several a.spect; of compilation are discussed:
variables, cut (1), disjunction, structure copying, and unification. The code for implementing all but the
last is given in the appendix. This compiler is part of the UCLA TLOG project. TLOG [Read et. al. 1984

is logic programming in T. Performance results for compiled vs. interpreted TLOG are given.

, o .
This work was supported in part by a grant from the Hughes Aircraft Al Center and in part by a grant
from the Keck Foundation.

-1-

The World's Shortest PROLOG Compliler?
Charlie Dolan
UCLA Artificial Intelligence Laboratory
Hughes Aircraft Al Center
Michael G. Dyer
UCLA Artificial Intelligence Laboratory

1. Why compile into T?

There are three reasons for compiling TLOG into T.

(1) It simplifies the problem of compilation. If you already have a LISP compiler, you doa't have
to write a code generator. This paper is somewhat inspired by Nilsson's “shortest” PROLOG interpreter
in LISP |Nilsson, 1984). The code presented here will give you reasomable PROLOG compiler kernel to
build on given that the your LISP has all the needed features: closures and CATCH (e.g. Zetalisp [Wein-

reb aad Mooo 1981}, COMMON LISP [Steele 1984], SCHEME).

(2) Is that there are already large programming environments for LISP, and much software has
been committed to those environments (e.g. graphics, editors, programming tools). Implementing logic
programming in LISP means that we don’t need to build all these tools for 2 logic programming language

[Robinson and Sibert, 1982].

(3) If you are programming primarily in LISP you want the interface between LISP and PRO-
LOG (in our case T and TLOG) to be as efficient and transparent as possible. The best way to do this is
to turn PROLOG into LISP. In the TLOG system a set of macros is provided which insert the user’s

code into the compiled TLOG. This way the user has full access to all the variables in the TLOG code.

2. T features used

The main feature of T that is used in the compiler are closures. A closure is a procedure (lamb-
da expression) and an environment in which the procedute is to execute. Closures are used to implement
the continuations discussed in the next section. Here is 2 brief example of a closure. Given procedures,

(DEFINE (PROC1)

(LET ((X 3))
(PROC2 (LAMBDA () X))))

(DEYINE (PROC2 CONT)

(LET ((X 4))
(coNT)))

PROC1 will return 3 because X is bound in the environment of PROCY and not in PROC2. In a LISP

without closures PROC2 would return 4 because 4 is the most recent value assigned to X

Another feature of T that is used is CATCH. CATCH allows a procedure to THROW beyond its

normal return point. Consider: -
(DEFINE (PROC1)
(CATCH CUT-PROC
(PROC2 (LAMBDA () (CUT-PROC NIL))) T))

(DEFINE (PROCZ CONT)
(coxT))

If PROC2 had not invoked CONT, PROC1 would have returned T, the last expression in the CATCH But
PROCZ invoked CONT which contained an invocation of CUT-PROC set up by the CATCH. This forces the
entire CATCE expression to be terminated and the value with which the TEROW procedure, CUT-PROC,

was invoked to be returned.

|]
The last feature of T used is the macro facility. TLOG procedures are declared with the macro

| 2

TLOG is a superset of PROLOG imbedded in T. For instance a PROLOG clauses like: relation(X)
:= body become in TLOG: (:=- (RELATION ?X) BODY). TLOG also has a front end which will
handle PROLOG syntax in addition to TLOG syntax.

*

«3-

DEFINE-TLOG.

namc(lmmu.‘) - bodyj
namc(PAﬂmz) te bodyg

DEFINE-TLOG (name arg, argy ... arg)
{:= (name PATTERN,) bodytf
(t= (name mnmz) &od’yg)

T LR LK ST

}
where each bodyi is a goal. A goal can be a TLOG procedure call, {(AMD goall goalz gaalm), or (CR

goal 1 gaa12 goalm). The entire body gets turned into a procedure deflnition with n+! arguments,

where the last argument is the continuation.

3. Downward success continuation

In downard success continuation, a procedure succeeds by calling its continuation. The user must
then specify, as part of the call to prove a goal, what is to be done if the goal is true. Returning to the
caller is failure. When compiling TLOG, this means that proving subgoals consists of constructing nested
continuations to call them. Consider the following,

p1.
p1 :- pa.
p1 i~ p3,p4.
DEFINE-TIOG (P41)
(:= (P1))
{:= (P1) (P2)}))
(:= (P1) (AMD (P3) (P4)))

o~ wa we we

) .

*»
Which compiles into

wv
Here and in the remainder of this paper, object code produced by the compiler is sunpllﬁed for
c!amt; M%ﬂa, code for resettm; variables bound dnnn; evaluation o(ﬁ Qﬂ failed gga,&g e

TR S R E SR O L T T TR

(pEFINE (P1/0 #CONTINUATICKS)
($CONTINUATIONS)
(P2/0 +CONTINUATION®)
{P3/0 (LAMEDA () {P4/0 SCONTINUATICNS)))

)

bW W -

It is assumed that when the user calls a top-level goal from a T program, a suitable coatinuation is sup-
plied. In most cases the continuation is constructed by the macros for calling TLOG from T presented

later in this paper.

We see 4 things demonstrated here:

(1) As in line 2, success consists of calling the continuation.

(2) In line 3, proving subgoals is simply calling the procedure for the sub-goal. |

(3) As in line 4, proving a conjuction of sub-goals involves calling the first conjunct and pass-

ing to it a continuation to call the remaining coajuncts.

(4) In line 5 failure is simply retarning from a procedure.
The implementation of continuations is extremely efficient in T because T was designed with the goal of
efficient implementation of LAMBDA closures. Besides the code itself, the overhead for using a LAMBDA

closure in T is one CONS cell plus one more for each variable in the calling procedure. [Rees et al 1983].

