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Abstract

This paper describes a method based on applicative languages for the specification, evaluation
and synthesis of hardware algorithms. The goal of the research effort is to provide designers with an
environment in which they can rapidly explore alternative designs for their algorithms throughout the
synthesis process. It is possible to specify the algorithm at arbitrary levels of abstraction and have the
system rapidly evaluate certain parameters (e.g. speed, area, etc.) so that designers can make informed
decisions during the synthesis process. Layouts which are suitable as floor plans are extracted from
high-level algorithms.

1 Introduction

The complexity of VLSI design can only be managed by the application of CAD tools at all lev-
els of the design process. In order to be effective, these tools must be flexible enough to be tailored to
any specific design. Generally, VLSI CAD tools may be distinguished as being of either or both of two
types: bottom-up composition tools or top-down synthesis tools. For bottom-up composition tools, the
user either exactly specifies the placement of modules and the interconnections between them, or relin-
quishes control over the layout to the tool’s algorithm., Examples of composition tools are graphic lay-
out editors (e.g. Caesar, Magic) [Ousterhout81, OQusterhout84] and placement and routing tools
[Rivest82]. Top-down synthesis tools are capable of generating layouts from high-level specifications.
Examples would include various register-transfer silicon compilers that have been proposed and built
[Siskind82, Director81, Johannsen79]. Generally, these tools do not provide any estimate of the area or
delays of the circuit during the synthesis process. That is, designers do not know the effects of their
decisions on the performance until the design is complete.

Many of the current design approaches were largely developed for SSIYMSI technologies and are
limited because of:

- Lack of paradigms to deal with topological and geometrical aspects of algorithm design in a
hierarchical, multi-level fashion.

- Lack of adequate methods to deal with communication requirements of VLSI implementations
during a multi-level algorithm design process.

- Lack of an adequate interface to lower-level VLSI CAD tools; most systems require a logic



diagram at the entry level, thus forcing designers to cope with details which are apt to be
changed later in the implementation process.

- Lack of visual feedback; graphical representations, generated automatically from a high-level
algorithm, showing details selected by the designer are highly desirable.

This paper describes a method based on applicative languages [Backus78] for the specification,
evaluation and synthesis of hardware algorithms. This method is supported by a set of tools that is
being developed at UCLA. The goal of this effort is to provide designers with an environment in which
they can rapidly explore various alternative designs for their algorithms. Thus, it is possible to specify
the algorithm at any arbitrary level of abstraction and have the system rapidly evaluate performance
parameters (e.g. speed, area, etc.) so that designers can make informed decisions during the synthesis
process. The advantage of using an applicative language is that it ties together the specification of the
algorithm, the synthesis of the circuit and the evaluation of the implementation.

Others have explored incorporating applicative languages in VLSI design and have shown them
to be viable. Lahti [Lahti81] used an applicative language to describe various combinational hardware
structures. Johnson [Johnson84] utilized a demand-driven applicative language to describe and syn-
thesize sequential digital circuits. Cardelli and Plotkin [Cardelli81] take a formal approach to describ-
ing sequential circuits with an emphasis on verification. Meshkinpour [Meshkinpour85] and Sheeran
[Sheeran84] extended Backus’ FP language with operators to handle sequential circuits.

2 Brief Introduction to vFP

VEP extends the language FP proposed by Backus [Backus78] with additional functional forms
and primitives. In contrast to PFP [Sheerang4], which extends FP’s semantics to operate on streams,
the semantics of VFP are the same as those of FP when it is used to specify algorithms. A program in
VFP (as in FP) is a function that maps objects into objects. Objects are either atomic (numbers or
strings) or sequences of objects. The distinguished atom | denotes an undefined value. By definition,
any sequence which contains | as an element is itself undefined and thus equal to 1. The primitive
functions of VFP consist of

arithmetic functions, +:(1,5) -6 *:(32)—>6
logical functions, andg: (1,0) -0 org: (0,0) =0
predicates, atom: (1,2) > F =:(33)->T
selector functions, 3:(2,4,5),6,(8,(9,10))) 26 last: (1,4,6) =6

and structure modifying functions.
trans : ((1,2,3),(4,5,6)) — ((1,4),(2,5),(3,6))  apndl: (1,(2,3,4)) = (1,2,3,4)
distl : (x, (a,b,c)) = ((x,a),(x,b),(x,€)) distr : ((a,b,¢),x) = ((a,x),(b,x),(c,x))

