DISTRIBUTED SORTING ALGORITHMS FOR MULTI-CHANNEL
BROADCAST NETWORKS

Eli Gafni February 1986
John Marberg CSD-860055

Distributed Sorting Algorithms for Multi-Channel Broadcast Networks

Eli Gafni
John M. Marberg

Computer Science Department
University of California
Los Angeles, CA 90024

Technical Report CSD-860055
February 1986
Revised November 1986

Abstract

A multi-channel broadcast network is a distributed computation model in which p
independent processors communicate over a set of p shared broadcast channels.
Computation proceeds in synchronous cycles, during each of which the
processors first write and read the channels, then perform local computation.
Performance is measured in terms of the number of cycles used in the
computation. In this paper we investigate the problem of sorting p bit strings of
uniform length m, where each string is initially located at a different processor in
the broadcast network. The underlying assumption is that the transmission of
each bit requires a separate cycle. We develop a sorting approach that first
reduces the length of the strings without affecting their relative order, then
proceeds using only the shorter strings. A sequence of three successively
improved algorithms based on this approach are presented, the most efficient of
which runs in O(m+plogp) cycles. By showing a lower bound of Q(m) cycles,
we prove that the algorithm is optimal for sufficiently large m. Our results can be
used to improve by a factor of logp the solution of the multiple identification
problem presented by Landau, Yung and Galil [Land85].

t Research supported in part by NSF grant DCR-84-51396 and by IBM grant D840622.

1. Introduction

Local area network architectures that use multiple broadcast channels have recently been
proposed [Chou83, Marh85, Mars82a, Mars82b] as an alternative to single-channel Ethernet-like
networks [Metc76]. In environments where messages are generated in real time, splitting a sin-
gle channel into multiple channels of narrower bandwidth results in reduction of channel conten-
tion among processors at the expense of longer transmission time. It has been shown in
[Mars83) that for high communication rates the reduced contention dominates the increased
transmission time, and the overall message delay is decreased. Thus, multi-channel architectures
seem to be viable, and it becomes of interest to investigate the complexity of algorithms in such
architectures.

A Multi-Channel Broadcast (MCB) network [Marb85] is a general computation model
for the design of distributed algorithms using broadcast communication. It consists of a collec-
tion of independent processors which communicate by means of multiple shared broadcast chan-
nels. Computation proceeds in synchronous cycles, during each of which the processors first
write and read the channels, then perform local computation. The complexity measure is the
number of cycles used by the computation.

In this paper we study the problem of sorting in the MCB model. The underlying
assumption is that each bit to be transmitted requires a separate cycle. This is called bit commun-
ication. We have previously investigated the sorting problem under uniform communication,
where each atomic unit of information (e.g., input element) can be transmitted in one cycle
[Marb85].

Qur sorting approach is tailored specifically for bit communication. Each of the elements
to be sorted is encoded into a short representation called signature, such that the signatures have
the same relative order as the original elements. The sorting then proceeds efficiently using the
signatures.

Following is a summary of our results. Let p elements, each of length m bits, be distri-
buted in a network consisting of p processors and p channels. We develop a sequence of three
successively improved sorting algorithms, the most efficient of which has a complexity of
O(m+plogp) cycles. By showing a lower bound of £(m) cycles, we prove that the algorithm is
optimal for sufficiently large m.

Landau, Yung and Galil [Land85] investigate a model which is equivalent to ours. It
consists of a fully connected synchronous point-to-point network, where in each cycle each node
is capable of sending one bit over all outgoing links and receiving one incoming bit. The model
is applied in solving the multiple identification problem, in which each of p processors contains a
string of m bits, and needs to identify all the processors which have the same string as itself. The
approach taken in [Land85] is to sort the strings, then use the sorted order to form groups of pro-
cessors with identical strings. The sorting is implemented by emulation of the AKS network
[Ajta83], which takes O(mlogp) cycles. The total complexity of the solution is O(mlogp+p)
cycles. By replacing the AKS emulation with our sorting method, we are able to improve the
upper bound on the multiple identification problem by a factor of log p, which is optimal.

Other related research in the area of distributed algorithms with broadcast communica-
tion includes [Chan83, Dech86, Levi82]. Dechter and Kleinrock [Dech86] investigate a broad-
cast model called IPABM (Ideal Parallel Broadcast Model). This model differs from ours in two
aspects. First, it provides only a single channel, and second, it allows concurrent-write access to
the channel, whereas in our model exclusive-write access is used. The IPABM model is applied
in the design of algorithms for extrema finding, merging and sorting. Levitan [Levi82] discusses
a model called BPM (Broadcast Protocol Multiprocessor) which has essentially the same proper-
ties as the IPABM.