4. Implementing logical variables In T

T ooly has normal programming variables, so we need to create a new type of structure to
represent logical variables. In this implementation TLOG variables are implemented with struciures [Rees
et all 1983} we call PROVARS. These are record structures whose value component is accessed with the
selector, {PROVAR-VALUE obj). New logical varaibles are created with a call to (MAXE-PROVAR). The

value component is initially the atom «UNDEFs. With these logical variables we can now compile func-

tions which have variables. For instance,

; append([],L,L).
; append([x|Lt},L2,[XiL3]) :- append(L1,L2,L3).
(DEFIRE-TLOG (APPEND A1 A2 A3)
{:~ (APPEND () ?L ?L))
(:=~ (APPEND (CONS ?X ?L1) ?7L2 (COmMS ?X ?L3))
{APPEND ?L1 ?L2 ?L3))

)
becomes l
1 (DEFINE (APPEND/3 A1 A2 A3 +CONTINUATIONS)
2 (LET ((7L A2))
3 (ONIFY (LIST A1 A2 A})
4 (LIST () ?L ?L)
-] SCONTINUATION®)))
6 (LET ((?2 (MAKR-PROVAR) (?L1 (MAKEB~-PROVAR))
7 (712 A2) (?L3 (MAKE-PROVAR)))
8 (ONIFY (LIST A1 A2 A3)
9 - (LIST (LIST ‘CONS ?X ?L1) ?L2 (LIST ‘CONS ?X ?L3))
10 (LAMARDA () (APPERD/3 7L1 ?L3 ?L3 »CONTINMUATIONs)))))

In the first and second clauses of APPEND, ?L and ?L2 (linés 2,7) are local variables [Warren 1977]. Lo-
cal variables are needed only to pass procedure arguments to other parts of the procedure. They are not
used in structure selection and construction. In these cases no logical variables need to be constructed.
For the other variables MAXE-PROVAR is used to make a new global logical variable, as in lines 6-7. Logi-
cal variables in the TLOG clauses are mapped to T variables which are bound to either procedure argu-

ments or unbound logical variables,

Note here is that the unifier (lines 3 and 8) takes three arguments: two lists of terms to uaify,
and a continuation. If the unification is successful, the continuation is called. If the unification fails or if
the continuation fails (.i.e. returns), then UNIFY unbinds all the variables which were bound during the

unification process.

In the second clause of APPEMD/3, line 9, we can see that the compiler also creates code for do-

ing the structure copying, with LIST.

5. Complling cut (!)

There are two ways to implement cut {!) using CATCH. The first is straightforward to implement,
but does not have the desirable attribute of cut (') i.e. that it removes frames from the stack. The second
requires more work by the compiler but preserves both the semantics and the desirable side effects of cut
(1). As an example look at the procedure below.

(DEFINE-TLOG (P1)

{:= (P1) (AND (P2) (1) (P3)))

(:= (P1) (P4)))
The first way to implemeht this is to use a built-in function for cut (!), and to have this built-in pro-
cedure THROW back to the original procedure. This requires that we use the T dynamic binding mechan-
jsm BIND [Rees et al, 1983] in order to defeats the lexical scoping rules.
1 (DEFINE (P1/0 #CONTINUATIONS)
2 (CATCH THROW
3 (BIND ((=CUTs THROW))
4 (P2/0 (LAMBDA () (1/0 (LAMEBDA () (P3/0 «CONTINUATIONs)))))
5 {P4/0 #CONTINUATIONS))))
where 1/0 is defined as,

(DEFINE (!/0 sCONTINUATICHS)

{ #CONTINUATIONS)

(+CUT» NIL))
Here is how it works. If P2/0 succeeds (line 4), it will call its its continuation which is a call to 1/0.
This will immediately call P3/0 with the original continuation. If P3/0 fails, i.e. returns, 170 will
THROW out of P1/0, not trying P4/0, the code for the second clause. If P2/0 fails, 1/0 will not get
called and P4/0 will get called. This works fine and gives us a correct implementation of cut (!). Howev-
er with this implementation, programmers cannot use cut (!) to make their programs more efficient, only

to change the way they execute. The reason is that after the cut is éncountered, the frame for the call to

P2/0 will still be on the stack. If we want cut-(!) to make programs more efficient we should instead use

-7.

the following implementation,

(DEFINE (P1/0 #CONTIMUATIONS)
(CATCH FAIL
(CATCH NO-CUT
(CATCE CUT
(P2/0 (LAMBDA {) {CUT NIL)))
(NO~-CUT NIL)})
(P3/0 SCONTINUATIONS)
(FAIL NIL)))
{P4/0 sCONTINUATIONs))))

VR~ dsWwWwNna

What has been done here is to wrap the entire function in CATCH/PAIL (at lines 2 and 9). If we ever
want to cut of out other clauses we just (FALIL NIL). Since this is a local CATCH it just turns into a
jump when compiled by the T compiler [Rees et. al. 1983]. CATCH/CUT (lines 4-6) is used to trap the
guccess of P2/0, A (CUT MIL) is passed as the continuation to P2/0, line 5. This means that when
P2/0 succeeds, it will THROW and will therefore get removed from the stack, then P3/0 gets called with
the continuation. If P3/0 fails, the procedure will THROW PAIL and that will fail the entire procedure.
If P2/0 fails the procedure will THROW NO-CUT and will go to the next clause, the code for invoking

P4/0 at line 9.

Besides taking frames off the stack, this is more efficient in terms of the the code the T compiler
produces. The BIND implementation causes the creatiod of one nop-local CATCH which takes 1 CONS
cell, but the use of BIND causes the creation of 3 LAMBDAs which take 2 CONS cells each for a total of 7
cells [Rees, 1984]. The second implementation has a non-local CATCH whi:h- takes 1 CONS cell. This

makes the second impiementation much more attractive.

6. Compiling dlajunction

Disjunction introduces an interesting problem in construction of continuations. Because an OR

may be contained in an AND, we have to traverse the entire AND/OR ‘tree and construction the con-

tinuations for the conjuncts after the OR. As an example, look at the procedure,

(DEFINE-TLOG (P1)
(:= (P1) (AND (P2)
{OR (AMD (P3) (P4))
(P5))
(P6))))

which compiles into

(DEFINE (P1/0 sCONTINUATIONS)
{P2/0 (LAMEDA ()
(P3/0 (LAMBDA () (P4/0 (LAMBDA () (P6/0 sCONTINUATIONS)))))
(P5/0 (LAMBDA () (P6/0 sCONTINUATIONs))))))

W R -

We see that the compiler functions depth first, making the continuation for the last conjunct, P6/0 be-
fore it compiles the disjunction. The call to P6/0 becomes part of the continuation for both disjuncts
(lines 3 and 5). The disjunction itself simply involves sequential statements in the LAMBDA expression

(lines 3-4) to try the different aiternatives.