Functional forms are used to combine primitive functions into more complex functions.
compose f@g):x—f:(g:x)

construct [f.g,h] : x = (£:x, g:x, hix)
apply toall  &f: (p,qr) — (f:p, fiq, fir)
constant %k :x = kif xisnot |

right insert ! 1: (Xq,..Xa) = fi(xy, ! f:(X2,...Xp))
tree insert f 1 (X1 ,0-Xn) = B (X100 X [/2])s B(X fo/2]415--X0))



A major syntactic difference between VFP and Backus® FP is that parameters to functions may
be named and then referred to in the function body with the same restrictions as described in
[Backus®1]. In addition, the arithmetic, logical, and predicate functions may be used either in a prefix
or an infix manner. This improves the readability of hardware specifications. For example, the follow-
ing definition of a FullAdder in Backus’ FP,

FullAdder =
[org@[org@[andg@[1,2],andg@(2,3]],andg@[1,3]], xorg@[1,x0rg@(2,3]1]
could alternatively be written in VEP as
defun FullAdder(a,b,Cin)
[((a andg b) org (b andg Cin)) org (a andg Cin), a xorg (b xorg Cin)]
enddef

Owing to the natural specification of parallelism in FP-like languages, they are suited to describ-
ing parallel hardware algorithms. These specifications are executable. Since such programs are
referentially transparent, it is possible to have an algebra of programs which may be used to reason
about their behavior. These methods may be used in conjunction with each other to convince the
designer that the program implements the envisioned algorithm. Specifications can also be executed
symbolically using a symbolic input during which it is possible to extract the topological structure of
the algorithm. Therefore, there is a direct relationship between the structure of an algorithm written in
VvEFP and the planar topology of its layout.

3 Algorithm Synthesis in VFP

The designer first specifies the algorithm in VFP. The algebra of VFP programs may be used to
reason about the algorithm. In addition, the specification may be executed with sample data to validate
the program.

VvFP can be used to describe circuits at various levels of abstraction. Designers are free to
choose whichever level is ‘‘best’’ for their current purposes. At some higher level of abstraction, the
structure of the FullAdder may not be relevant, and thus the definitions given earlier would suffice to
describe its behavior. At a lower level of abstraction, where the structure of a function is to be con-
sidered, an alternative definition which has a different structure may be substituted. For example, the
FullAdder could be defined in terms of HalfAdders.

defun FullAdder(a,b,Cin)
[1o0r2, 3] @ apnd]l @ [1, HalfAdder@[2,3]] @ apndr @ [HalfAdder@[a,b], Cin]
enddef

defun HalfAdder(a,b) [a andgb, a xorg b] enddef

Transformations may be used to refine the program to whatever level of detail is required. In
this way it is possible to first specify the algorithm at a level of abstraction that is high enough to aid
validation and then refine it to the level at which it can be easily implemented.



4 The Evaluation of vFP Algorithms

It is possible to zag selected user-defined functions so that when a VFP specification is executed
an estimate of the performance of the algorithm can be provided. Tagging a function tells the system
that this is a function of interest at the current level of abstraction. As the execution proceeds, the inter-
preter keeps track of the level at which a tagged function is executed.

The level of a tagged function is defined as one plus the maximum of the levels associated with
the atoms in its input object. The level of each atom is initially zero. Each time a tagged function is
encountered, its level is determined and is assigned to the atoms in its output object. However, there is
a problem when a tagged function occurs within another tagged function. In this case the level of the
inner function is determined with respect to the outer function resulting in a hierarchy of levels. This is
accomplished by assigning the level zero to each atom of the outer function’s input object, and comput-
ing the level of tagged functions as before until the computation of the outer function has been com-
pleted. The level of the outer function and the atoms in its output object is determined as before and
hence is independent of whether or not any tagged function occurs within the outer function. Levels are
used to predict the speed at which the circuit would perform, to obtain an idea of where the parallelism
in the algorithm is, and to get an estimate of the area that would be occupied by the circuit. A better
estimate of the area is obtained by methods mentioned in the next section.