Chandra, Furst and Lipton [Chan83] analyze multi-party protocols for evaluation of
binary predicates. The mode of communication is broadcasting in round-robin fashion on a sin-
gle channel. Tight bounds are given for some specific protocols, however the results are mainly
of theoretical value since they depend on Ramsey-like counting arguments.

The remainder of this paper is organized as follows. In Section 2 we define the MCB
model. In Section 3 we discuss our sorting approach. Sections 4, 5, and 6 present the sorting
algorithms. Section 7 shows the lower bounds.

2. The Multi-Channel Broadcast Network Model

The Multi-Channel Broadcast (MCB) network model consists of p independent proces-
sors which communicate over p shared broadcast channels. Each processor and each channel
have a unique identifier known to all processors, We denote the processors as Pi,Py,...., Pp,
and the channels as Cy,Cy,..., C,. Processor P; has write-access only to channel C;.
Read-access, on the other hand, is unrestricted, i.e., any processor can read any channel. (In

3

[Marb85] we use a more general version of the model, in which there are p processors and %
channels, k<p, and processors have both read- and write-access to all channels.)

Computation proceeds in synchronous cycles. We assume the existence of a global
mechanism to synchronize the beginning of each cycle. A cycle consists of the following two
phases at each processor.

1. COMMUNICATION: Write your channel and read one other channel.
2. PROCESSING: Perform local computation.

The information written on a channel during a given cycle is received only by the proces-
sors reading the channel in that cycle. The complexity measure is the number of cycles used in
the computation.

The capability of a processor to write and read two different channels simultaneously in
the same cycle is assumed for convenience in algorithm design. It can be shown that limiting
each processor to access a single channel per cycle does not decrease the power of the model.

An algorithm for the MCB network is said to be oblivious {Cook86] if the processors that
read each given channel in each given cycle are known in advance, independent of the particular
instance of the input. In other words, a processor can determine which channel to read in any
given cycle simply as a function of the number of cycles that have elapsed form the beginning of
the algorithm (and perhaps the general parameters of the problem). Two of the three sorting
algorithms presented in this paper are oblivious.

3. The Signature Approach

The sorting problem we are studying is the following: p elements, each a string of length
m bits, are distributed in an MCB consisting of p processors and p channels; the task is to rear-
range the elements in the network so that the element at processor P; will be greater or equal to
the element at P;,,.

The MCB network can easily emulate a sorting network for p elements, such as AKS
[Ajta83] or the bitonic network [Batc68]. However, under the assumption of bit communication
this becomes inefficient when the elements are long, since ©(m) cycles are needed to emulate

each stage of the sorting network. AKS emulation, for example, requires a total of ®O(mlogp)
cycles.

Our goal is to develop a sorting method which does not entail repeated transmission of
long elements. To accomplish this, we separate the task of computing the position of each ele-
ment in the sorted order from the actual rearrangement of the elements in the network.

The idea is to compute for each element a short encoding called signature, such that the
signatures have the same relative order as the original elements. The sorted order is then found
efficiently using the signatures.

We present a sequence of three algorithms, A, B and C, based on this approach. Each
algorithm improves upon the previous one by using a more efficient technique to sort the signa-
tures. Algorithm A uses bottom-up processing on a tree, running in a total of O(m+plog2p)
cycles. Algorithm B combines a tree with a bitonic network, and runs in O (m+plogp loglogp)
cycles. Algorithm C employs divide and conquer, and has a complexity of O(m-+plogp) cycles.

Before we describe the algorithms, we need the following definitions. [a1, a3, ..., @
denotes a list of ! elements. Given two lists of equal length, X=[x;,x5,..., x;] and
Y=[yi,¥2,....0 we use (X,Y) to denote the list of pairs

[(xlsyl)a (x21y2)9-'-’ (xl’yl)]'

Let Z=[z1, z3,...,2] be a list of / not necessarily distinct elements from a totally
ordered domain, and let z; 2z;,2 -+ - 2z, be a nonincreasing order among the elements. The list

[f1.i2,..., i;]is called the sorting permutation of Z.

