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1. INTRODUCTION

We consider hierarchical systems of continuous random variables, like the network dep-
icted in Figure 1. Each variable x has a set of parent variables u, u,, . . ., 4, and a set of chil-
dren variables y 1, ¥4, . . . Y. The relation between x and its parents is given by the linear
equation

x=bu+bous+ - +bu, +w (1)
where b, by, . . . , b, are constants, the u’s are normally distributed random variables, and w is
a noise term — normally distributed, zero mean, and uncorrelated with the u’s. Initially we
shall assume that the network is singly connected, i.e., at most one path connects any two vari-
ables. This is equivalent to assuming that the «’s are marginally uncorrelated, but become
correlated once we know the value of x or any of its descendants. In Section 3 we shall relax

this assumption and will treat networks with circuits.

The additive interaction of Equation (1) serves as a standard for causal models in many
areas — structural equations in psychology (Bentler 1980), recursive models and path analysis
in sociology and genetics (Duncan, 1975; Kenny, 1979, Li, 1975), causal models in economics
(Joereskog, 1982), and others (Wright, 1921). Whereas most work in these areas focused on the
issue of validating the model on the basis of empirical data, the emphasis here is on diagnosis
and data interpretation. We are given the network topology, the link coefficients (b’s), the vari-
ances (0, ) of all the noise terms, and the means and variances of the root variables (nodes with
no parents). Our task is to devise a distributed scheme for updating the means and variances of
every variable in the network to account for evidential data D, i.e., asetof variables whose

values have been defermined precisely.



In principle, since the model completely specifies a correlation matrix for all variables in
the system, the estimation could be performed by familiar least-square methods. However, our
additional restriction is that the computation be conducted diszributedly, as though each variabie
were managed by a separate, remotely located processor communicating only with processors
that are adjacent to it in the network. The main reason for this computational paradigm is that it
leads to a transparent revision process, in which the intermediate steps can be given an intui-
tively meaningful interpretation--a feature lacking in methods based on matrix manipulations.
Since a distributed process guarantees that each computational step obtains inputs only from
neighboring, semantically related variables, and since the activation of these steps proceeds
along semantically familiar pathways, people find it easy to give meaningful interpretation to the
individual steps and thus gain confidence in the final result. Distributed processing also makes it
easier for computer systems to fortify the numerical results with qualitative justifications by
tracing the sequence of operations al.ong the activated pathways and giving them causal or diag-

nostic interpretations using appropriate verbal expressions.

In previous papers (Pearl, 1982; Kim and Pearl, 1983; and Peari, 1985a) a distributed
method was developed for propagating the impact of evidential data in a network of discrere
random variables, where each variable was assumed to be related to its parents by a general con-
ditional probability P (x |#y, 43, - . ., 4,). This paper extends the method to the case of con-

tinuous variables that interact in the manner of Eq. (1).



2. ESTIMATION IN SINGLY-CONNECTED NETWORKS

As in the treatment of discrete random variables (Pear], 1985a), the impact of each new
evidence is viewed as a perturbation that propagates through the network via message-passing
between neighboring processors. Each processor x has available to it the following set of

parameters:

1. the link coefficients, b,, bq, ..., b,;

2. the variance o,, of the noise which directly affects x;

3. the messages 7, (4;), i=1,2, .. ., n, obtained from each parent of x;

4. the messages 7\3, j(x), j=1,2,...,m, obtained from each child of x.

T, (4;) and A, ) characterize the following Gaussian conditional densities:

e (u;) = f (; |1 D7) = N (507, 1) 2)

Ay, (x) =f (D |x) =N (x:0;, 1j) (3

where D;* and D ;~ stand for the values of all known variables in the subnetworks connected to
x via u; and y;, respectively. 7, (u;) and lyi(x) are reminiscent, respectively, of the prior pro-

bability and the likelihood ratio in ordinary Bayesian analysis.

Given this set of parameters, processor x must calculate the following quantities:

1. the belief distribution of variable x

Bel(x)=f(x|D)=N(x;0x, ly) “4)

where D stands for the set of all data so far observed.