This capability of having the system estimate performance parameters is useful in tradeoff ana-
lyses. For example, consider the following function:

1 if a=(b—1) mod 8
z=+<2 ifa=b
0 otherwise

schemeA and schemeB, below, are two algorithms for implementing the function. If the boolean func-
tions (andg, org, notg, and xorg) are tagged, the results shown in Figure 1 are obtained.
# scheme A inputs : ((a) (b)) outputs : (z1 z0)
defun schemeA
&(org@&andg@n‘ans)@distl@[l,[id,rotr]@2]@&decoder
enddef .

# scheme B inputs : ((a) (b)) outputs : (z1 z0)
defun schemeB(a,b)

&compare @ distl @ [a, [b, tl @ adder @ [b, [%], %1, %11]1]
enddef

defun compare notg@org@é&xorg@trans enddef
defun adder
apndl@[xorg@[xorg@1,1@2] LA@2]

@[1,!add@apndr@][tlr,HalfAdder@last]@t1] @ trans
enddef

defun add(a,b) concat@[FullAdder@apndr@[a,1@b],1@b]  enddef



# statistics for schemeA # statistics for schemeB

level Andg Org Notg level Andg Xorg Org Notg
1 2 6 1 2 6
2 10 2 1 2 1
3 14 3 1 2
4 14 4 1 1
5 8 5 1
6 4 6
7 2 7
8
Totals 40 14 6 Totals 3 11 5 2

Figure 1: A comparison of two implementations

The results in Figure 1 show that schemeA uses a total of 60 gates, while schemeB uses a total of 21
gates. However, it is to be noted that 11 of the 21 gates are xor gates which would normally occupy a
larger area. Given an estimate of the area occupied for each of the gates, it is possible to have an esti-
mate of the area occupied by each implementation. Since schemeA has 7 levels while schemeB has 8,
schemeA would be faster than schemeB under the assumption that all the tagged functions had the same
delay,

In addition to the time and space estimates provided by the Jevel mechanism, the system can be
extended to allow the specification and calculation of user-specified parameters for each tagged function
and for the algorithm as a whole.

5 Space Domain Implementations of vFP Algorithms

A VFP algorithm can be mapped into a structure corresponding to a combinational network by
passing symbolic inputs to functions which in turn generate symbolic outputs. The unit of information
represented by a symbolic atom can be anything corresponding to the level of abstraction. Thus, a sym-
bolic atom may represent a wire, a set of wires, a bit vector, or an integer, as required. An acyclic com-
putation graph with VFP primitives as nodes is obtained by tracing the application of a function to a
symbolic input. This computation graph can be transformed into a layout using techniques described
later. By tagging the appropriate functions, the layout may be generated at any desired hierarchical
level. For example, Figure 2 shows a layout of a FullAdder using and, or, and xor gates; whereas Fig-
ure 3 shows the same FullAdder as being composed of HalfAdders.

The mapping from a VFP algorithm to a combinational network is allowed under the following
restrictions. Functions like iota, whose output structure depends on an input value, cannot be laid out.
In addition, during symbolic evaluation, the predicate part of a conditional must be evaluable to a
boolean.
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Figure 2: The structure of a FullAdder Figure 3: A FullAdder using HalfAdders

As in UFP [Sheeran84), structural iterations over the input of the circuit can be handled by the
insert and apply-to-all functional forms. Other types of structural recursions are allowed in vFP since
the conditional functional form is treated as a structural form for the purposes of layout. Depending on
the value of the predicate of the conditional, either the consequent or the alternate part will be evaluated
symbolically for its structure but no structure will be generated for the predicate part. A new primitive
called sw (for switch) is provided in VFP which corresponds to the conditional form in pFP. This prim-
itive takes three arguments. If the first is 1 then the output is the second argument; if it is 0 then the
output is the third argument; else it is 1. In addition, it is required that the szructures of the second and
third arguments be the same.