The rank of z; in Z, denoted R(z; , Z), is defined as the number elements in Z that are
strictly larger than z;. We use R(Z) to denote the list [R(zy, Z), R(z7,2),...,R(z, Z2)],
called the rank list of Z. Computing R (Z) is called ranking.

In the next three sections we present the sorting algorithms. Following our approach,
each algorithm consists of three phases: (1) signature computation; (2) signature sorting; and (3)

element transfer.

4, Algorithm A

4.1, Signature Computation

Without loss of generality assume that p divides m. Let e; denote the element initially at
processor P;. Let ¢; ;, 1<j<p, be a substring of ¢; of length %, starting at position (j—l)%%—l.

We call ¢; ; the j’th component of ¢;. We can view the input as a square matrix of components
{e;,j | 1<i,j <p}, with the i’th row located at processor P; .

The signatures are obtained in the following manner. Let B; denote the j’th column of
the component matrix. We compute for each component ¢; ; the rank r; ;=R (e; j , B;). All ranks
are in the range O to p—1, so we view them as strings of [logp| bits.! The signature of element ¢;
is the concatenation of the ranks of its components, i.e., the string r;,17;,2 * * * p. Thus, each sig-
nature consists of p [logp] bits.

It can be verified that the signatures have the same relative order as the original elements.
This follows from the fact that ranking preserves order. Notice that when m<plogp, the signa-
ture is actually longer than the element itself. This has no bearing on the performance of the
algorithm.

To implement phase 1, we first transpose the component matrix, thereby moving each
column B; to processor P;. Then, the ranks in each column are computed locally, yielding a
transposed matrix of ranks. As will be seen in the description of phase 2, there is no need to
“re-transpose” the ranks and explicitly form the signatures.

The transpose operation is implemented using the following oblivious communication
protocol. Row i of the component matrix is initially at processor P;. There are p—1 steps, dur-
ing each of which one component from each row is moved to the corresponding column. To
achieve maximum concurrency, different positions in different rows are used in each step. For-
mally, in step , 0<t<p -2, processor P; sends component €; (;+tymodp +1 10 Processor P (i+)mod p+1

over channel C; . Each step takes —'3 cycles, for a total of %(p—l)=0 (m) cycles.

I Throughout the paper we use “log” to denote logarithm of base 2.

6

4.2. Signature Sorting

The second phase computes the sorting permutation using the signatures. This could be
done in O(plogzp) cycles by straightforward emulation of the AKS sorting network. However,
due to the large constants involved, the AKS approach is impractical. Instead, we use the fol-
lowing method, which achieves the same complexity but is considerably more practical.

We begin by ranking the signatures. Let Z denote the corresponding rank list. Since
ranking preserves order, the ranks in Z have the same relative order as the original elements. We
thus obtain the sorting permutation from Z.

We now describe how to compute Z. Let s; denote the signature of element ¢; . Breaking
each signature into two parts of equal length, let s7 denote the left part (the most significant bits)
and let 57 denote the right part (the least significant bits). Let §, S$*, and S~ denote the lists
comprising all the s;, 57, and 57, respectively.

The reader may verify the correctness of the formula Z = R(S) =R((R(S Y, R(S7T))),
where the order among rank pairs is determined lexicographically. This suggests the following
bottom-up tree computation of Z. We divide each signature into p equal substrings, or com-
ponents. Now, consider a full binary tree with p leaves (i.., all the leaves are in at most two
adjacent levels), where the j’th leftmost leaf contains a list comprising the j’th component of
every signature. Moving bottom-up in the tree, we combine at each parent the lists of its two
children, as follows. Let G* and G~ denote the lists of the left and right child, respectively.
The parent is assigned the list R((G*, G7)). Itis easy to see that the root contains the rank list
Z.

The j°th leaf list is actually the j°th column in the rank matrix of phase 1. This column is
located in P;. We implement each parent in the same processor that implements its left child.
The root is thus in processor P;. To evaluate a parent node, G~ is sent from the processor
implementing the right child to the processor implementing the parent. The latter then computes
R((G*, G7)) locally. All nodes in the same level in the tree can be processed in parallel. There
are |logp] levels, and each level takes p [logp] cycles to transmit the lists G~. The total cost of
the tree is therefore 0(p10g2p) cycles.

It remains to obtain the sorting permutation from Z. Since Z is in P, this can be done
locally. Finally, P, broadcasts the permutation to all processors. The total cost of phase 2 is
O(plogzp) cycles.

