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Abstract - This work extends the notion of delay defined by Elmore [2] to accommodate the effect of non-
unit-step (slow) excitations. A single value of delay for any node in an RC network is derived by using a
state-space model. This model provides a compact delay expression in closed-form. It also handles multi-
ple sources of excitation, and we show that delay estimation for slow excitations is no harder than for

unit-step input.

1. Introduction

According to Pederson [7], "timing simulation is circuit simulation in which approxima-
tions are purposely introduced with telaxed accuracy to achieve greatly improved simulation
speed.” We are trying to tackle a problem in the area of logic-level timing simulation of digital
MOS/LSI circuits: finding the delay at any node of a digital MOS circuit modeled by an RC net-
work. Chronologically, Penfield et al. in 1981 derived formulas to bound the waveforms of node
voltages in an RC network [6]. Five restrictions were imposed in their approach: 1) conducting
transistors are modeled as linedr resistors, 2) only one source is driving the RC network, 3) input
to the RC network is a unit-step function, 4) only RC tree networks are considered, and 5) initial
charges on capacitors are only considered as a special case in which an RC tree without any initial
charge is driven through another RC tree that is initially fully charged. Based on these restric-
tions, Penfield et al. suggested a very efficient O (N) algorithm to bound the waveform for any
node voltage in an RC tree network with N capacitors. In 1984, Lin et al. considered delay in RC
mesh networks with arbitrary initial charge distribution. The first three restrictions assumed by
Penfield et al. were also made in Lin’s approach [4]. He proposed a relaxation algorithm for
expressing delays in an RC mesh network in terms of a set of simultaneous linear equations. In
1985, Wyatt [12] showed that Penfield’s wave bounding formulas are also applicable to RC mesh

networks.
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Here we attempt to relax the last four restrictions by finding delays based on a state-space
model of the RC network. We follow the linear switch-level model of MOS transistors proposed
by Bryant, Terman and others [1,10,6,4,5,12]. In this model, a transistor is parameterized in
terms of resistance R and a capacitor by capacitance C. Input resistance of an MOS transistor is
assumed to be infinite. Therefore, the delay analysis of an MOS circuit can be reduced to that of
RC networks. Furthermore, since we are analyzing digital MOS circuits, the class of RC networks
are those where there is a capacitor between every node and ground. The analysis of MOS/LSI
digital circuits is therefore equivalent to the analysis of stages [5] of disjoint RC networks.

II. An Extension of ElImore’s Delay

Delay is the manifestation of the inertia of a system. One way to quantify delay as sug-
gested by Elmore [2] is to take the first-order moment of the impulse response 4 (¢), commonly
known as the inertia, as the delay, i.e.,

oo

Tp= £ h()t dt. (1)

To extend the above definition of delay for each node n; of an RC network we attach a subscript i
to Tp and h (¢) of the above definition and obtain,

Tp;i = Ih;(t)t dt = I(u(t)—"i(‘)) dt

where A;(t) is the impulse response at node #;, and v;(¢) is the voltage at n; due to the unit-step
excitation u (¢). However, the quantity defined in (1) is solely a measure of the inertia of a sys-
tem, and therefore is not a good definition of delay in the electrical sense. For instance, it does not
account for extrinsic factors such as different input waveforms which may result different delays.
Nor does it care for intrinsic factors like initial conditions. Therefore, Elmore’s definition of delay
is inadequate for those stages of RC networks where the output produced by one stage is the input
to another RC network at the next stage. We extend Elmore’s definition of delay to cover both
extrinsic and intrinsic factors. Namely, delay is defined to be the difference in areas covered by
u(t) and x;(¢) along time, i.e.,

Tpi = I(u (©)=xi(e)) db. @

where x;(¢) is the voltage at »; due to excitation e (¢) which is not necessarily an unit-step func-

tion. Clearly, (2) converges to (1) when e (¢) is a unit-step function. A convenient way o eXpress
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delay for all nodes in the network is to use the vector notation:

oD

Tp = L (u(e) —x(2)) ar. 3)

By taking the Laplace transform on both sides of (3) and taking their limits as s approaches zero,
we obtain,

Tp = lim (u(s) - X(s)). Cy

It will be shown in the following section that (4) is indeed a consistent definition of delay.

III. A State-Space Model for RC Networks

The state-space approach involves considering the voltage x;(¢) at each capacitor (w.r.t.
ground) as state variable. The state equation is presented as a system of linear differential equa-

tions:

Cx(t)=Gx(z)+D e(t), (5)

where C is the capacitance (diagonal) matrix, x(¢) is the stdte vector, X(¢) is the time derivative of
x(¢), D is the conductance (diagonal) matrix with D; representing the conductance connected
from node n; to excitation source e;(t); Dy and ex (2 ) are zero if there is no excitation source cor-
nected to node n. G is the node-conductance matrix with components G;;. For j#i, G; is the
branch conductance between nodes »; and n;, whereas G;; is the negative sum of all branch con-
ductances at node n;. For j#i, Gjj is equal to G;; by symmetry, therefore —G is a Stieltjes matrix.

This formulation is sufficiently general to include both tree and mesh RC networks.

