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Abstract - This work extends the notion of delay defined by Elmore [2] to accommodate the effect of non-
unit-step (slow) excitations for MOS pass networks. Following Horowitz [3], each pass transistor in a pass
network is modelled as a nonlinear device. A single value of delay for each node in a pass network is then
derived by performing a state-space analysis on the network model. This approach provides a compact

delay expression in closed-form.

1. A Modet for Pass Transistors

We follow the nenlinear pass transistor mogdel proposed in [3]. The quadratic equation
which describes the behavior of an MOS transistor in non-saturation is given by

igs =B (2(Vgs ~ Vr Was = Vis?), (1)

where iy, is the current flowing from the drain 1o source, B is a constant, Vs is the voltage across
the gate and source, V7 is the threshold voltage, and V4 is the voltage across the drain and source.
If we supply a unit voltage to the gate to turn on the pass transistor, i.e., Voo = 1 =V, then equa-
tion (1) can be written as:

1-V
i =i-ﬁzﬂ7ﬂ LF (Va)=F (Vi) ] @

FVys1-(1-V)2 ; Reﬁeeﬁui—w.

where R,z is the effective resistance of the transistor, The effective conductance Rlﬁ is denoted
(3

as Gg_ﬂf .
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For a network of pass transistors, we apply Kirchhoff’s current law to relate the current
flow in the pass network, giving us

Cx(t)=G f(v(t)) + D f (e(1)), (3.2)

where C is the capacitance (diagonal) matrix, x(¢) = (1+VT)VU) is the state vector, x(¢) is the

time derivative of x(¢), v(¢) is the voltage at each capacitor, and D is the effective conductance
(diagonal) matrix with D (t) representing the effective conductance connected at node n; to exci-
tation ;(¢). G is the effective node-conductance matrix with components G;;. For j#i, G;; is the
branch effective conductance between nodes »; and n;, whereas Gy; is the negative sum of all
branch effective conductances at node »;. For j#i, G;; is equal to Gj; by reciprocity. Therefore

—G is a Stieltjes matrix.

For a network which has only single fype of input (this doesn’t preclude multiple inputs
which have the same excitation function e (¢ )) we can write (3.a) as

Cx(t)=Gf(veN+d fle(t), (3.b)

where d; is the effective conductance connected at riode n; to the excitation e (¢). For the sake of

simplicity for presentation, we’ll focus on pass networks with a single type of excitation source.

If G"1d = -1, equation (3.b) can be rewritten as,

RCx(t)=1f (e (£)) = f (v(t)), Gy

where R=—G~1. The condition G~!d =-1 states a topological property for the class of pass net-
work we are analyzing. This property holds for all tree networks and a restricted class of non-tree
networks which have no d.c. path to ground (except the excitation source). This condition states
as G~1D1 =—1 with respect to equation (3.a). G is found by inspection. Except for tree networks
where R can be found by inspection, finding R involves numerical methods to evaluate G-1 [1].
Equation (4) represents the state equation of a nonlinear system. In general, finding an exact solu-
tion for this type of nonlinear system is difficult. However, we are only interested in finding a
quantity which we call delay implicitly described by this equation, as we’ll see in the next section.
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II. An Extension of Elmore’s Delay

Delay is the manifestation of the inertia of a system. One way to quantify delay as sug-
gested by Elmore [2] is to take the first-order moment of the impulse response k4 (¢), commonly
known as the inertia, as the delay, i.e.,

o

Tp = 1[ ht)e dr.

In [1], Elmore’s definition of delay is extended to be

)

szt[[u(r)—v(t)]dt, (5)

where v (¢) is the voltage response due to excitation e (¢) which is not necessary a unit-step func-
tion. The above quantity has been demonstrated to be a consistent definition of delay for lincar
RC networks.

Nevertheless, the above definition doesn’t hold for nonlinear systems such as the one

presented in equation (4). For instance, the quantity t[ [(t)—v(#)]dr doesn’t converge even for

the simplest pass network when excited by u (¢).

For the class of pass network we are investigating, we define delay as,

TDEL[u(r)—ftv(:))]dr.

To extend the above definition of delay for each node »; of a pass network we attach a subscript i
to the above definition and obtain

Tp: EI[u(r)—f(w(t))]dt .