2. the message T, (x) to be sent to y;, the j * child of x
%, (x)=f|D ~DJ) j=1,2,..,m
=N(x; o}, 1)) (5)
3, the message A, (#;) to be sent to u;, the i th pérent of x
A@)=fD -D;|u;) i=1,2,..,n
=N(u; 01, Ki) (6)

Since all densities and messages are Gaussian, it is clear that only the means and vari-
ances need be computed and transmitted. Accordingly, our task is to compute the quantities
Oy, Me» 67, 1, 6F, Wi from the available parameters 0,,,, b;, o/, 1, o, ;. This is depicted

schematically in Figure 2.

Define the following parameters:

1 |t B
o= | X— M =Gy —— (7)
i Sj i Sj
Or=0Cu+ Y b%c!  He=X bu' (8)
i i

Bel(x) and the messages emerging from x are given by the following three formulae (see Ap-

pendix I for derivations):

OO Oxlly, + OpHn
o, = = SRR ©)
He  Hr
1 1 | Z o o
of=c; | =|"+X — W=w | =—— (10)
o= | Ox 4z Ok Of e — = ‘
k= Ok On



o7=47 [cx+%+k§‘_b3 c;:] o= [ux—gibk u;rJ an
A few qualitative features of this updating scheme are worth noting. First, in the absence
of any evidential data (D =ﬁ)’, 0y =), the means and variances of all variables can be computed
by a simple path-tracing method, using Eq. (8). For example, the mean of variable x is equal to
the weighted sum of the means of all its root ancestors, and the weights are given by the pro-
ducts of the b coefficients along the corresponding paths, independent of the noise variances.
The variance of x, likewise, is given by a weighted sum of all the noise variances along the
paths connecting x to its roots. Second, the impact of an observed variable y on any of its des-
cendants x is equivalent to cutting off the network above y and regarding y as a zero-variance
root of x, with mean equal to the observed value of y. This impact is unaffected by the noise
along the path from y to x. Third, the impact of an observed variable on its ancestors does
depend on the noise along the connecting paths. For example, Eq. (7) describes 1, as a linear
mixture of the means of its ancestors (L) and its descendants (1) with the weights determined
by the corresponding variances; the lower the variance the higher the weight of influence. Final-
ly, the minus sign in the expression of p;” (Eq. (11)) captures the ‘‘explaining away’’ effect of
interacting causes (Kim and Pearl, 1983); the more evidence we have in favor of alternative
causes (high L, k=i ), the less we are able to attribute an observed effect (say an increase of x)

to any particular cause, say L;.



3. COPING WITH CIRCUITS

The propagation scheme described in the preceding section will not be valid when the
underlying network contains circuits, i.e., when two or more nodes possess both common des-
cendants and common ancestors. If we ignore the existence of circuits and permit the nodes to
communicate messages as if the network were singly-connected, messages might circulate
indefinitely around the circuits, and the process normally will not converge to the correct equili-

brium.

A propagation method that works well when the number of circuits is small is called
conditioning and is based on our ability to change the connectivity of a network and render it
singly-connected by instantiating a selected group of variables. The use of conditioning in the
case of discrete variables is described in Pearl (1985b), and this Section extends the method to
models containing continuous variables. We first describe the procedure involved, and leave the

derivations to Appendix IL

Assume that instantiating one variable, x;, is enough to break all circuits in the network.
In other words, holding the value of x; constant would permit us to update all variables by ap-
plying the one-pass propagation scheme of the preceding section. Instead of propagating the
usual set of A-T parameters we now require that two such sets be propagated — 20-10 and
A1—n! corresponding to holding the value of x; at 0 and 1, respectively. The computations in-
volved under these two conditions are the same, except that in the former case each son of x;
will receive the pair of messages o7 = 0 and J; = O while in the latter, the pair will be oy =0

and W, = 1 (see Eq. (2)). Similarly, each parent of x; will receive the usual ¢~ and U™ messages



specified in Eq. (11), with two different settings of oy and py; (03 = 0, fy, = 0) represents the

casé-: where x;, = 0 while (o; =0,y = 1) represents the case where x; = 1.

