PROPERTIES OF GREEDILY OPTIMIZED ORDERING
PROBLEMS

Rina Dechter June 1986
Avi Dechter CSD-860048

PROPERTIES OF GREEDILY OPTIMIZED ORDERING PROBLEMS*

Rina Dechter and Avi Dechter**

Cognitive Systems Laboratory
Computer Science Department
University of California, Los Angeles, CA 90024

Abstract -- The greedy method is a well-known approach for
problem solving directed mainty at the solution of optimiza-
tion problems. The ability to characterize greedily optimized
problems (i.c., that can be solved optimaily by a greedy algo-
rithm) is important for the mechanical discovery of hucristics
and for the understanding of human problem solving. This
paper discusses the properties of certin classes of greedily
optimized ordering problems which are not covered under
currently available theories (¢.g., Matroids and Greedoids).

I. INTRODUCTION AND MOTIVATION

The greedy method is a well-known approach for problem
solving directed mainly at the solution of optimization prob-
lems. Greedy algorithms use an irrevocable search control
regime that uses local kmowledge to construct a giobal solu-
tion in a “*hill climbing’' process [7]. Usually, they involve
some real-valued function defined on the states of the search
space. The greedy control strategy seiects the next state so as
;o achieve the largest possible increase in the value of this
unction.

Our interest in greedy algorithms is twofold. First,
greedily optimized problems (ic., that can be soived
optimally by a greedy algorithm) represent a class of rela-
tively easy problems. Since many heuristics used in the solu-
tion of hard problems are refated to simplified models of the
problem domain [9], the ability to characterize easy problems
is important, particularly if the process of discovering hueris-
tics is to be mechanized. Second, greedy schemes are prob-
ably the closest to expiaining human problem-solving stra-
tegies because they require only a minimum amount of
memory space and because they often produce adequate
results. (Due to the smail size of human short-term memory,
it is very hard to conceive of a human conducting best-first or
even backtracking search, both requiring retention of some
properties of previously suspended alternatives.)

Three examples of greedily optimized problems, along
with their respective greedy swrategies are given below:

*This work was supported in part by the National Science
Foundation, Grant #DCR 85-01234

**R Dechter is also with the Artificial Intelligence Center,
Hughes Aircraft Company. A. Dechter is also with the
California State University, Northridge, CA

1. Minimum (Maximum) Spanning Tree.
Given a graph G =(V,E) wherc V is the set of ver-
tices and E is the set of edges, and given a set of
values associated with the edges, find a spanning tree
with minimum sum of valucs.

Greedy strategy: sclect edges in nondecreasing order
of their values as long as they do not create a cycle.

2, Job sequencing on a single processor.
Given n jobs with processing time p; and weight &;
for job i find a sequencing that will minimize the
weighted mean flow time:

- n k
F= zuk ZP jr
k=l j=I
where the jobs are indexed by their positions in the
sequence.

Greedy strategy : Sequence the jobs in a nondecreas-

ing order of _'p;
u

3 Optimal merge patterns.
Merge n files in pairwise manner so that the total
merging cost will be minimized. Each file has weight
w;. The cost of merging files i and & into a new file
is:

Wi

=W +wy.

Greedy strategy: Merge the two files which have the
lowest cost, then add the resuitant file to the list and
repeat (Huffman procedure).

All three problems involve the task of selecting in
some order, from a given set of elements (edges of a graph,
jobs, files), a subset (not necessarily proper) that satisfy some
property, so as to maximize (or minimize) the value of a cost
function defined on ail possible solutions. These problems
demonstrate a useful classification of greedily optimized prob-
lems. The first is an example of a selection problem, where
the cost function is not dependent on the order of the elements
in the subset of elements which constitutes a solution. Other
examples of greedily optimized selection problems are the
continuous knapsack problem and the problem of storing pro-
grams on a limited amount of tape. The second is an order-
ing problem, where the value of the cost functon is depen-
dent on the order of the elements as well as on their identity.
Other examples in this class are scheduling sequential search

{10} and minimizing maximum flow-time in a two machine
flow-shop [1]. The third problem is an instance of a tree con-
struction problem. These problems require the generation of
a tree which induces 2 partial order on the set of elements.

The solution of selection and tres-construction prob-
lems by greedy algorithms has been studied extensively.
Specifically, selection problems are covered by the work of
Edmonds and Gale [6] on the relationships between matroid
theory and greedy algorithm. Tree-construction problems are
summarized by the work of Parker [8] which characterizes the
set of cost functions defined on trees that are minimized using
the Huffman algorithm (which is a greedy procedure).