A VFP description of a circuit can be generic in the sense that the description is independent of
the input dimensions of the circuit. For example, there needs to be only one description of a decoder.
This same description works for a decoder independent of the number of inputs. The 3-to-8 decoder
shown in Figure 4 is obtained by evaluating the description of the generic decoder with a symbolic
argument of size 3. Figure 4 shows how the generic iterative decoder is formed by first applying 1-to-2
decoders (Decl) to the inputs and then inserting the function DecStage. DecStage takes an n-to-2"
decoder and a new input to make a (n+1)-to-2°*1 decoder.

defun Decoder  !DecStage @ &Decl enddef

defun DecStage &andg @ concat @ &distl @ distr  enddef

defun Decl [not,id] enddef
As before, these implementations may be evaluated to get speed/area estimates, but now, since routing
is taken into account, a better estimate of area can be provided.

Cell iterative networks are combinational circuits which are formed by interconnecting a particu-
lar cell in a regular pattern. Although combinational circuits without feedback can be described in VEP
using the forms inherited from FP, some additional functional forms are provided to give designers
more control over exactly how cell iterative networks are to be laid out. These networks are thus
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readily described in VFP by invoking the form (corresponding to the interconnection pattern) on the
function (corresponding to the cell). For example, Figure 5 shows the seq functional form pictorially.
Sometimes it is necessary to have two inputs to the function F at each stage and to have one of those
inputs come in from the x direction and the other from the y direction. This is accomplished by the
seqxy functional form shown in Figure 6. Though both forms result in the same computation graph,
their layout is different.

6 Time Domain Implementations of VFP Algorithms

As was shown in the previous section, virtually all vVFP programs can be laid out. However,
since iterations are unfolded in space, the resulting layout might occupy more area than is available.
Also, the inputs to the circuit might be coming in one at a time along the same wire(s), serially, rather
than all at once on separate wires, in parallel. In both these cases, it is convenient to implement the cir-
cuit (or parts of it) as a sequential circuit rather than a combinational circuit. In VFP this is done by
replacing certain space-domain functional forms by their time-domain duals.

&f=D"' @ POSI @ &"f @ SOPI
if=D"! @ Tf @ apndr @ [SOPI @ tlr, last]

seqf = D} @ apndl @ [1, POSI @ 1]] @ seqTf @ apndr @ [SOPI @ tlr, last]

In these equalities POSI is a parallel-out-serial-in shift register, SOPI is a serial-out-parallel-in shift
register, and &7, 1T and seq’ are the time-domain duals of the corresponding space-domain functional
forms introduced earlier. The !T and seqT forms use the first element of their input sequence as the ini-
tial value of the internal register (R). This makes it possible to specify the initial state of a sequential



system in VEP. D! is a phantom element that corresponds to an inverse time delay. It is used to keep
track of the number of clock pulses the output is going to be delayed by. This information is needed by
the construct functional form to synchronize its components since the semantics of the construct require
that the outputs of its elements appear together. Generally the D! elements are moved, via transforma-
tions, to the outputs of the circuit where they serve to denote the delay.

When elements of a sequence are available serially in time along the same wire(s), it is neces-
sary to know when each element is valid. This is accomplished, during symbolic simulation, by having
each symbolic item carry the name of a clock with it. It is assumed that its value will be stable before
every tick of the named clock. The system will automatically widen the intervals between clock ticks to
ensure that this is true. Initially, all the inputs are associated with the same clock. Each combinational
element will assign to its output the clock associated with its input. If there are » elements to the input
sequence of a SOPI, then each of its output elements will be clocked by the clock nCy; and conversely
for a POSI. A clock named nCy denotes a clock which has # clock ticks in between consecutive ticks of
the clock named Cy. Though the description of a SOPI or POSI is generic, the value of n (the number
of elements in the sequence) must be known at layout time.