7. Structure copying

One of the advantages of compilation is that we can compile away almost all of the overhead of

interpreted structure copying. The TLOG code,
(r1 ?X (F2 A B) (F3 7Y))
turns quite straightforwardly into,
(LIST ‘F1 ?X (LIST ‘F2 ‘A ’B) (LIST F3 ?7Y)).

As part of the interface to the host language, T, the compiler also understands the construct (EVAL
obj). This tells the compiler not to quote or further compile ¢y, EVAL can be used for inserting global

constants into TLOG programs. An example of this would be:

(MEMBER ?X {EVAL PROPER-NANE-LIST))

-

where PROPER-NAME-LIST is maintained by the T program. This gets translated simply to:

(MENBER/2 ?X PROPER-NAME-LIST)

So BVAL is a flag to the TLOG compiler which teils it to pass an gxpression along, unaltered to the T

compiler.

8. Compiling unification

The primary place where compilation helps in logic programming is unification. This is because

PROLOG-style languages spends almost all of their time doing unifications. Here we see what APPEND

would look like if all the unification code were included in line.

(DEFINE-TLOG (APPEND A1 A2 A3)
{:= (APPEMD () ?L ?L))
{:- (APPEND (COMS ?X ?L1) ?7L2 (CONMS ?X ?13))
(APPEXD ?L1 7L3 ?L3))
)

which turns into (with unification compilation)

-10-

1 (DEFINE (APPEND/3 A1 A2 A3 #CONTINUATIONs)

2 (LET ({?L NIL))

3 (AMD (OR (2Q? A1 ())

4 (AND (UNDEF? A1) (SET (PROVAR-VALUE A1) OR2))
s (SET ?L A2) .

6 (UNIFY A3 ?L sCONTINUATION®)))

7 (LET ({?X NIL)) (?L1 NIL)

8 ({(?L2 NIL) (?L3 NIL))

9 {AND (OR (ANMD (UMDEF? A1)

10 (SET 7X (MAXE-PROVAR)) ‘

12 (SET ?L1 (MAKE~-PROVAR)) *

13 (SET (PROVAR-VALUE A1) (LIST ‘CONS ?X ?L1)))
14 (ARD (PQ? (FUNCTOR A%) ’CONS)

15 (SET ?X (ARG 1 A1))

16 {SET 7L1 (ARG 2 A1)))) -

17 {SET ?L2 A2)

18 (OR (AND (UNDEF? A3)

19 (82T ?L3 (MAKE-PROVAR))

20 (SET (PROVAR-VALUE A3) (LIST ‘CONS ?X 7L3))
21 (SCONTINUATIONS))

22 (AND (PQ? (FUNCTOR A3) ‘CONS))

23 (SET 7L3 (ARG 2 A3))

24 (UNIFY (ARG 1 A3) ?7X #CONTINUATIONS))))

Lines 3-4 show that the unification consists of ANDing together the results of matching all the terms in
the clause head. For any argument where there is a choice, we construct an CR as in lines 9-16. One
branch of the OR is for the parameter being unbound, in which case we allocate new logical variables,
and construct the term, line 13. Otherwise we test the functor of ‘the argument with functor of the pat-

tern, line 14, and if it is equal, we set 7X and ?L1to the arguments of the fonctor. -

9. Calling TLOG from T

Oune of the benefits of compiling TLOG into T is that it makes calling TLOG from T very sim-
ple. All that the user needs is some syntactic sugar to construct the required continuations. The macro
provided is TLOG-LOOP. The syntax is

(TLOG~-LOOP name Tlog-goal
T-code)

The first argument is similar to the THEROW tag in a CATCH. It provides the equivalent to a PROLOG

fail from the T-code. It is called when another solution to Tlog-goal is required. This means that

-11-

Al

TLOG~LOOP can be used as a looping construct to process all the solutions to a goal. Here is an example

of the use of TLOG-LOOP to print out all the solutions of the TLOG query: (APPEND ?L1 L2 [A B

cl).
(SET LST ‘(CONS A (CONS B (CONS C ()))))
(TLOG-LOOP APP (APPEND ?L1 7L2 (EVAL LST)
(PRINT ?L1 (STANDARD-OUTEUT))
(NEWLINE (STANDARD-QUTPUT))
(PRINT ?L3 (STANDARD-OUTFUT))
(NEWLINE (STAMDARD-OUTPUZ))
(NEWLINE (STANDARD-OUTFUT))
(APP))
which prints out the following,

O
(coms A (coss B (coms € ()))) ;

(comg A ())
(coss B (cons € ())) e

(cons A (coms B ()))
(coms C ())

(CoNS A (CONS B (CONS C ())))
()

which are all the lists which can be appended to make LST.

10. Calling T from TLOG - I8

As in PROLOG, the main interface to expression evaluation in TLOG is through IS which |
evaluates its second argument and unifies it with the first. To do this it simply de-references all the terms
in the second arguments and assumes that all functors are defined T tunctions. For example,

(I8 7X (& 7Y (+ ?Z 3)))

becomes

(LET ((VALUE (+ {DE-REF ?Y) (+ (DE-REF ?73Z) 3})))
(UNIFY VALUE ?X «CONTINUATION®))

The function DE-REP is used to de-reference TLOG variables to either a compound term or an unbound
lo'gieal vatiable. What is especially nice about this metbod of implementation is that the user does not

A e e
et PR e TG

-12-

have to do anything special to import T functions into TLOG.