To measure the delay of a node in an RC network, it suffices to consider the normalized
case whete the node voltage starts from some initial value x;(0) between 0 and 1, and is driven
towards the final value 1. The results obtained in this normalized case are easily adapted to both
charging and discharging processes (final value 0), and to any values of supply voltage. Rewriting
(5) as,

x(t)=Ax(t)+Be(?), (6)

where A = C~! G and B = C-1D. Applying the Laplace transform on both sides of (6), and substi-
tuting the Laplace transform of x(¢ } into (3) gives us:
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Ty =1lim (u(s)—(s1-A)" Bels) +x(0))),

where e(s ) is the Laplace transform of e(¢) and x(0) are the initial voltages on the capacitors. The
inverse of the characteristic function of A can be expanded at the origin as an infinite geometric

series, giving us,

Ty=lim (u(s)+ (A7 +5A2+5%A+ ) (Be(s) +X(0))) 7)

The existence of A~! (which is equal to G™1C) is guaranteed by the fact that —G is a Steltjes
matrix. For input functions that stay sufficiently long, all capacitors in the RC network will be
eventually charged to unit voltage. This means that A1+ Be(e)=0, or 3113'6 sA-Be(sy=-1.

The condition A~!B1 =1 is another way to say that the RC network has no d.c. path to ground.
Therefore, (7) can be reduced to:

Ty=A" (x(0)— 1]+ lim [u(s)+ A Be(s) 1. (8)

The first term is the intrinsic delay because it accounts for the delay due to the intrinsic charac-
teristics (circuit topology and initial conditions) of an RC network. The second term is the extrin-
sic delay since it measures the differences between external excitations and the unit-step function.
Expression (8) reduces to Elmore’s definition of delay when all input excitations are unit-steps.

Expression (8) is sufficiently general to handle arbitrary input and arbitrary distribution of
initial charges. The problem of estimating delays for all nodes is therefore shown to boil down to
finding the inverse of the node-conductance matrix G, and evaluating Ier%) [u(s)+ A 1Be(s)]. By

5

rewriting (5} as
G1C x(t) =x(¢) + G1De(s),
or

RC x(2) =—A"'Be(t) ~ x(t), (N

we notice that equation (9) is the mesh equation for an RC network, R =-G! is therefore the
resistance matrix. By reciprocity, R; is the driving point resistance observed at node »; with all
the voltage sources grounded and all capacitors removed. For i#j, R;; is therefore the trans-
resistance which is common between #; and n;. As —G, R is also symmetric and positive definite.
Here are two ways of finding R =—G™L. First, in [8] topological formulas for finding the driving
point resistance R;; are suggested. Second, we can factorize G into product of two triangular

matrices where one is the transpose of the other (Cholesky decomposition) [9]. The inverse of G
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can then be found readily by finding the inverse of any one of the triangular matrices. This
numerical method takes O (N 3) floating-point operations. In terms of computational complexity,
this apparently agrees with Lin’s [4] result in which his delay estimation algorithm has to solve a
system of linear equations.

Without loss of generality, we now focus on RC hetworks with only one type of excita-
tion e(t), for the sake of simplicity for presentation. The state equation for this case is:
X(t)=A x(¢)+b e (z), where A-1b =—]. Hence, we can rewrite equation (8) as,

Td=RC[1—x(0)}+}i_r)rb[u(s)——1e(s)]. (10)

1V. Stages of RC Networks

We assume that a digital MOS/LSI circuit can be decomposed into stages [5] of RC net-
works, where the output produced by one stage is the input to the next stage. We denote T§1 as
the delay expression at stage i, RIICU] as the RC matrices at stage i, and HU)(s) as the transfer
function of a node at stage i where its signal is fed as input to stage i+1. Elmore’s delay at this
particular node is denoted by T\l Without loss of generality, we assume that the excitation at

the first stage is a unit-step, i.e., e[1l(s) = ~_15-

e[ll(s )=l HU]SS l H“]!S !H [2]!5 l
S, gl S o H(s) s - HU)s) f—s
stage 1 stage 2 stage i

Fig. 1. Stages of RC Networks

It is this stage decomposition that enables us to write the excitation at the input of stage 2
(1] ; . .
as —&%l Equation (10) suggests a very convenient way to handle the effect of non-unit-step

input: simply analyze the network as if the input were a unit-step function, then evaluate the
difference }1_% (u(s) — 1e(s)). The delay expression for stage one is given by:

T = RIUCI (1 ~ x[1}0))

and for stage 2,
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1 ( )
T = REICE (1 —x12(0)) + lim (u(s) -1 H[s] =),
5
which is equal to,
T2 = RIZICE (1 - x24(0)) + 1T.[1,

It is easy to see that in general fori>1,

T = REICH (1 - xtilo) +1 5 7041 (11
k=1

It follows that the delay calculation due to non-unit-step input is no harder than dealing
with unit-step input.

V. Remarks and Conclusions

From a model approximation [11] point of view, defining delay as in (3) is equivalent to

approximating the transfer function at each node by a first-order Padé approximation with the

1

approximant Hi(s)= This approximant matches the first-order moment of the

Tci
impulse response of H;(s). Since delays are defined in terms of the first-order moments of the
impulse response, expression (8) follows naturally. As a matter of fact, the k* moment of a sys-
tem matrix A is given by A~&+Db [3].

To conclude, we have extended Elmore’s delay to include a number of effects such as
slow excitations which were not previously considered by others. This definition not only covers
intrinsic and extrinsic delays, it also possesses a nice analytical property (11) simple enough for

logic-level timing simulation.
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