As an example, consider a time-domain implementation of an inner-product algorithm
(1+ @ &*). The straightforward implementation of the algorithm, using the equations given above,
would result in the layout shown in Figure 7. Since there are two D! elements in the layout, the output
will be delayed by two clock ticks from the input.

I T T I
SOPI
[ 1
]
|
POSI
[ T T 1
D! SOPI |
[T T —— [T
SOPI % %
,_-_l r"—|
+ R + R
| !
D—l D-l
I l
Figure 7: Initial Implementation Figure 8: Optimized Implementation
of the Inner Product of the Inner Product

However, using the identities

D! @ POSI @ f @ SOPI = apndr @ [D™! @ POSI @ &'f @ SOPI @ tlr, f @ last]



POSI @ D! @ SOPI=SOPI @ D! @ POSI=id
f@D'=D1@f

[tlr , last] @ apndr = apndr @ [tlr, last] =id
the program may be transformed into the following
D! @ 1T+ @ apndr @ [&"* @ SOPI @ tlr, * @ last]

whose layout is shown in Figure 8. The single D! element denotes that the output is delayed only one
clock tick from the input.

This implementation accepts all its inputs simultaneously and eventually gives its result. It will
only work for input sequences of one particular length, since only fixed size SOPIs can be laid out.
However, if each element of the input sequence was input serially to the implementation, a correspond-
ing POSI could be introduced at the input and then used to transform out the SOP/ that exists in the
current implementation. This would make the implementation generic in the sense that it would be able
to handle arbitrary length sequences as its inputs.

7 Layouts from vFP Specifications

In this section the mapping from VFP algorithms to layouts is briefly described. A more detailed
exposition and a description of its implementation can be found in [Schlag84]. The intent of this sys-
tem is to provide the VFP designer with an interactive environment in which the design can be viewed
as it is constructed. The mapping from VFP is actually the composition of two mappings. An VFP func-
tion is first mapped to an intermediate form (IF) which reflects the planar topology of the function and
then this IF is mapped to fixed geometry by selecting and resolving relative position constraints (com-
paction).

The rationale for dividihg the mapping in two steps is the observation that a certain portion of
the mapping from VFP should be functional even though the entire map cannot be. That is, a particular
vEP function applied to a particular symbolic object should define an IF uniquely, while the geometry of
the function should depend on its environment. Fixing the geometry of a sub-function may create wiring
and shape incompatibilities with other sub-functions which would require additional area to resolve.
Functionality has two advantages.

1. The mapping can be implemented as an application of an VFP function to an object.

2. Algebraic transformations on the VFP function have predictable effects on the IF.

The extraction of the topology (IF) of an VFP expression is implemented as an interpreter. A function
applied to an object generates an IF and each combining form dictates a topological organization of the
IFs of its sub-functions. The routing is the direct result of the routing primitives and the combining
forms of the function. This implementation generates a sketch of the VFP specification in terms of
““boxes’’ and ‘‘wires’’ by symbolically tracing the VFP function and representing each atom as a wire.
The level of abstraction of the sketch can be controlled by selecting which functions to represent as



boxes and what objects each atom represents. The IF consists of a list of horizontal cross-sections each
of which is a left to right ordering of the ‘‘boxes’” and ‘‘wires’’ which intersect the cross-section. Any
cross-overs are represented explicitly; each cross-section corresponds to a horizontal track. The IF gen-
erated by the interpreter is fed to a program which resolves the cross-sections using horizontal compac-
tion and displays the sketch on a graphics terminal.

An example is presented to illustrate how VFP facilitates the transition from algorithm to imple-
mentation taking into account the layout. The VFP specification of a carry chain adder [Brent80] is
considered. The specification is generic in that it adds two bit vectors of length 2" for n>0. The input
consists of the 2" pairs of bits to be added with the leftmost pair, containing the least significant bits,
((a1,b1),(az,b2).(a3,b3), . . . ,(az,bam)).