Let e stand for all the data so far observed. Every node x; in the network should possess

the following set of parameters:

1. of, =Var (xle,x,=0) (12)
2. ro. =E(x;le,x=0) (13)
3. . =E(le,x=1) (14)
4. Hee =Exle) (15)
5. Ople =Var (x]e) (16)

The first three parameters are available from the incoming conditioned messages Ag—7g and
Al—x! and are the defining parameters for Bel(x;), as in Egs. (4) and (9) (note that

Var(x;|e x,=1) = 0',9|,_,). The fourth and fifth parameters, Ji; |, and Gy |, are assumed to be
computed by the last variable to be instantiated and to be transmitted to all other nodes as attach-
ments to the usual 7(—11: parameters. We shall now show how the processor at x; computes the
total belief distribution Bel(x;) = f (x; | ¢) and how it should revise the value of Jlg |, and Gy,

in case x; is observed and found to have the value x; = v;. These revised parameters, denoted

Of |+ and Wy (. are then appended to the set of A-T messages emerging from x; and thus get

transmitted to all other variables.



Bel(x;) is computed from (12)-(16) by the following formulae:

Bcl(xi)=N[Jci; 0‘,-|e,p.i|e] ¥
where
0 1 o 2
Cije =0ije t [Hije —Hije | Okle (18)
Wije =M.+ [uilu _I»L:'O|e] Hi e (19)

When x; is instantiated to x; = v;, its processor computes and transmits to neighboring nodes the

following pair of parameters

-1
1 + uilie _p':ple

O e’ = (20)
kie o'k]e 0':'0|e
N T . [v;"l-liou] [Mi1|e"ﬂi0|e] 1)
kle” = Ok|e’
le le Ok le 0.1_0“

This pair will eventually be transmitted to all other variables and will be used to compute their

overall belief densities from the conditioned parameters 6°, u%,ut, as in (18) and (19).

If the network requires the removal of K nodes (K >1) to break up all circuits, the updat-
ing equations become more complicated; they involve operations on K x K matrices and the
transmission of K -vectors as messages. When K is large we lose the transparency provided by
the message-passing scheme and global matrix manipulating techniques may be the only diag-

nosis tool applicable.



CONCLUSIONS

We have shown that distributed diagnosis can be conducted in causal models with con-
tinuous (Gaussian) variables, if the number of circuits is relatively small. Each step in the diag-
nosis process obtains inputs from semantically related variables and can be activated asynchro-

nously. These features yield the following advantages when used in expert systems:

1. Transparency — The intermediate steps are psychologically meaningful, and can be

given sound verbal explanations.

2. Flexible control — A coherent equilibrium will be reached under any activation strategy
(e.g., goal driven or data driven, parallel or sequential). There is no need to keep track of

which part of the network has already been updated.
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APPENDIX 1

Eqs. (9)-(11) are derived using the following seven formulae which facilitate the mani-

pulation of normal distributions:

N(x; G, i) = const. exp. {—710— (% ——u)z} (I-1)

Nx;o,u)=N(; 0, x) (I-2)

N(ax +b;0, W) =N [x; =5; ”"’} (-3)
a a

c,C Oslli + O
x: 102 2H1 11-12] 1-4)

c;+0, O1+0;

N(x; 01, 141) " N(x; 03, ) =N

- N

i
| T %o
HN(I;O',',}J-;')=N x; [E;"] 1 (1-5)
: i ;_(_5.‘_
L J
[N@; oL u)N (3; 63, ) dy =N(x; 01+ Oz, Jy) (1-6)

0; c+ib,-2x,-, i —ibi i | d-7)

i=1 i=1

n n
_[ s I [IN(x;; 6, W)N [Eb,-xi;c, u]dxl ~ordx, =N

X, x, i=1 i=]

To compute Bel(x) we partition the data D into two components, D}and D/,

representing, respectively, data in the subnetworks above and below x.