No comparable body of knowledge exists for charac-
terizing greedily optimized ordering problems. A generaliza-
tion of the Matroid structure, called Greedoids [4], represents
an attemnpt in this direction. However, many greedily optim-
ized ordering problems {including the job sequencing problem
mentioned above) cannot be patterned after either matroid or
greedoid theories. In this paper we present a theory intended
to fill this gap by characterizing cost functions that permit the
optimal solution of ordering problems by a greedy algorithm.

The remainder of the paper is organized as follows. In
section 2 we introduce the notion of a Problem Scheme, used
to describe classes of ordering problems, and state the neces-
sary and sufficient conditions for a problem scheme to be
greedily optimized. Section 3 discusses a special class of
greedily optimized problems, those which have uniform rank-
ing functions. In section 4 we focus on a particular type of
greedily optimized problems having a dominant solution and
provide some necessary and sufficient conditions for problems
to be in this class. The various conditions and their possible
uses are illustrated in section 5 with the aid of two examples.
A summary and conclusions are given in Section 6. The
theorems in this paper are given without proofs. The proofs
can be found in [2].

H. PRELIMINARIES: DEFINITIONS
AND NOMENCLATURE

Most, if not all, ordering problems can be described in terms
of a Problem Scheme P defined as a triplet (E,PAR,C)
where:

1. E is a set of elements.

2, PAR is a set of parameters, which are real valued
functions defined over the elements of E. Parameters
could be single-argument functions, in which case they
are denoted by o(i), B(i), etc., where i indexes the
elements in £. They could also be multiple-argument
functions, defined over all sequences of the same
number of elements and denoted by (i ,j), 8(i.f.k),
etc.

3. C is a real valued cost function. It associates a cost
with any sequence of subsets of elements in E, and is
dependent only on the the parameters of the elements
and on their order. The cost function is written as
C = C (o), where ¢ denotes a sequence of ¢elements in
E, and ©; is the element in position i in ©.

A problem scheme describes an entire ciass, or family,
of problems that are very similar in character. An instance of
a problem scheme P, denoted by P is specified by a subset of
elements E; of E along with the values of their parameters.

Let n be the cardinality of E;. The problem associated with
every instance Py of P is to find a sequence (e, " * - £ of all
the elements of E; such that C(ey,...,e,) is maximal (or
minimal) over all permutations of the elements.

For example, the probiem of sequencing jobs on a sin-
gle processor so as to minimize a weighted average of the
flow times can be formulated in terms of a scheme
(E,PAR,C) where E is a set of jobs, PAR contain two
parameters, p and u, that associate with each job a processing
time and an importance weight, respectively, and C is a cost
function defined on any sequence o of » elements as follows:

A]
C(o)= X u; 3.p; M
i=l j=1
where u; and p; are the parameters of the i’ element in the
sequence .

Definition: A greedy rule for P is a sequence of functions
f=1f j}
where @; are ail sequences of j elements.

A greedy procedure for solving any instance P; of P
using f = (f;} is defined as follows (maximization is assumesd

here and hereafter);
Greedy(P [):
1. choose € E such that f ((¢) = max {f {e") | e’€E}

2. after choosing e,e5, . . -, €;_ choose
yeE - {8], - ,3;_1} such thatfi(el, PPN ,e,-_hy)=
max {f,-(el, v .6,'_[,!) I IEE"{GI, e 'el'-l}}

Definition: P is greedily optimized (by f) if for every prob-
lem instance P; having n elements, the sequence (ey, &y)
generated by Greedy(P .f) has a maximum cost over ail per-
mutations of the elements.

In the balance of this paper we restrict our attention to -
problems with singlc-argument parameters and (unless
specified otherwise)} to greedy rules that satisfy

filey ... e)=file)=f(e). &)

In that case the greedy rule is defined over the set of parame-
ters associated with each element, i.e.,

fe)=f(o;,Bi) . 4

We will refer to such rules as ranking functions. Possible
ranking functions for the job sequencing problem discussed
above are:

Sy pi) = u; &)

and
Sl p)=piy; . (6)
A ranking function induces a weak order among the elements

of E and the greedy procedure simply chooses elements in a
nonincreasing order of f .

Delinition: A ranking function is optimizing for some prob-
lem scheme P, if for every problem instance, Py, it generates
an optimal order. A problem scheme is said to be greedily
optimized if it permits an optimizing ranking function.

We now give a necessary and sufficient condition for a
problem scheme to be greedily optimized. The condition is
stated for problems having a one-to-one cost function (i.e., no
two sequences have the same cost). It should be slightly
modified to hold for any cost function but this involves some
details that we choose to avoid for the sake of simplicity.

Theorem 1:

A necessary and sufficient condition for a problem scheme P,
having a one-to-one cost function, to be greedily optimized is
that for any two elements a and b (characterized by their
assigned parameters) and for all problem instances of P in
which they both participate, either ¢ precedes b in all optimal
sequences or b precedes a in all optimal sequences.