For 1<i<;<2",

1 if a carry into column i would 1 if adding columns i through j
Pi= propagate as a carry out of column j and G; ;= causes a carry out of column j
0 otherwise 0 otherwise

The computation is performed by computing the carries for each column, G1; and then obtaining the
sum bit using, [7.1]

5;=G1,i-1P;; for 1<ig2", s1=P11, andsy1=Gizn

P, and G; are computed for each i by using the following identities, implemented by the function
PG. [7.2]

For iSj<h, P;4=P;iPja,p and P;p=(Gi;iPj1,m)¥Cja1,n
The initial P;; and G; ; are computed by the function PG1. [7.3]
Pii=a; b;, G;=a;b;

The computation of P, ; and G;; is achieved in two steps by the function gefcarries. The following is
the specification of getcarries.

# input = ((a0,b0),(al,bl1}),(a2,b2),...,(a2**n - 1,b2**n - 1))

defun getcarries  secondhalf@split@1@firsthalf @&PG1  enddef

defun firsthalf  if eq@[length,%1] then id else firsthalf @&stagel@pair i  enddef
defun stagel  concat@{&D@1,&D@tr@2,[PG@[last@1,last@2]]] enddef
defun secondhalf if eq@[length,%1]1@1 then done else secondhalf@concat@
[split@&D@1,stage2@tlJ@apndr@[concat@&[id,last] @tlr,last] fi
enddef
defun stage2 concat@
& ([apndr@[&D@thr@1@2,PG@[1,last@1@2]] &D@2@2)@[1,split@2])@pair
enddef

defun D id enddef



defun done id enddef

First getcarries computes (P; ;,G; ;) by applying PG1 to the two bits in each column and then it applics
firsthalf. firsthalf computes (P;-2t41,i,Gi-2:41,;) for each column i=(2m+1)2% where m is an integer.
This is accomplished by arranging each column (i.e. its pair (P,G)) in a group of its own and then
recursively applying the function stagel to pairs of groups until only a single group remains. stagel
combines a pair of groups computing a new (P,G) for the last column of the second group by applying
PG to the last columns of the two groups; the pair of groups is then concatenated to form one group. All
other columns are unchanged; the function D which is given the definition id is applied to them. When
all columns are in a single group getcarries applies the function secondhalf to compute the final
(P,G)'s. secondhalf is also recursive, terminating when each column is in a group by itself. At each
step the final (P,G)’s of decreasing multiples of powers of 2 are computed. Assume that in the previous
step P1,; and G ; have been computed for each column i=m?2*, In the next step to compute the (P,G)’s
of columns which are multiples of 257!, it is necessary only to compute new (P,G)’s for columns
i=(2m +1)2F1 = m2%+2¥ 1 the odd multiples of 2k=1 The current (P,G) in column i is
(Pi—2141,i5Gi-zt141,1)- (P1,;,G1,;) can be obtained by applying PG to the current (P,G) and
(P1,m2t,G1,mzt). Initially the columns are divided into two groups and since firsthalf computed the
final (P,G)’s for powers of 2, the last column (a multiple of 2771y has its final value. At each step
secondhalf duplicates the last column from each group and then applies stage2 after removing the first
group. stage2 takes each group, splits it into two and computes new (P,G)’s for the last column in the
left group of each new pair using the duplicated column immediately to the left of the group. The first
group is then appended to the result of stage2.
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Figure 9: The sketch of getcarries with each (P,G} as a wire

Figure 9 is the sketch of getcarries in which the pair (P,G) for each column is represented by a
single wire. This is accomplished by directing the interpreter to draw PG1, PG and D as boxes and by
giving PG1 and PG symbolic definitions.

(define-symbolic PG1 input=(a b) output = (¢) )
(define-symbolic PG input=(a b) output =¢ )
(drawbox PG1 label=PG1 ht=2)



(drawbox PG 1abel=PG ht=2)
(drawbox D label=D ht=2)
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Figure 10; The sketch of getcarries with the definitions of PG1 and PG filled in

Figure 10 is the sketch of getcarries with each wire corresponding to a bit this time and with the
specifications of the functions PG and PG1 “‘filled in.>’ The definition of done is changed since only
the G of each column is required to compute the final sum. Notice that the layout interpreter generates
only those wires and boxes which have paths to an output. The previous specification would be
extended as follows.