4.3. Element Transfer

In the third and final phase of the algorithm, the elements are transferred to their destina-
tion processors according to the sorting permutation. Let Py, be the destination of element ¢;.
Since the permutation has been broadcast, Py, knows the index i. e; can therefore be sent
directly from P; to Pds over channel C;. All the processors proceed in parallel. The total cost of

the transfer is O (m) cycles.

The reader may observe that the transfer protocol just described is not oblivious, since
the id of the channel to be read by each processor depends on the sorting permutation, On the
other hand, phases 1 and 2 are oblivious. We now give an oblivious transfer protocol which is as
efficient as the non-oblivious one.

The protocol consists of three steps. First, the elements are divided into p equal com-
ponents and transposed, similar to phase 1. In fact, if storage availability permits the processors
to save the component lists B; in phase 1, this step is redundant. Second, each P, locally rear-
ranges B; according to the sorting permutation. That is, if the destination of element ¢; is proces-
sor Py, then e; is placed in position d; in the list. Finally, the rearranged components are tran-
sposed a second time. It can be verified that this effectively accomplishes the transfer. The cost
is O(m) cycles.

4.4. Complexity

Summing up the costs of all three phases, the complexity of algorithm A is O(m+p log?p)
cycles. If m is sufficiently large, it dominates the complexity. In Section 7 we show that in this
case the algorithm is optimal.

Notice that the algorithm beats AKS emulation when m>plogp. This illustrates the
difference between bit communication and uniform communication.

5. Algorithm B

In phase 2 of algorithm A, as the computation gets closer to the root of the tree, more and
more processors become idle. The idea of algorithm B is to modify the tree computation in
order to increase processor utilization, thereby improving the performance. We now describe
how this is accomplished.

The ranks in each level of the tree can be viewed as components of new signatures whose
length is half the length of the signatures in the previous level. Based on this observation, we
make the following change. Instead of evaluating the entire tree, we stop at a level where the
new signatures are sufficiently short, then switch to emulation of the bitonic sorting network
[Batc68] on these signatures. Appending the signature of element e; with the index i, the effect
of the sorting is that each processor P; knows the j’th index in the sorting permutation. To make
the entire permutation public, one processor after another broadcasts the index. Notice that prior
to the bitonic sort it is necessary to transpose the current ranks, so that each processor will con-
tain its signature.

Let the tree computation be discontinued after r levels. The length of the signatures is

then 0(%5-2-) bits. There are 0(log2p) phases in the bitonic network, so the emulation takes

0(-P1;rgp_1og2p) cycles. The cost of r tree levels is O(rplogp) cycles. By choosing

r=2loglog p, the total cost of phase 2 becomes O (plog p loglog p) cycles.

Phases 1 and 3 are the same as in algorithm A. The total complexity of algorithm B is
therefore O (m+ plogp loglogp) cycles. Notice that in contrast to the AKS network, the simple
structure of the bitonic network results in a very practical algorithm.

6. Algorithm C

The main idea in phase 2 of algorithms A and B is to iteratively reduce the length of the
signatures by half. Yet, using the tree mechanism, each reduction step takes the same number of
cycles, p [logp], regardless of the current length of the signatures. If each reduction could be
done at a cost which is linear in the current length of signatures, then the complexity of phase 2
would improve to O(plogp) cycles. This is basically what is achieved in algorithm C.

Phases 1 and 3 of algorithm C are the same as in the previous algorithms, and will not be
discussed. In phase 2, instead of a tree, we use a divide and conquer approach resembling
radix-exchange sort [Knut73]. The idea is the following. Initially, all p processors comprise one

group. We divide the processors into several subgroups, each comprising at most [%1 proces-

sors. The division is such that the input elements in each subgroup occupy successive positions
in the sorted order, starting at a given (known) position. From now on, it remains only to deter-
mine the order within each subgroup. Moreover, all subgroups can proceed in parallel, indepen-
dent of each other. Each subgroup computes a new set of signatures, using the same method as
in phase 1 but starting from the current signatures. It can be seen that the length of the new sig-
natures is at most half the previous length. The division is then repeated recursively in each sub-
group until all subgroups become singletons, at which point each processor knows the position
of its input element in the sorted order. To obtain the sorting permutation, one processor after
another broadcasts its position.