11. Conclusions and future work

The current version of the TLOG compiler does not compile unifications, but does distinguish
between local and global variables. Without the compilation of unification, compiled T-I.ZOG runs almost
3 times faster than interpreted T;LOG. On an Apollo DN300, a 88000 based workstation, compiled TLOG
runs at 100 LIPS. University of New Hampshire interpreted PROLOG runs at 250 LIPS on the same
workstation. This seems unbalanced at first, when considering that TLOG is compiled, but not as much
once we consider that TLOG is imbedded in a much larger programming environment. Things which are
very inefficient in PROLOG can be done in TLOG by implementing them in T. Also preliminary results
with hand-compiled code show that by compiling unification a speed-up to 200-300 LIPS can reasonable-

ly be obtained

One of the biggest advantages of using TLOG for logic progrfamming is that it is easier to experi-
ment with embedding other programming paradigms into logic programming. TLOG already has func-
tional programming built in due to T. Also since T is an object-oriented LISP, it is easy to put in mes-
sage passing; simply use T OBJECTs as terms, and have them respond to the message UNIFY-TERM
The integration, with TLOG, of an existing frame system and a demon system already embedded in T

are also underway.

Since the TLOG unifier is relatively small and easy to modify, it-is also more feasible to experi-
ment on a large scale with equality and typed logics. Experimentation can be done on a larger scale be-
cause the user doesn’t have to run his code through an interpreter which has a high overhead. For ex-

ample, a typed logic can be implemented by modifying the unifier, written in T, to respect variable

Lhaes g L RGN T E N ¥ F T, T P . . - - g ‘

BRI e e 4 B TR A o D 3 e PR R L rr e .- B LT AP
PRSI i A Nl SRR R SR . T : : K :
ERpr e e ARSI T T - ISR e ot

n St
RN RS

types.

Appendix A: Compiler Code

The macros for creating Tlog procedures

{HERALD COMPILER MACROS (ENV T))

This file contains the macros for a short Tlog compller
for T. The way to define Tlog procedures in T is the
DEFINE-TLOG macro. Tha syntax for that macro is descrided
below.

- wa ws we

A T STRUCTURE is used to represent variables. Tha structure
is called PROVAR and has cna component, VALUE. The following
functions are defined,

(MAKE-PROVAR) makes a new unbound variable
(PROVAR? obj) is a predicate trus on PROVARS
{ PROVAR-VALUE provar) yields the VALUE component

The VALUE component is initialized to sUNDEFs. This is the
flag for an unbound Tlog variable.

The the default print method for the PROVAR structure

is changed so that it will automatically de-reference itself
if it is bound. Otherwise, it prints its internal system
number.

we wa Wws ws ws we we we Wé Wi e WE wid wé w4

(DEFINE-STRUCTURE-TYPE PROVAR VALUE)
{SET {PROVAR-VALUE (STYPE-MASTER PROVAR-STYPE)) ’‘sUNDEFs)
(DEFINE-METHODS (STYPE-RANDLER PROVAR-STYPE)
((PRINT SELF STREANM)
(Comp ((EQ? (PROVAR-VALUE SELF) ’‘+UNDEPs)
(FORMAT STREAM "#{ A}" (CBJECT-HASH SELF)))
(T (PRINT (PROVAR-VALUE SELF) STREANM)))))

$ The following functions are defined cn expressions which are
; represented during compilation as lists.

P b TIRUR A - o T T atLTe ntgdnc Lol oS

R S by ks

(DEFINE (FUNCTOR:TERM TERM) (CAR TERX)) '
(DEFINE (ARGLIST:TERM TERM) (CDR TERM))
(DEFINE (ARG:TERM N TERM) (NTH (ARGLIST:TERM TERN) (- ¥ 1)))

(DEFINE (CLAUSE? LST) (EQ? (CAR LST) ‘:-))
(DEFINE (HEAD:CLAUSE CLAUSE) (CADR CLAUSE))
(DEFINE (BODY:CLAUSE CLAUSE) (CADDR CLADUSE))

{DEFINE (BODY:LAMBDA LAMBDA-EXFR) (CDDR LAMBDA-EXFR))

W We W wWe W wE BE We P WE We W WA WE WY BE W WE B4 WA WS WE W4 W W4 S8 W WE W WA WE Wi WE WE W WS B B

This is the macro for defining Tlog procedures. Ths syntax is:

(DEFINE~-TIOGC (name . args)
clause1 ... clauseN)

Any of the clauses which start with {(:- ...) are turned into
Tlog tcode. Anything else is just inserted in line into the procedurs.
The syntax for clauses is,

:= head goal) whare

‘goal’ can be - a Tlog procedure invocation
(AND goalt ... goaln)
(OR goall ... goaln)

The BACKQUOTE macre (‘) is used to create the code for defining
tha procedure.

The name gets change from NAME to NAME/arity by the function
TLOG-FUNC.

In addition to the arguments declared, Tlog procedures get an
extra argument *CONTINUATION which is the functiom to call
upon success.

OLD-RESPT-LIST is used to maintain a pointer to the variable
stack where the procedure was called. It is used to clean up
the bindings after a CUT exit.

The CATCH/FAIL is to be used by procedures which fail after
encountering a cut (I).

¥We insert the code for each of the clauses in order. Things
which are not Tlog clauses get inserted also.

If a clause cuts and fails we have to restore the vu:'hblu that
were bound. This is done with the call to RESET-GLOBAL~-LIST at the
and of the procedurs.

i

(DEFINE-SYNTAX (DEFINE-TLOG PATTERN . CLAUSES)

*(DEFINE (, (TLOG-FUNC PATTERE) ,B(ARGLIST:TERN PATTERN) CONTINUATIONS)

ewes

=15=

W

(LET ((OLD-RESET-LIST ¢GLOBAL-RESET-LIST#))
(CATCH FAIL
,B(MAP (LAMBDA (CLAUSE)
{COND ((CLAUSE? CLAUSE)
(MAKE-TNVOCATION PATTERN
CLAUSE))
(T CLAUSE)))
CLAUSES))
(RESET-GLOBAL-LIST QLD-RESET-LIST))))

MAKE-INVOCATION takes a single clause and sets up the code for it.
It scans the clause (with UNIG-VAR) to get a list of the variables
it needs. It uses MAKE-CONTINUATION to create the code.

Most variables get bound to {MAKE-PROVAR). EBowever, if a variable
is local it can be directly bound to the corresponding argument of the
procedure.