defun done &(2@1) enddef

defun PG1 [[xorg,andg]] enddef

defun PG [andg@[1@1,1@2],0org@[andg@[2@1,1@2]},2@2]] enddef

(drawbox D label=D ht=2)
To obtain the final sum by (7.1) it is necessary to combine the first P in each column, P;; with the G of
its left neighbor G ;_;. One way of doing this would be to duplicate each P; ; generated by PG1, route
them along the side and then merge them back into the columns to compute the final sum as in Figure
11. The additional area required for routing makes this an unattractive alternative. A better design
would be to route the P;; along with the (P,G) down its own column. This extension is easily handled
in VFP by modifying the function PG so that it duplicates its first argument if it receives only two argu-
ments in a column and simply passes on the extra argument otherwise. The specification is modified as
follows.
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Figure 11: An inefficient design

defun add
concat@{[1],&xorg@pair@tl@tlr,[last]]
@concat@apndl@{1@1,&([1,3]@1)@tl]@getcarries
enddef

defun PG
apndl@[D@1@2, if null@t1@1@2 then oldPG else oldPG@[1,11@2] f£i ]
@ if null@t@tl@1 then id else [tl@1,2] fi
enddef

defun oldPG [andg@[l@1,1@2],org@[andg@[2@1,1@2],2@2]] enddef
defun done id enddef

(drawbox D label=D ht=2)
The function add applies getcarries and then handles the columns according to (7.1) to obtain the final
sum bits. Figure 12 is the sketch of add.

Figure 13 is the sketch obtained of a carry save array multiplier. This example is presented to
illustrate the geometric flexibility of fixing only the planar topology in the specification. The functions
HA*, FA* FA** and HalfAdder are represented as primitives. The specifications of the functions
HA*, FA*, and FA** are

#FA*op2:((ab) (yx))-—> ((c x)s) where 2c + s = (a + b + yx)
defunop2  [[org@[1,1@2],3],2@2}j@

[1@1,HalfAdder@[2@1,2],3]@[HalfAdder@1,andg@2,2@2]
enddef

# HA* opl : ((a) (y X)) -—> ((c x) 8) where 2¢ + s = (a + yx)
defun opl [[1@1,2],2@1]@[HalfAdder@[1@1,andg@2],2@2] enddef
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Figure 12: The sketch of add
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Figure 13: A Carry Save Array Multiplier with FA*, HA* and FA** as primitives




#FA** lop2:((ab) (yx))-—->(cs)where2c +s=(a+ b+ yx)

defun lop2
[org@[1,1@2],2@2]@[1@1,HalfAdder@[2@1,2]]@[HalfAdder@1,andg@2]

enddef

defun op0 [1,andg] enddef
Figure 14 contains the sketches of these functions, while in Figure 15 the same carry save array multi-
plier is represented in terms of lower level primitives. Note that the geometry of the functions HA¥,
FA* and FA** varies; each instance has some flexibility in adapting to the particular geometric con-
straints it encounters.

AB Y X A Y X AB YX
HA AND |
—J 1 ——T | HA AND
T T ———
HA AND
— HA
— HA — |
OR A_|: OR
| | | —
C XS C XS CS

Figure 14: FA*, HA* and FA*#*

All of the figures in the paper with the exception of Figures 5 and 6 were generated by this sys-
tem. It is limited in that the data flow is vertical with a function’s inputs and outputs on the top or bot-
tom. More sophisticated layout techniques which would not suffer from this limitation are being exam-
ined. However this system is useful in that it provides visual feedback quickly allowing the designer to
see the planar implications of the specification.