We now show how to implement each recursive level in linear number of cycles in the
current length of the signatures. Consider a group R in a given level of the recursion, consisting
of r=1R| processors P; , Py ,..., P; . The length of the signatures in R is r [logp] bits. Let

the signatures be organized in a transposed matrix of 7xr components (see algorithm A).

Processor P; 0 which contains the first (most significant) column of signature com-
ponents, divides the processors into subgroups, such that each subgroup comprises all and only
those processors which have the same first component. Clearly, the elements in each subgroup
belong in successive positions in the sorted order. Moreover, since each signature component is
actually a rank, the component value corresponding to a given subgroup is a “pointer” to the
position in the sorted order (of the elements of R) where the largest element of the subgroup
belongs.

. . . r
Obviously, there exists at most one subgroup with more than I'E'l processors. Let us call

this the “bad” subgroup. P; . informs group R about the division by broadcasting the processor
ids and the corresponding pointer of every subgroup, except the bad subgroup. The processors
and pointer of the latter can then be determined by elimination.

10

It now remains to further divide the bad subgroup. This is done by processor P;,, using

the second most-significant signature component, in a similar way as before. The scheme con-
. o . . r
tinues component after component until either the size of the bad group is reduced below I'E],

or all components are exhausted. In the latter case, the bad subgroup can be excluded altogether
from the remainder of the recursion since all its input elements are identical.

It can be seen that each processor id in group R is broadcast at most once during the
above protocol, Thus, the cost of dividing R is O(rlog p) cycles. The new signatures in each sub-
group are then computed form the current signatures using the method of phase 1, which also
costs O(rlogp) cycles.

Since the size of the groups is reduced by at least half in each recursive level, the recur-
sion terminates after [logp] levels. All the groups in each level proceed in parallel, so the total

logp
cost of phase 2is O(Y, (%log p))=0(plogp) cycles. Notice that it is necessary to set a global
1=0

synchronization point at the end of phase 2, since groups of different sizes proceed through the
recursion at a different pace.

The total complexity of algorithm C is O(m+plogp) cycles. It can be seen that the algo-
rithm is not oblivious, in contrast to algorithms A and B. This is because the division into groups
is dependent on the input. It is interesting whether the upper bound established by algorithm B
can be improved by means of an oblivious algorithm.

7. Lower Bounds

We now show a lower bound on the complexity of sorting under the assumption of bit
communication. Clearly, if elements of length m are to be rearranged in the network, Q(m)
cycles is a lower bound. Yet, we can prove a stronger result. We can show that the Q(m) bound
holds even if all we require is that destination processors obtain “pointers” to the elements in the
sorted order, without actually transferring the elements. For example, processor P; could use as
pointer the j’th index in the sorting permutation.

Theorem 1. Sorting strings of length m requires Q(m) cycles.
Proof. Consider the following problem. Let e; be a bit string known only to P, and e, a bit

11

string known only to Py . Given that e # e, , we want to determine whether or not e; >e .

Using Yao’s lower bound on two-party protocols [Yao79] it can be shown that a solution
requires Q(m) cycles. The bound holds even if more than two processors are involved in the
computation, This is because the contribution of processors other than P and P is warranted
only by the information they obtain from P, and P, , and such information may as well be com-
municated directly between the two processors.

On the other hand, the problem can be solved by sorting, using dummy elements ¢;=0 in
all processors except Py and P,. To this end, e >e; if and only if the first index in the sorting
permutation is 1. It follows that sorting also requires Q(m) cycles. B

Corollary 1. When m is sufficiently large, algorithms A, B, and C are optimal. Specifically,
algorithm C is optimal for m2plogp. B

Another implication of Theorem 1 is that the divide and conquer method used in algo-
rithm C is optimal, in the sense that signatures of length plogp cannot be sorted in less than
Q(plogp) cycles. Thus, algorithm C is the best possible implementation of the signature
approach.

We now show a lower bound which holds regardless of the type of communication being
used (bit or uniform).

Theorem 2. Sorting requires at least log p cycles.

Proof. Let us number the cycles of the computation sequentially. The set of input elements that
affect processor P; in cycle t, denoted A;(z), is defined recursively as follows.

i. Ai(0)=€;.
2. A;(t+1)=A;(1) VA1) , where C; is the channel being read by P; in cycle t+1.