WS WE ws Wwe W wa wa

(DEFINE (MAXE-INVOCATION PATTERN CLADSE)
(LB®T ((VAR-LIST (UNIQ-VAR CLAUSE))
(ACTUAL-ARGS (ARGLIST:TERM PATTERN))
(FORMAL-ARGS {ARGLIST:TERM (HEAD:CLAUSE CLAUSE)))
(EEAD (HEAD:CLADSE CLAUSE))
(BODY (BODY:CLADSE CLADSE)))
‘(LET (,®(MAP
(LAMBDA (VAR)
(coMD {(LOCAL? VAR HEAD)
‘(,VAR ,(FIND-ARG VAR HEAD PATTERN)))
(T *(,VAR (MAXE-PROVAR)})))
VAR-LIBT))
» (MAKE-CONTINUATION ACTUAL~ARGS FORMAL~ARGS
BODY ’ sCONTINUATIONS))))

MAXE-CONTINUATICON starts making the coda.
If there are no actual args, then just make tha goal continuation.

Otherwise, set up the call to UNIFY for the actuals and the formals,
and pass UNIPY the gosl continmation.

we Wi we ws We we

(DEFINE (MAKE-CONTINUATION ACTUAL-ARGS FORMAL-ARGS GOAL CONT)
(COND ((NULL? ACTUAL-~ARGS)
{CONS ’BLOCK (BODY:LAMRDA (MAKE-GOAL-CONTINUATION GOAL CONT))))
(T ‘(UNIFY (LIST ,BACTUAL-ARGS)
(LIST ,B(MAP MAXBR-COMSTRUCTOR FORMAL-ARGS))
» (NAXB-GOAL~CONTINUATION GOAL CONT)))))__

this is the real code constructor, MAKE-GOAL-CONTINUATION. The special
cases it needs to handle are:

)

18

AND

WA We We WE WE WE WS WE WE WE We W S wd W ws B We Wd WS

OR

The cases,
No goals, just return the continuation.

A cut, return a procedure which calls ths continuation and
throws to the CATCH/TAIL.

I9 needs a procedurs which Qwa.luat.u the expression (after suitable
syntactic massaging by MAKE-EXPR) and unifies it with first argument,
passing the original continuation along to UNIFY.

conjunction: see MAKE-COMJ ~-CONTINUATICH

disjunction: MAKE-DISJ-LISBT returns a list or forms to be run.
Here we wrap s LAMADA arcund it.

Anything else gets turned into a procedure call which gets passed
the continuaticn. MAKE-CONSTRUCTOR creates the structure copying
code.

(DEFINE (MAKE-GOAL-CONTINUATION GOAL CONT)

Wwe WE W2 We Wé WE W WS WE WS WA W wWs wWe

(LET ((ARGLIST (ARGLIST:TERM GOAL)))
(COND ((NULL? GOAL) CONT)
: { (ALIXKEV? GOAL ‘(1))
‘(LAMBDA () (,CONT) (FAIL NIL)))
((PQ? (FUNCTOR:TERM GOAL) ‘18)
‘(LAMBDA ()
(LET ((VALUE , (MAKE-EXPR (ARG:TERM 2 GOAL))))
(UNITY ,(ARG:TERM 1 GOAL) VALUE ,CONT))))
((2Q? (FUNCTOR:TERM GOAL) ‘AND)
(MAXE-CORI-CONTINUATION ARGLIST CONT))
({(BQ? (FUNCTOR:TERM GOAL) ‘OR)
‘(LAMBDA () ,@(MAKB-DISJ-LIST ARGLIST CONT)))
(ELSE ‘(LAMBDA () (,(TLOG-FUNC GOAL) _
,0(MAP MAXE~COMSTRUCTOR ARGLIST)
,CONT))))))

MAXE-CORJ-CONTINUATION has two important cases, CUT and no-CUT.

If there is a cut... -

...get the goais before and after itc...

Ne create two CATCHs. CATCA/NO-CUT is used when the goals

before the CUT fail and we want to try other choices in the
procedurs.
mwcuri-uodmmlum:mtmumtomgadl
before the cut. If they succeed, it will be thrownm, then tha goals
after the cut will be tried. If the goals aftar cut fail, tha
ummm.ntmmdmrlqmmum.
and the rest of the clauses will be skipped.

‘Otherwise we just make a plain conjunctive goal.

AR

HEVEN e -

-17-

NOTZ: We make the continuaticn for the tail of the list first
and then make a goal continuation for the first ome. This is

important for compiling disjunctions.

(DEFINE (MAKE-CONJ-CONTINUATION GOALS CONT)
(LET ((BEFORE-CUT NIL) (AFTER-CUT NIL))
{COND {(NULL? GCALS) CONT)
({RAS-CUT? GOALS)
{SET BEFORE-CUT (FIND-BEFORE-CUT COALS))
(SET AFTER-CUT (FIND-AFTER-CUT GOALS))
* (LAMBDA ()
(CATCH NO-CUT
" {(CATCH COT
,@(BODY:LAMBDA (MAKE-CONJ-CONTINUATION BEFORE-CUT
*{LAMBDA () (CUT NIL))))
(NO-CUT NIL)) :
,9(BODY: LAMBDA {MAKE-CORJ-CONTINUATION AFTER-CUT CONT))
(PAIL NIL))))
(T (LET
{ (HEW-CONT
{MAKE-CONJ -CONTINUATION (CTOR GOALS) CONT)))
(MAKE-GOAL-CONTINUATION (CAR GOALS) NEW-CONT))})))

MAKE-DISJI-LIST
In a disjunction, nothing after a cut at the top level will
ever get executed, so why not remove it.

vty

{DEFPINE (MAXE-DISJ-LIST GOALS CONT)
(SET GOALS (COND ((EAS-CUT? GOALS) (FIXD-BEFQRE-CUT GOALS))
(T GOALS)))
(COMD ((NULL? GOALS) NIL)
(T
(APPEMD! (BODY:LAMBDA (MAKE-GOAL~-CONTINUATION (CAR GOALS) COoNT))
(MAKE-DISJ-LIST (CDR GOALS) CONT)))))

MAXE-CONSTRUCTOR compiles the structurs copying code.