8 Concluding Remarks

The objective of this research is to develop a formal high-level language approach to
specification, simulation, performance evaluation, and chip layout planning for VLSI systems. Our
approach takes a high-level applicative language (VFP) and programming style as its basis. The
rationales for using VFP and and its potential in dealing with several specification and implementation
aspects are the subject of this paper. Specifically, a few examples have illustrated how VFP can be used
to specify combinational, iterative, and sequential circuits. User-specifiable performance parameters
may be used at any abstraction level to provide a basis for making design decisions during the synthesis
process. Layouts which are suitable as floor plans are extracted from high-level algorithms. Currently,
an automated attribute system is under development. More sophisticated layout techniques and topolog-
ical optimizations are being examined, as are techniques to handle other classes of sequential circuits.
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Figure 15: The Carry Save Array Multiplier with FA*, HA* and FA** filled in

9 Acknowledgements

This work was supported in part by ONR Contract N00014-83-K-0493, and by Rockwell/UC
MICRO Grant 157. The presentation and content of this paper has benefited greatly from the detailed
comments provided by one of the referees.

REFERENCES

[Backus78] John Backus, ‘‘Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs,’’ Communications of the ACM 21(8),
pp. 613-641 (August 1978). 1977 ACM Turing award lecture.

[Backus81] John Backus, ‘‘The Algebra of Functional Programs: Function level Reasoning,
Linear Equations, and Extended Definitions,’” Proceedings International Collogium
on Formalization of Programming Concepts Lecture Notes in Computer Science
#107, pp. 1-43, Springer Verlag (1981).

[Brent80] R. P. Brent and H. T. Kung, ““The Chip Complexity of Binary Arithmetic,”
Proceedings 12th ACM Symposium on the Theory of Computing, pp. 190-200 (May
1980).



[Cardelli81]

[Director81]

[Johannsen79]

[Johnson84]

[Lahti81]

[Meshkinpour85]

[Ousterhout81]

[Ousterhout84]

[Rivest82]

[Schlag84]

[Sheeran84]

[Siskind82]

Luca Cardelli and Gordon Plotkin, ‘‘An Algebraic Approach to VLSI Design,”” pp.
173-192 in VLSI 81 - Very Large Scale Integration First International Conference
on VLSI, ed. John P. Gray (1981).

S. Director, A. Parker, D. Siewiorek, and D. Thomas, ‘A Design Methodology and
Computer Aids for Digital VLSI Systems,’’ IEEE Transactions Circuits and Sys-
tems CAS-28(7), pp. 634-645 (July 1981).

David Johannsen, ‘‘Bristle Blocks: A Silicon Compiler,”” Proceedings 16th Design
Automation Conference, pp. 310-313 (June 1979).

Steven Johnson, Synthesis of Digital Designs from Recursion Equations, MIT Press
(1984).

D. O. Lahti, ‘‘Applications of a Functional Programming Language,”’ Tech. Rep.
CSD-810403, UCLA Computer Science Department, Los Angeles, California,
(April 1981).

F. Meshkinpour and M. D. Ercegovac, ‘‘A Functional Language for Description and
Design of Digital Systems: Sequential Constructs,”’ Proceedings of the 22nd Design
Automation Conference, pp. 238-244 (June 23-26, 1985).

John Qusterhout, ‘‘Caesar: An Interactive Editor for VLSI Layouts,”’ VLSI Design
I1(4), pp. 34-38 (fourth quarter 1981).

J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S, Scott, and G. S. Taylor,
“‘Magic: A VLSI Layout System,”’ Proceedings of the 21st Design Automation
Conference, pp. 152-159 (June 25-27, 1984).

Ronald L. Rivest, ‘“The ‘PI’ (Placement and Interconnect) System,’’ Proceedings of
the 19th Design Automation Conference, pp. 475-481 (June 1982).

Martine Schlag, ‘‘Extracting Geometry from FP for VLSI Layout,”’ Tech. Rep.
CSD-840043, UCLA Computer Science Department, Los Angeles, California,
(October 1984).

Mary Sheeran, ‘‘muFP, a language for VLSI design,’”’ Proceedings of the 1984
ACM Conference on Lisp and Functional Programming, pp. 104-112 (August 6-8,
1984).

Jeffrey Mark Siskind, Jay Roger Southard, and Kenneth Walter Crouch, ‘‘Generat-
ing Custom High Performance VLSI Designs from Succinct Algorithmic Descrip-
tions,”’ 1982 MIT Conference on Advanced Research in VLSI, pp. 28-40 (January
1982).



