WAVEFORM BOUNDS FOR LINEAR RC MESH CIRCUITS WITH LEAKAGE PATHS TO THE GROUND

Pak K. Chan

April 1986 CSD-860065

	•		
٠			
	e de la company		
·			

Waveform Bounds for Linear RC Mesh Circuits with Leakage Paths to the Ground

Pak K. Chan

Computer Science Department University of California, Los Angeles Los Angeles, California 90024 (213)825-2266

Abstract - We demonstrate that a certain class of RC circuits with leakage paths to the ground do exhibit monotonic behavior under one condition. We can therefore apply a variant of Penfield's [3] waveform bounding inequality to this class of circuits. An example is provided to illustrate the method.

I. Background and Notation

In [5], Zukowski mentioned that Penfield's [3] waveform bounding double inequality is applicable only for zero state step response of RC circuits. We suggest that a variant of Penfield's bounding inequality can be used to treat a type RC circuits with leakage paths to the ground. The general nodal equation for this class of RC circuits is

$$\mathbf{C} \dot{\mathbf{v}}(t) = \mathbf{G} \mathbf{v}(t) + \mathbf{d} e(t), \tag{1}$$

where C is the capacitance (diagonal) matrix, v(t) is a vector of node voltage at each capacitor, $\dot{v}(t)$ is the time derivative of v(t), d is the conductance with d_i representing the conductance connected from node n_i to the excitation source e(t). G is the node-conductance matrix with components G_{ij} . For $j\neq i$, G_{ij} is the branch conductance between nodes n_i and n_j , whereas G_{ii} is the negative sum of all branch conductances at node n_i . For $j\neq i$, G_{ij} is equal to G_{ji} by reciprocity, therefore -G is a Stieltjes matrix [1]. Since -G is an essentially nonnegative matrix, -G is inverse-positive. This allows us to define $R = -G^{-1}$. If e(t) is a unit step function, we can write (1) as

$$RC \dot{\mathbf{v}}(t) = \mathbf{v}(\infty) - \mathbf{v}(t), \tag{2}$$

where v(0) and $v(\infty)$ represent the initial and final voltages across capacitors, respectively. The final voltage $v(\infty) = Rd$ is equal to 1 for RC circuits without leakage path to the ground; otherwise $v(\infty) = Rd < 1$. Since -G is inverse-positive, as pointed out in [4], $R_{ii}R_{jk} - R_{ki}R_{ji} \ge 0$.

Moreover, we realize that $e^{C^{-1}Gt} \ge 0$ [2], which implies that the impulse response of the circuit is nonnegative. Therefore, if $v_j(0) \ge v_j(\infty)$, we expect each node voltage $v_j(t)$ to be a nonincreasing function of time. In other words, $\frac{dv_j}{dt} \le 0$, and it follows that

$$\sum_{i} (R_{ii}R_{jk} - R_{ki}R_{ji})C_{j} \frac{dv_{j}}{dt} \le 0.$$
 (3)

II. Main Result

From (3), we now derive a double inequality for $v_i(t)$. Most of the derivations are identical to that presented in [3] and will not be repeated here. Only parts which differ will be pointed out. From (3), the concavity inequality for the class of RC circuits that we are considering is

$$R_{ii}[\nu_{k}(\infty) - \nu_{k}(t)] \leq R_{ki}[\nu_{i}(\infty) - \nu_{i}(t)]. \tag{4}$$

Moreover, we define $f_i(t)$ as

$$f_i(t) = T_{Di} + \sum_{k} R_{ki} C_k [v_k(0) - v_k(\infty)] + \int_0^t (v_i(\infty) - v_i(t')) dt'.$$
 (5)

This definition of $f_i(t)$ coincides with what is defined in (10) of [3] when $v_k(\infty) = 1$ and $v_k(0) = 0$; which is the limiting case that they have considered. The rest of the derivations are identical to [3]. We derive the upper inequality to be

$$\frac{\sum_{k} R_{ki} C_{k} [\nu_{k}(0) - \nu_{k}(\infty)]}{T_{P}} e^{\frac{T_{P} - T_{Ri}}{T_{P}}} e^{\frac{t}{T_{P}}} + \nu_{i}(\infty) \geq \nu_{i}(t), \qquad (6.a)$$

which holds for $t \ge T_P - T_{Ri}$. The lower inequality is

$$v_{i}(t) \geq \frac{\sum_{k} R_{ki} C_{k} [v_{k}(0) - v_{k}(\infty)] + (T_{Di} - T_{Ri}) [v_{i}(\infty) - v_{i}(0)]}{T_{P}} e^{\frac{T_{Di} - T_{Ri}}{T_{Ri}}} e^{\frac{t}{T_{Ri}}} + v_{i}(\infty), (6.b)$$

and it holds for $t \ge T_{Di} - T_{Ri}$. This double inequality is valid for arbitrary initial and final conditions and coincides with Penfield's bounding inequality when $v_k(0) = 0$ and $v_k(\infty) = 1$.