Bel (x)=f(x ‘Dx+’ D;)=th(x le+)f(Dx-|x)
= T(x) " Alx)

ne)=f&IDH=[ 0 [f&IDSuy o u) fluy u, \Dyduy - du,

wy, -
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=] [feeluy o u) TTF G DM duy - duy
" i=1

@,
n n
=[ - [N|x;0p X bjw | TIN@;of, ui) duy -+ duy
L3 Uy i=1 i=1
(and, using 1-7)
2 n n 2 n
tx)=N|[0;0,+ Y b 0, x -3 b; ut|=N|x;0,+3 b7 0, T b; T
i= ) i=1

i=1 i
=N(x, Og, Up)
where o, and L, are defined in Eq. (8). Similarly, for A(x) we have:
Mx)=f Dy lx)=f D[, D3 *** Dulx)=T1FDj1x)=T1%;x)
i j
=N{x; o B2

where o, and Y, are defined in (7). Combining these two results, and using (I-4), we obtain

OxO, Gria + Oaldy
Bel(x)=N(x; Cp, L) N(x; O3, =N [x; ,
(x)=N(x; O, k) N(x; Oy, Ha) x 510, G, +on

which proves Eq. (9).

To find J'Cyj(x), we note that it is conditioned on all data except a subset D i of variables which
connect to x viay;. Therefore:
'n:yj(x) =fx|D -D;)=Bel(x |D; = %))

=Bel(x) | =Bel(x) ! o
o= 0= [E%]
= Ok

=N(x; oy, 1y)

where:
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That establishes Eq. (10).

To compute A, (#;) we partition the data D into its disjoint components D i=1, .., n,
and D j“, j=1, ..., m, and condition A, (%;) on all parents of x. For notational convenience we
temporarily denote u; by u, b; by b, and let the other parents be indexed by &, ranging from 1

to some n.

A@)=f (D -D;u)
= [ [Jf@F DT Dyluy g x u)f (g sgx u)dx duy o duy

[ UuyXx

= [ TI M) T1F O lwe) £ Gxlu g =-- up) fly = uplu)dx duy <o
x k

LS

@ |DF) f (D)
=] HMxn}f a ftu:;( : L0 el ) sy -

K1

=C [ - [ [ TTmaGa) £ e \uy sy - thy) e g - duy

iy u, X k=1

where
A(x)=N(x; oy 1) T, () = N (ug; O, Ug)
flxlu,uy - uy)=N(x;0,,bu+ 3 blly)

k=1
Using (I-2)-(I-7) we write:
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k=1

he@)= [ =+ [ [NGxe; 0 12) TT N s OF, W) N(x; O, bu + 3, byawy) d duy -+
k=1

i u, x
n n
= I j HN(uk;o,'{, UHN@Gu + Y byuy; Oy + O, Wy) duy - - * du,
3] iy k=1 k=1
n

n
=J IHN(uk,G{,u{)N[Z bkuk;0'1+0'm,p.l—bu} dul dun
%] i, k=1 k=1

=N(0; 03 + O+ X, b2 oF, Wy — bu — 3 ui by)
k k

n n
=N |bp; 0+ 0u+ X b OF, =X by u?]
k=1 k=1

“

. 1 s 2 ot 1 < +
=N|u; 5 |oa+ 0o+ X b Ok |, |Ma =3 bi M
b k=1 k=1

-

Therefore, for the i # parent, u;, we have:

1 1
Ae(w)=N Ui 23 [ox+om+zbfci],; [I-lx-zbk ﬂf]

i k#i i k#i

=N (u;; 05 (1), Ly ()
This confirms Eq. (11) and, substituting (7), we obtain

-1
G;(“i)=ﬁ [Um+2bk2°f+ [E ?}?} ]

k=i J Vj
m Wi
1 '21 ;':
- 1=
We ) == | 7, 11 - X beuic
i Z — k=i
=1 Gj
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