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Abstract - We demonstrate that a certain class of RC circuits with leakage paths to the ground do exhibit
monotonic behavior under one condition. We can therefore apply a variant of Penfield's [3] waveform
bounding inequality to this class of circuits. An example is provided to illustrate the method.

I. Background and Notation

In [5], Zukowski mentioned that Penfield’s [3] waveformn bounding double inequality is
applicable only for zero state step response of RC circuits. We suggest that a variant of Penfield’s
bounding inequality can be used to treat a type RC circuits with leakage paths to the ground. The
general nodal equation for this class of RC circuits is

Cv(t)=Gv()+de(r), (D

where C is the capacitance (diagonal) matrix, v(¢) is a vector of node voltage at each capacitor,
v(t) is the time derivative of v(¢), d is the conductance with d; representing the conductance con-
nected from node n; to the excitation source e(¢). G is the node-conductance matrix with com-
ponents Gy;. For j#i, G; is the branch conductance between nodes »; and n;, whereas G;; is the
negative sum of all branch conductances at node »;. For j#i, G;; is equal to G; by reciprocity,
therefore —G is a Stieltjes matrix [1]. Since —G is an essentially nonnegative matrix, -G is
inverse-positive. This allows us to define R =-G~!, If e(¢) is a unit step function, we can write
(1) as

RC v(£) = v(=) - ¥(0), 2

where v{0) and v(ee) represent the initial and final voltages across capacitors, respectively. The
final voltage v(se) = Rd is equal to 1 for RC circuits without leakage path to the ground; otherwise
v(<)=Rd < 1. Since —G is inverse-positive, as pointed out in [4], RiRj - RuR; 2 0.



Moreover, we realize that €G>0 [2], which implies that the impulse response of the circuit is

nonnegative. Therefore, if v;(0) 2 v;(=), we expect each node voltage v;(¢) to be a nonincreasing
. dv;
function of time. In other words, ij < 0, and it follows that

dVJ:
2 (RaRje = RuR;i)Cj e < 0. (3)
j

II. Main Result

From (3), we now derive a double inequality for v;(¢). Most of the derivations are identi-
cal to that presented in [3] and will not be repeated here. Only parts which differ will be pointed
out. From (3), the concavity inequality for the class of RC circuits that we are considering is

(4)
Rii[vi(=e) = vi(0)] S Rylvi(ee) = vi(£)] .

Moreover, we define f;{t) as -
I
£8) = Tpi+ 3, RuCilva(0) = ve(oo)] + [(vileo) — il e . (5)
k 0

This definition of £;(¢) coincides with what is defined in (10) of [3] when v,(ee} =1 and v;(0) =0;
which is the limiting case that they have considered. The rest of the derivations are identical to
[3]. We derive the upper inequality to be

3 RuCi[vi(0) = vi(°)]  TTw ¢
£ T

e T € T + vifo0) 2 vi(1), (6.a)

Tp
which holds for # 2 Tp — T;. The lower inequality is
¥ RuCi[vi(0) = vi(=)] + (Tpi = Tri)lvi(=) ~vi{0)]  ToTw ¢

vi) 2 = e ™5 & T 4y, (61)
Ty

and it holds for ¢ 2 Tp; — Tg;. This double inequality is valid for arbitrary initial and final condi-
tions and coincides with Penfield’s bounding inequality when v;(0) =0 and vy(ee) = 1.



I11. An Example

Consider the following nMOS implementation of an AND gate,
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Fig. 1.a. An nMOS AND Gate.
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with v;, | = v, 2 = 1. The RC circuit model of this AND gate is given by
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Fig. 1.b. The RC Equivalent Circuit.



If V44 =1, equation (1) becomes

1111 1
() = - 1
) R —
cio o || | R R2 Rs® Ra > o] 1R
0 C30 |[oyw|= - ——— 0 v+ | 0 lu@,
2
0 0 C3lloy 12 60 0
— 0 ~(—+—)
R3 R3 R4
or
RC v(t) = v(ee) - ¥(t),
where
(Ry(R3+R4) Ri(R3tR4) RiRs ]
Ri+R3+R, Ri4+Rs+R, R]+R3+R4
R = Ri(R3+R,) Ri(R3+Ry)  RiRq
- R1+R3+R4 er1+R3+R4 R\+R3+R, ’
RiRy4 RiR, R4(R+R3)
ER1+R3+R4 Ry+Ry+R, R |+Ry+R, ]
and
Ri+R4
R |+R3+R,
R1+Ry
V(o) = |[————].
Ri1+R3+R,
Ry
_R1+R3+R4_

We substitute numerical values R; =40KQ, R, =25KQ, R3;=5KQ, R4=5KQ,
Cy =1.6x10"2 pF, C, =0.6x1072 pF, and C3 = 1.6x1072 pF into (6). The solid line in Fig. 2 is
the exact solution of the RC circuit, depicting the behavior of v{(¢) discharging from initial condi-
tions v, (0)=1; k=1,2,3. The dotted lines are the responses suggested by the bounding inequal-

ity.
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Fig. 2. The Response of v, (1).
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