III. An Example

Consider the following nMOS implementation of an AND gate,

Fig. 1.a. An nMOS AND Gate.

with $v_{in, 1} = v_{in, 2} = 1$. The RC circuit model of this AND gate is given by

Fig. 1.b. The RC Equivalent Circuit.

If $V_{dd} = 1$, equation (1) becomes

$$\begin{bmatrix} C_1 & 0 & 0 \\ 0 & C_2 & 0 \\ 0 & 0 & C_3 \end{bmatrix} \begin{bmatrix} \dot{v}_1(t) \\ \dot{v}_2(t) \\ \dot{v}_3(t) \end{bmatrix} = \begin{bmatrix} -(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}) & \frac{1}{R_2} & \frac{1}{R_3} \\ & \frac{1}{R_2} & -\frac{1}{R_2} & 0 \\ & \frac{1}{R_3} & 0 & -(\frac{1}{R_3} + \frac{1}{R_4}) \end{bmatrix} \begin{bmatrix} v_1(t) \\ v_2(t) \\ v_3(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{R_1} \\ 0 \\ 0 \end{bmatrix} u(t) ,$$

or

$$RC \dot{\mathbf{v}}(t) = \mathbf{v}(\infty) - \mathbf{v}(t),$$

where

$$\mathbf{R} = \begin{bmatrix} \frac{R_1(R_3 + R_4)}{R_1 + R_3 + R_4} & \frac{R_1(R_3 + R_4)}{R_1 + R_3 + R_4} & \frac{R_1R_4}{R_1 + R_3 + R_4} \\ \frac{R_1(R_3 + R_4)}{R_1 + R_3 + R_4} & R_2 + \frac{R_1(R_3 + R_4)}{R_1 + R_3 + R_4} & \frac{R_1R_4}{R_1 + R_3 + R_4} \\ \frac{R_1R_4}{R_1 + R_3 + R_4} & \frac{R_1R_4}{R_1 + R_3 + R_4} & \frac{R_4(R_1 + R_3)}{R_1 + R_3 + R_4} \end{bmatrix},$$

and

$$\mathbf{v}(\infty) = \begin{bmatrix} \frac{R_3 + R_4}{R_1 + R_3 + R_4} \\ \frac{R_3 + R_4}{R_1 + R_3 + R_4} \\ \frac{R_4}{R_1 + R_3 + R_4} \end{bmatrix}.$$

We substitute numerical values $R_1 = 40 \, K\Omega$, $R_2 = 2.5 \, K\Omega$, $R_3 = 5 \, K\Omega$, $R_4 = 5 \, K\Omega$, $C_1 = 1.6 \times 10^{-2} \, pF$, $C_2 = 0.6 \times 10^{-2} \, pF$, and $C_3 = 1.6 \times 10^{-2} \, pF$ into (6). The solid line in Fig. 2 is the exact solution of the RC circuit, depicting the behavior of $v_1(t)$ discharging from initial conditions $v_k(0) = 1$; k=1,2,3. The dotted lines are the responses suggested by the bounding inequality.

Fig. 2. The Response of $v_1(t)$.

Acknowledgment

Thanks to Dr. Ljiljana Trajković of University of California, Los Angeles, for helpful discussions. This work has been supported in part by MICRO under Contract 4-442514-57045, and in part by the Office of Naval Research under Contract 4-482510-25801.

REFERENCES

[1]	A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences: Academic Press, 1979, pp. 141.
[2]	T. Kato, A Short Introduction to Perturbation Theory for Linear Operators: Springer-Verlag, 1982, pp. 68-69.
[3]	J. Rubinstein, P. Penfield, JR., and M. A. Horowitz, "Signal Delay in RC Tree Networks," <i>IEEE Trans. on CAD of Integrated Circuits and Systems</i> , Vol. CAD-2, No. 3, Jul. 1983, pp. 202-211.
[4]	J. L. Wyatt, Jr., "Signal Delay in RC Mesh Networks," IEEE Transactions on Circuits and Systems, Vol. CSA-32, No. 5, May 1985, pp. 507-510.
[5]	C. A. Zukowski, "Relaxing Bounds for Linear RC Mesh Circuits," <i>IEEE Trans. on CAD of Integrated Circuits and Systems</i> , Vol. CAD-5, No. 2, April 1986, pp. 305-312.