O

Consider, for example, a problem scheme defined by a
set of four elements {1,2,3,4) and some cost function. Sup-
pose that the optimal sequence for the instance defined by the
set {1,2,3} is (3,2,1), and that the optimal sequence for the
instance defined by the set {1,2,4} is (4,1,2). Then, this
schema does not have any optimizing ranking function
because elements 1 and 2 do not have the same ordering in the
two optimal sequences.

The verification of the condition given in Theorem 1
usually depends on the knowledge of the optimal solution of
the problem, and cannot be carried out by simple manipula-
tion of the problem representation. Therefore, its usefulness
is very limited. In the next section we present Stronger,
potentially more easily verifizble, requirements that constitute
sufficient (but not necessary) conditions for greedily optim-
ized problems.

1II. UNIFORM RANKING FUNCTIONS

A reasonable approach for obtaining sufficient conditions for
greedily optimizing problems is to extend the properties
required by Theorem 1 for the optimal sequence to all possi-
ble sequences. This Ieads to the following definition.

Definition: Let P=(E ,PAR ,C) and let f be a ranking func-
tion (not necessarily one-to-one) defined over the set of
parameters of each element in E. A ranking function f is
called uniform relative to P, if for ¢very problem instance and
for every sequence ¢ of elements in that problem instance,

Ce) 2 C(S) if f(G;) > f(Oiy) Q)
and
Co)=C(6)if £ (0;) =F (0;42)

for all :')'whcrc o' is the sequence resulting from the exchange
of the i and i +1** elements in ©.

Theorem 2:
A problem scheme P that has a uniform ranking function f, is
greedily optimized by it.

O

We next address the question of the properties the cost
function should have to guarantee the existence of 2 uniform
ranking function. Let X, be the set of all the sequences, in
all the instances of problem scheme P, for which element a
immediately precedes element &.

Definition: A cost function C is said to be pairwise pre-
ferentially independent (p.w.p.i.) if ¥ a, b cither

Cio)2C(o?) Voe I,
with sirict incquality for at least one sequence, or
Co)sC(o®) Yoeli,, (8
with strict inequality for at least one sequence, or
Co)=C(c®) VoeZX,,

where o® is the sequence resulting by the exchange of the
adjacent elements @ and b in 0. In the first two cases we say
that C prefers a on b (resp. b on a), and denote it by
a>,. b (resp. b>,,.a) Inthe thind case we say that C is
indifferent between a and b and use the notation a~,,, b.

definition: A pairwise preferentially independent cost func-
tion C is said to be acyclic if the relation >,,, is transitive,
ie.,

if @ 2,0b and b 2, ¢ then a >,,.¢ . (&)

This last property (i.e., that the relation *‘C prefers a
on b’* satisfies transitivity) is required to assure a weak order
{5] and does not foliow automatically from p.w.p.i. The fol-
lowing example shows that a cost function can be pairwise
preferentially independent but not acyclic. Consider a prob-
lem instance defined by a set of three elements (1,2,3) with a
cost function C that creates the following complete order
among all different sequences:

(321)>(132)>(213)>(312)>(123)>(231) .

For this instance, C is pairwise preferentially independent
where 3 is preferred to 2 and 2 is preferred to [. However, 1
is preferred to 3 thus violating transitivity.

Theorem 3:

A necessary and sufficient condition for a problem scheme
P =(E PAR C) to have a uniform ranking function is that c
is p.w.p.i. and acyclic. 0

In the remainder of this paper we use the term p.w.p.i
to include both properties. The next theorem suggests a pos-
sible process for identifying a p.w.p.i. cost function and for
discovering its optimizing ranking function.

Theorem 4:

Let P be a problem scheme P=(E,PAR,C) and 0 any
sequence of any subset of the elements in E. If the cost func-
tion C satisfies

C(o) - C(a') = K(d(0;) ~d (T 1)) (10)

for all i, where K is a nonnegative function defined on ¢ and
d is a function defined on the parameters associated with each
clement, then d is an optimizing ranking function. -

The process Theorem 4 suggests is: perform symbolic
manipulation on the cost function and &y to express the
difference between the cost of an arbitrary sequence and that
of the sequence which results from exchanging the i” and
i+1"* elements. If the expression satisfies condition (10) then
an optimizing ranking function is given by d in that expres-
sion.