: EVAL is a flag to indicate that this argument is neither
: a logical variable nor a constant but to be evaluated by
HE
{DEFINE (MAXKE-CONSTRUCTOR ARG-SPEC)
(COND ((ATOM? ARG~SPEC)
(CoMD ((IS~VAR-ATOM? ARG-SPEC) ARG-SPEC)
{T *’,ARG-SPEC)))
{(2Q? (FUNCTOR:TERM ARG-SPEC) ’EVAL) (ARG:TERN 1 ARG-SPEC))
(T ‘(CoNS , (MAKE-COMSTRUCTOR (CAR ARG-SPEC))
» (MAKE-COMSTRUCTOR {CDR ARG~-SPEC))))))

{DEFINE (UNIQ-VAR CLAUSE)
(LABELS

(({UNIQ-VAR1 CLAUSE LIST)
(COND ((NULL? CLAUSE) LIST)
((ATOM?- CLAUSE)
(COND ((I8~-VAR-ATOM? CLAUSE)
(COND ((MEMQ? CLAUSE LIST) LIST)
{T (CONS CLAUSE LIST))))
(T LIST)))
(T (SET LIST (UNIQ-VAR1 (CAR CLAUSE) LIST))
(SET LIST {UNIG-VAR1 (CDR CLAUSE) LIST))))))

(UNIQ-VAR1 CLAUSE ())))

(DEFINE (IS-VAR~ATOM? ATOM) |
(AMD (SYMBOL? ATOM) (PQ? (STRING-ELT (SYMBOL->STRING ATON) 0) #7)))

(DEFINE (TLOG-FUNC INVOCATION)
(SYNBOLCONC (CAR INVOCATION) ‘/ (- (LENGTH INVOCATION) 1H))

{ LOCAL? looks at the head of a clause to see if a variable
: is local. A local variadle is cme which occurs at least once
; NOT inside a compound term.
(DEFINE (LOCAL? VAR HEAD)
(COND { (NULL? EEAD) NIL) -
((2Q? VAR (CAR HEAD)))
((LOCAL? VAR {(CDR HEAD)))
(T NIL)))

(DEFINE (FIND-ARG VAR HEAD PATTERN)
(COND
((NULL? EPAD) (ERROR "ARG SPEC ERROR"))
((NULL? PATTERN) (ERROR "ARG SPEC ERRCR®))
((BQ? VAR (CAR HEAD))
(CAR .PATTERN))
(T (FIND-ARG VAR (CDR HEAD) (CDR PATTERN)})))

(DEFINE (HAS-CUT? GOALS)
(COND ((NULL? GOALS) NIL)
((ALITXEV? {CAR GOALS) “(!1)))
{T (EAS-CUT? (CDR GOALS)))))

(DEFINE (FIND-BEFORE-CUT GOALS)
(LABRELS ((LST NIL)
((FIND-B1 GOALS)
{CORD ((ALIKEV? (CAR GOALS) “(I)) T)
(T (PUSH LST (CAR GCOALS))
(FIND-B1 (CDR GOALS))))))

(FIND-B1 GOALS)

(REVERSE! LST)))

(DEFINE (FIND-AFTER-CUT GOALS)
(COND ((ALIXEV? (CAR GOALS) ‘(1)) (CDR GOALS))
(T (FIND-APTER-CUT {(COR GOALS))))) -

oAbt s

(DEFINE (MAXE-EXFR EXPR)
(coMD { (ATON? EXPR)
(COMD ((IS-VAR-ATOM? EXPR) ‘(DE-REF ,EXFR))
(T *’,EXPR)))
((2Q? (FONCTCR:TERM EXPR) ‘EVAL) (ARG:TERM 1 ARG-SPEC))

(T ‘{, (FUSCTOR:TERM EXFR) ,B(NAP MAXE-EXPR (ARGLIST:TERN EXPR))))))

The unifer

{HERALD UNIFY (ENV T))
; This file contains the unifier for the TIOG compller.

;{ Global reset list is used to resst logical variables after a cut.
(LSET *GLOBAL-RESET-LISTs NIL)

: sRESET-LIST+ is used to keep track of variables which are bound
{ by ONIFY

(DEFINE (UNIFY TERM1 TERM2 CONTINUATION)
(LABELS
({ #\RESET-LIST» NIL)
((ONIFY1 TERM1 TERM2)
(SET TERM1 (DE-REF TERM1))
(SET TERNZ (DE-REF TERM2))
(COND ((EQ? TERM1 TERM2))
((PROVAR? TERM1)
(SET (PROVAR-VALUE TERM1) TERMQ)
(PUSH sRESET-LISTs TERM1)
{PUSH +GLOBAL-RESET-LISTs TERM1)
T)
{ (PROVAR? TERN2)
(SET (PROVAR-VALUE TERMZ) TERN1)
(PUSH sRESET-LISTe TERN2)
(PUSH sGLOBAL-RESET-LISTs TERM2)
T)
({NULL? TERM1)
(COMD ({NULL? TERM2))
(T NIL)))
((NULL? TERM2) NIL)
({ATOM? TERM1) (BEQ? TERN1 TERMN2)})
((LIST? TERMR)
(CORD ((UNIFYY (CAR TERM1) (CAR TERZ))
(ORIrYY (CDR TERM1) (COR TERM)))

AR g

Y4 *MWM

o g e ARSI

(T ¥IL))))))
(coMD ((UNIFY1 TERM1 TERM2)
(APPLY CONTINUATION ())))

(ITERATE RESET ((LST sRESET-LISTs))

(conD (LST |
(SET (PROVAR-VALUE (CAR LST)) ’+UNDEFs)
(POP #GLCBAL-RESET-LIST#)
(RESET (CDR LST)))
(T 8IL)))))

{DEFINE (DE-REF TERM)

(COND ((NULL? (PROVAR? TERM)) TERM)
({PQ? (PROVAR-VALUE TERM) ‘sUNDEFs) TERM)
(T (DE-REF (PROVAR-VALUEZ TERM)))}))

(DEFINE (RESET-GLOBAL-LIST OLD-RESET-LIST)

(ITERATE RESET ()
{CcoMD ((NULL? (BQ? »GLOBAL-RESET-LIST» OLD-RESET-LIST))
(SET (PROVAR-VALUR (POP SCLOBAL-RESET-LISTS))
’ «ONDEF»)
(RESET))
(T NIL))))

The T to Tlog interface code

(EERALD INTERFACE (EXV T))

l

w-e we ws wWié WE GBS We W WE W

This file contains the c¢ode for T calling TIOG.