Namely, delay is defined to be the difference in areas covered by u(¢) and f (v;(¢)) along time. A

convenient way to express delay for all nodes in the network is to use the vector notation

oo

Tp = ‘g [u(e) - f (VN de. (6)

By taking the Laplace transform on both sides of (3) and taking their limits as s approaches zero,
we obtain
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Tp =lim [u(s)-V{(s}], M

where u(s ) and V (s ) are the Laplace transform of u(t) and f (v(t)) respectively.

III. Calculating Delays

To measure the delay of a node in a pass network, it suffices to consider the normalized
case where the node voltage starts from some initial value v;(0) between 0 and 1, and is driven
towards some final value (maximum 1). The results obtained in this normalized case are easily
adapted to both charging and discharging processes (final value 0), and to any values of supply
voltage.

The first step in calculating delays is to apply the Laplace transform on both sides of (4), giving us

RC[sX(s)—x(0)] =1e(s)-V(s), (8

where X (s) is the Laplace transform of x(¢), x(0) are the initial voltages on the capacitors, and
e(s) is the Laplace transform of f (e(¢)). Consider the specific case where e(t)=u(t), ie.,

e(s)= 1%. Taking the limit of (8) as s approaches zero gives us the following delay expression,
Ty=1lm RC[sX(s)—x(0)],
5=+0

which reduces to
Ty =RC [x(<)-x(0) ], ()]

by the final value theorem.

For slow input, the delay expression is given by

T; =RC [ x(e0) — x(0) ] + L [u(t)—1e(t) P dt, (10.2)

and for a pass network with multiple type of excitation sources, the delay expression can be shown
to be

T4 =RC [ x(e0) —x(0) ] + RDI [u(t)—e(t) 2 dr. (10.b)

The first term is the intrinsic delay because it accounts for the delay due to the intrinsic
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characteristics (circuit topology, initial and final conditions) of the pass network. The second term

is the extrinsic delay since it accounts for the difference between u(t) and e(¢) along time.

o

Of

course, expression (10.b) is meaningful only if the integral 1[ [u(z) — e(2))? dr converges for exci-

tations e(t). The derivation of expression (10) is sufficiently general to handle pass networks

which obey G™1D1 = -1, arbitrary input, and arbitrary distribution of initial charges.

In particular, if there is ohly one type of excitation source which is equal to ﬁ, then

(10)is reduced to

Ty =RC [ x(eo) —x(0) ]+ al.

IV. llustrated Example

Consider the following pass network with three pass transistors.

¢y
The dynamics of the system is described by

Ci0 o |[xi® {GGy) G, o | [felen G,

0 C20 ||xp0)|= Gz  —(GatG3) Gs ||[f 2t |+ |0 [fle(t)),
0 0 Cs|lis) 0 Gs  Gs|ifman]| |0
or
Ry R, R, Cio o0 |[|x1®) 1 Foie)
Ri Ri#Ry RHR» 0 Cz0 ||x2t)|= [0]|f (@)= |f(valt))
R1 Ri#Ry RHR 4R 0 o0 Cs x3(t) 0 f(vs(t))

Fore(t)=u(z), that gives us

(11)
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Tpy Ri R, Ry Ci0o 0 x 1(ee} —x1(0)
Tpa|= [R1 R\#Ry R R, 0 C20 x2(e0) —x2(0)
Tp1 Ry R+R3 R4RR3{|0 0 C3| |xa(ee) —x3(0)

Y. Remarks and Conclusions

Modelling a pass transistor by a linear resistor can be conceived as the degenerated case
in which the mapping f (V)=1—(1 - V)2 becomes f (V)= V. Therefore, defining delay as the
area bounded by u (¢) and f (v(¢)) gives a unified riotion of delay relating the linear resistor model
and the nonlinear quadratic model for MOS transistors.

Equation (12} is the delay expression that we obtain with the linear resistor model.
Tys=RC [I—-x(O)]+slill)}) [u(s)—1e(s)l. (12)

Comparing (12) with (10.a), we see that they coincide when a network is excited by unit-step
functions.

To conclude, we have extended Elmore’s definition of delay to include a number of
effects such as slow excitations which were not previously considered by others. The new
definition not only accounts for both intrinsic and extrinsic delays, it also justifies the use of the
linear resistor model in timing analysis.
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