Let t* denote the last cycle of the computation. Clearly, each processor must eventually be

affected by all the input elements. Thus, A;(+*)=p. Yet, it can be seen from the recursive for-
mulation that |4;(t*)1<2! *. It follows that t*>logp. B

12

Theorem 2 implies that the AKS emulation, which takes O(mlog p) cycles, is optimal for
m=0(1).

8. Conclusion

We have presented efficient sorting algorithms for the MCB network, thereby demon-
strating the power and applicability of the model. The protocols we have developed, in particu-
lar the transpose operation and the tree computation, prove to be useful design tools.

We have shown that algorithm C is optimal for m2plogp. On the other hand, when
m<p, AKS emulation achieves a better performance of O(mlogp) cycles. An open problem is
to bridge the gap between the upper bound O(plogp) and the lower bound Q(m) in the range
p<m<plogp. It also remains open whether O (mlog p) is optimal for m<p.

Acknowledgement

We are indebted to David Cantor for suggesting the idea which led to algorithm C.
References

[Ajta83] Ajtai, M., J. Komlos, and E. Szemeredi, “An O (NlogN) Sorting Network,” in
Proceedings 15th ACM Symp. on Theory of Computing, 1983, pp. 1-9.

[Batc68] Batcher, K.E., “Sorting Networks and their Applications,” in Proceedings AFIPS
Spring Joint Computer Conf., Vol. 32, April 1968, pp. 307-314.

[Chan83] Chandra, AXK., M.L. Furst, and R.J. Lipton, “Multi-Party Protocols,” in Proceed-
ings 15th ACM Symp. on Theory of Computing, 1983, pp. 94-99.

[Chou83] Choudhury, G.L. and S.S. Rappaport, “Diversity ALOHA - A Random Access
Scheme for Satellite Communications,” IEEE Trans. Communications COM-31, 3
(March 1983), pp. 450-457.

[Cook86] Cook, S., C. Dwork, and R. Reischuk, “Upper and Lower Bounds for Parallel Ran-
dom Access Machines Without Simultaneous Writes,” SIAM J. Comput. 15, 1 (Feb.
1986), pp. 87-97.

13

[Dech86]

[Knut73]

[Land85]

[Levi82]

[Marb85]

[Marh85]

[Mars82a)

[Mars82b]

{Mars83]

[Metc76]

[Yao79]

Dechter, R. and L. Kleinrock, “Broadcast Communications and Distributed Algo-
rithms,” IEEE Trans. Computers C-36, 3 (March 1986), pp. 210-219.

Knuth, D.E., The Art of Computer Programming, Vol. 3: Sorting and Searching,
Addison Wesley, Reading, MA, 1973.

Landau, G.M., M\M. Yung, and Z. Galil, “Distributed Algorithms in Synchronous
Broadcasting Networks,” in Proceedings 12th Int. Conf. on Automata, Languages
and Programming, 1985, pp. 363-372. To appear in TCS.

Levitan, S.P., “Algorithms for a Broadcast Protocol Multiprocessor,” in Proceed-
ings 3rd Int. Conf. on Distributed Computing Systems, 1982, pp. 666-671.

Marberg, L. M. and E. Gafni, “Sorting and Selection in Multi-Channel Broadcast
Networks,” in Proceedings 1985 Int. Conf. on Parallel Processing, pp. 846-850.

Marhic, M.E., Y. Birk, and F.A. Tobagi, “Selective Broadcast Interconnection: a
Novel Scheme for Fiber-Optic Local-Area Networks,” Optics Letters 10, 12 (Dec.
1985), pp. 629-631.

Marsan, M.A., “Multichannel Local Area Networks,” in Proceedings IEEE Fall
COMPCON, 1982, pp. 493-502.

Marsan, M.A., D. Roffinella, and A. Murru, “ALOHA and CSMA Protocols for
Multichannel Broadcast Networks,” in Proceedings Canadian Communications and
Energy Conf., 1982, pp. 375-378.

Marsan, M.A., P. Camarda, and D. Roffinella, “Throughput and Delay Characteris-
tics of Multichannel CSMA-CD Protocols,” in Proceedings IEEE GLOBECOM,
1983, pp. 1147-1151.

Metcalfe, R.M. and D.R. Boggs, “Ethernet: Distributed Packet Switching for Local
Computer Networks,” CACM 19, 7 (July 1976), pp. 395-403.

Yao, A.C., “Some Complexity Questions Related to Distributive Computing,” in
Proceedings 11th ACM Symp. on Theory of Computing, 1979, pp. 209-213.

14