The syntax for the TLOG-LOOP is:
(TLOG-LOCP name form . code)

name - any name the user likes

form - a TLOG goal

code - a list of s~exprs in T.

If ‘name’ is invoked as a procedurs, ths next lolution to tha
TLOG goal is found, Otherwise ths result of the last expression
is returned. All the logical variables in the ‘form’ can be
accessed by ‘code’.

(DEFINE-SYNTAX (TLOG-LOOP HAME FORM . CODE)

‘(LET (,8(MAP
’ (LAMBDA (VAR) ‘(,VAR (MAKXE-PROVAR)))
(UN1IQ-VAR FORM))
{OLD-RESET-LIST +GLOBAL~RESET-LIST#)
(CODE-VALDE NIL))

-21-

(SET CCDE~VALUE (CATCE +CUT»

,B(CDDR {MAKE~GOAL-CONTINUATION FORM

‘(LAMBDA () (CATCH sFAIL®
(LET ({,NAME
(LAMBDA () {(#PAILs NIL))))
,@(CCDE-CONT CODE))))))))
(RESET-GLCBAL-LIST OLD-RESET-LIST)
CODE-VALUE)
)

: CODE-CONT makes the list of expressions for the goal continuation.
: A list of expressions, (EXPR1 EXFR2 ... EXFRn) becomes,
: (EXPR1 EXPR2 ... (#CUT# EXPRn))

(DEFINE (CODE-CONT CODE)

{COND ((NULL? (COR CODE)) *((eCUTs ,(CAR CODE))))
(T (CONS (CAR CODE)} (CODE-CONT (CDR CODE)))))) --

Appendix B: A Phrasal Parser In Tlog

This section is an extended example of how to use the Tlog with T. The interface issues covered

how to write Tlog predicates in T, predicates which can be backtracked over,
how to call T code from Tlog, and
how to call Tlog predicates from T.

The parser uses a database of patterns which are mapped to conceptual structures. An example entry in
the database is,

(?X GAVE ?Y ?7Z) =a> {ATRANS actor 7X
to ?Y
obj ?2
time PAST)
ATRANS is the representation for give. The database of patterns is maintained by T. It is indexed by the
non-variable entries of the patterns, GIVE in the example above. The T functions used to access the

data base are,

(FETCH-PATTERN dais-base sentence)
-fetches a list of possible patterns for sentence

(NEXT: PATTERN-BAG paltern-bag)
-the next element of a pallern-bag as returned from FETCH-PATTERN

(REST:PATTERN-BAG patiern-bag)
-the resuit of removing the next element of pattern-bag

(TEMPLATE: PATTERN paliern)
-the actual list structure for the pattern

(FIRST-WORD: TEMPLATE (:mplaic)
-the first non-variable member of template

(HEAD: TEMPLATE template)
-the elements of template before the first word, NIL if no first word

(TAIL: TEMPLATE template)
-the elements of template after the first word, template if no first word

(FIND-EEAD senience word)
- the words in sentence before word

(PIMD-TAIL senience word)
- the words in sentence after word

To get patterns from the database, we need a predicate which will yield a new pattern every time it is
FAIled and lwhich will fail only when no more patterns are available.

(DEFINE-T10g (DATABASE SENTENCE PATTERN)
(LET ((PATTERN-BAG (FETCH-PATTERNS +PATTERXS¢ (DE-REF SENTENCE)))
(NEXT-PATTERN NIL))
(ITERATE Do-LooP ()
{COMD ({NULL? PATTERN-BAG) nil) ,
(T (SET NEXT-PATTERN (NEXT:PATTERN-BAG PATTERN-BAG))
(SET PATTERN-BAG (REST:PATTERN-BAG PATTERN-BAG))
(UNIFY PATTERN
NEXT-PATTERN
SCONTINUATIONS)
(Do-Loop) }))
(SET (PROVAR-VALUE PATTERN) ’eUNDEPs)))

The predicate defined by here, DATABASE/2, uses FETCE-PATTERNS to get a list of patterns which may
be applicable to SENTEMCE. It makes a call to UNIFY to match whatever the user passed as the PAT=-
TERN parameter (usually an unbound variable) to the next pattera. Each time sCONTINUATIONs fails, a
new pattern is unified with PATTERM. An example of using DATABASE/2 in the Tlog predicate PARSE/2

given below.

-23-

(define-Tlog (parse sentence result)
{:= (parse ?sentence ?result)
(AND (database ?sentence ?pattarn)
(IS 7template {template:pattern ?patterm))
(match ?template 7sentence () 7bindings ())
(IS ?result (instantiate ?pattarn ?bindings))))

)

PARSE/2 uses DATABASE/2 to get a stream of possible patterns. It uses the selector
TEMPLATE: PATTERN to get the actual list of variables and words that make up the phrase. The
MATCH/S predicate determines if the sentence is matched by a particular template. it takes as argu-
ments, the template ?template, the sentence, ?sentence, the old variable bindings, () in this case,
and it returns the new bindings, ?bindings, and the portion of the sentence not matched, constrained

to be () in this case. PARSE/2 uses the T function INSTANTIATE to build the actual representation of

the phrase parsed.

Next we will look at INSTANTIATE a T function called from Tlog. IMBTANTIATE takes a pat-
tern, as returned from DATABASE/2 and constructs the representation according to a LAMBDA expression
which is part of the pattern. INSTANTIATE has to look up the bindings for the variables on the binding
list which is passed to it. Unfortunately this binding list was created by Tlog functions and may contain
bound variables. Structures which contain bound variables are transparent to Tlog code but not to T
code. The solution is to use a Tlog predicate to look up variables on the binding list. This demonstrates
how to use the TLOG-LOOP construct.

(DEFINE (INSTANTIATE PATTERN AINDINGS)
(LET {(VAR-LIST (VAR-LIST:PATTERN PATTERN))
(LAMBDA-EXPR (LANEDA:PATTERN PATTERN))
(ARG-LIST nil))
(Tlog-Loop NEXT (look-up-vars (EVAL var-list) (BVAL bindings) ?result)
(PUSE ARG-LIST (DE-REF ?result)) '
(XEXT))
(APPLY LAMEDA-EXPR (REVERSE! ARG-LIST))))

(define-Tlog (lock-up-vars var-list bindings result)
(:~ (lock-up~vars (?var . ?rest) ?bindings ?result)
(lock-up-binding ?var ?bindings ?result))
{:= (lock-up-vars (?var . ?rest) ?bindings ?result)
{lock-up-vars ?rest 7bindings ?result))

(define-Tlog {look-up-binding var bindings result)
(:- (look-up-binding ?var ((?var . ?result) . ?rest) ?result) (1))

{:= {lock-up-binding ?var (7head . ?rest) ?result)
(lock-up-binding ?var ?rest ?rasult))

)

First we will examine the Tlog predicates. LOOK-UP-VARS/3 is a predicate which looks up a variable
from VAR-LIST on the binding list. Each time it is backtracked, it returns the binding of the next vari-
able in VAR-LIST. It uses LOOX-UP~BINDING to find the binding of a single variable. INSTANTIATE
uses the TLOG-LOOP construct to execute LOOK-UP-VARS/3. Remember, TLOG-LOOP makes a continua-
tion out of the body of loop, in this case,

(PUSH ARG-LIST (DE-REF ?rasult))
(NEXT)

and calls the goal,
(look-up-vars (EVAL ver-list) (EVAL bindings) ?result)

with that continuation. Because NEXT is the label of the loop, executing it will fail the continuation and
cause the goal to be backtracked. The result of this loop is that all the bindings get pushed onto ARG~
LIST in the reverse order they were in VAR-LIST. In the [ast expression of INSTANTIATE, LAMEDA-

EXPR is applied to the argument list to yield the result of the parse.

The code for the MATCH/S and MATCH-8BX/S predicates is given below. It implemeats a simpile
recursive string matching algorithm. Since it uses the selectors given above, the only feature of Tlog
which it uses heavily is backtracking. No further explanation of this code is given since it does not
highlight any additional feature of Tlog.

(define-Tlog (match template sentence b-in d-cut fragment)

{:~ (match () ?f ?b ?b ?£) (}))

{:~ (mateh () ()} ?d> ?b ()) (1))

(:~ {matech (?word) (Pword) ?b ?d ()) (1))

(:- {match (?word) (?word . ?fragment) ?b 7b ?fragment) 1))

(:- (match ?template ?sentence ?b-in ?b-ocut ?fragment)
(AMD (I8 ?first-word (first-word:template ?tesplats))

(I8 ?first-woxd (}) (1)

(match-seq 7template ?sentence 7b-in ?b-ocut ?fragment)))
(match 7template 7sentence 7b-in ?b~out Pfragment)

-

_—

[
]

et

ket R e : o L R e AR W R A 34240 L1 Lo DT

TRy B e ¢ ST R - . . TN RS
S e A s SRR N PR A

(AND {IS ?first-word (first-word:template ?template))
{18 ?head-temp (hesad:template ?template))
{IS ?head-sen (find-head ?sentence ?first-word))
(match-seq ?head-temp ?head-san ?b=in ?b2 ())
(IS ?tail-temp (tall:template ?tenplatas))
{18 ?tail~sen (finAd-tail ?santence ?first-word))
(match ?tail-temp ?tail-sen ?b2 ?b-cut ?fragment)))

)

(define-Tlog {(match-seq var-seq sentence b-in becut fragment)
(:=- {match-seq () ?£ ?b b ?7£) (1))
(:~ (match-seq () () ?b ?d ()) (1))
{:- (match-seq (?var . ?rest) ?sentence ?b-in ?b-out ?frag)
(AND (database 7?sentence ?pattern)

(IS ?tamplate {template:pattern ?pattern))
(match ?template ?sentence ?b-in ?b2 ?rest-sen)
(I8 ?value (instantiate ?pattern ?b1))
(IS ?name {name:var ?var))
{match~seq ?rest 7rast-sen
((?name . ?valus) . ?db=in) ?b-out ?frag)))

References

Abelson, H., Sussman, G. J., and Sussman, J., "Structure and Interpretaticn of Com-
puter Programs”, MIT Press, 1985, :

2. Kahn, K. M. and Carisson, M., "How to Implement Prolog on a Lisp Machiae” in /mple-
mentations of Prolog, J. A. Campbell (Ed), Ellis Horwood Ltd., 1984.

3. Mellish, C. and Hardy, S., "Integrating Prolog in the POPLOG Environment”, in Imple-
mentations of Prolog, J. A. Campbell (Ed), Ellis Horwood Ltd., 1984.

4. Nilsson, M, "The World's Shortest PROLOG Interpreter!”, in Implementations of Pro-
log, J. A. Campbell (Ed), Ellis Horwood Ltd., 1984,

5. Read, W, Stoll, K., and Fueamayor, M., “The TLOG Manual®, Tools Note, UCLA Al
Laboratory, 1984.

é. Rees, J. A. and Adams, N. I, "T: a dialect fo LISP or lambda: the ultimate software

tool”, in Proceedings of the 18082 ACM Sympoeium on LISP and Functional Program-
ming, August 1982, - '

-26-

10.

11.

12.

Rees, J. A., Adams, N. I, aad Meehan, J. R., The T Manual, Computer Science Depart-
ment, Yale University, 1983.

Rees, J. A., Personal communication, November 9, 1084.

Robinson, J. A. and Sibert, E. E., "LOGLISP: Ap Alternative to PROLOG", in Machine
Intelligence 10, Ellis Horwood Ltd, 1982.

Steele, G. L., COMMON LISP, the Language, Digital Press, 1984.

Warren, D., Implementing Prolog, Research Report 33, Dept of A.lL, University of Edin-
burgh, 1977.

Weinreb, D. and Moon, D., LISP Machine Manual, MIT Al Laboratory.