As an example consider again the single-processor job
sequencing problem whose cost function is given in (l). Let
¢ be a sequence resulting from the exchange of the i % and
i+1" clements. We get that

; Pi i
C(0) = C(0") = (i1Pi — iPin) = Uit (5= By an

i B

In this case the ranking function suggested from the above
represctation is f (i) = -
i

The gap between the sufficient condition for a problem
scheme to be greedily optimized, namely, that the cost func-
tion be p.w.p.i., and the necessary condition as given in
Theorem 1, is not as wide as it may seem. For instance, in
problem instances of two elements the two conditions coin-
cide, because there are only two possible sequences, one of
which has maximum cost. This observation leads to another
way for discovering optimizing ranking functions for any
greedily optimized problem (not necessarily with a p.w.p.1.
cost function). .

Theorem 5:]

If P is any greedily optimized problem scheme then a ranking
function f is optnuzing if and only if it agrees with the
ordering dictated by the cost function on pairs of clements,
that is, for every two elements g and b, if C(a,b) > C(b,a)
then f(a) > f(b). a

The proof of Theorem 5 relies on our understanding
that the ranking function is optimai for all instances of a prob-
lem scheme and in particular for instances of two elements.
Practically all optimizing ranking functions for problems
known to be greedily optimized satisfy this property.

Theorem 5 suggests that an optimal solution to a
greedily optimized ordering problem is obtained by simply
sorting the ¢lements in the order dictated by applying the cost
function to pairs of elements. When a problem is not known
a’ priori to be greedily optimized, this method could be used
to either generate candidate ranking functions or to reject the
hypothesis that the problem is greedily optimized (if, for
instance, the pair-wise preference turns out ‘to be non-
transitive). When the objective is to find an explicit optimiz-
ing ranking function f then, by Theorem 5, candidate func-
tions must satisfy C (a,b)>C (b,a)—f (a)>f (b) for any two
clements a and b of E.

The above observations imply that cost functions
defined on pairs of elements can be used as building blocks
for generating cost functions that are greedily optimized. A
cost function C,, defined on pairs of elements with k& parame-
ters each, is said to be transitive if for every x,y,z € R

Calx.y) 2 Calyx) and C5(y2) 2 Cafz y) = Colx) 2C3{zx)(12)

Theorem 6: .
If a cost function C'; defined on pairs is transitive, then a
problem scheme P =(E ,PAR ,C), where C is given by:

€)= i .:‘:.Cz(e.t-ﬂj) (13)
Jutk=1

C(Cl,ez, -

is greedily optimized. a

IV, DOMINANT RANKING FUNCTIONS

A common greedy rule is the cost function itself, i.c.,
fi (e l,....,e") = C(e |,....,€j) . (14)

This means that at each step the algorithm chooses that ele-
ment which, if it was the last, would yicld best cost (ie.,
Myopic policy). The Greedoid Theory [4] is concerned solely
with this greedy rule.

Greedy mle (14) is optimal for some problem scheme
P if any instance P; of P has the following property: any
subsequence (e,....,¢;) of E; that has a maximal cost over all
subsets of size j of E; can be extended to a sequence of
length j+1 that has a maximal cost over all subsets of size
J+1of E;. Formally,

V(el, . ,e,)optimal over@,- 3 &€ Ef —{81, e ,e,-} (15)

suchthat (ey, ..., &,) is optimal on @y, .

When this condition is satisfied, the greedy ruie (14) generates
an optimal sequence, ©, satisfying the following property: any
subsequence (el,....,cj) of ¢ has a maximal cost over ail sub-
sets of size j of E;.” An optimal sequence that has this pro-
perty is called a dominant sequence. A greedy rule that gen-
erates dominant sequences for every probiem instance is said
to be dominant. A problem scheme (or its cost function) that
has a dominant greedy rule is said to be dominantly optim-
Ized. Ttis clear then, that a problem scheme that satisfies con-
dition (15) is dominantly optimized and its dominant
sequences can be obtained using the greedy rule (14).

. Dominance is not a necessary condition for the
optimality of a greedy rule. For example, the cost function

[J L]
CoO)=3u; Lp; (16)
=1 j=i
which, as we already know, is greedily optimized by the rank-
ing function f(u p) = E, is not dominant. To see this, con-

sider the three-element problem instance, in which each ele-
ment i is defined by its parameters (i;, p;):

€1 =(14), €2=(05,3) &1 =(5,10) an

The values assigned by the ranking function to the ele-
ments are: f(e) = 4, f{eq) = 6, f(e3) = 2, so0 that the optimal
sequence is: (e5,¢1,€4). Evaluating sequences of two ele-
ments we see that

C(eqe)=8.5 (18)
while
Clese) =105 (9

Obviously, the length-2 subsequence of the optimal sequence
is not maxirnal, and thus the ranking function is not dominant.

We now identify necessary and sufficient conditions
for a cost function to be dominantly optimized and discuss the
relationships between these conditions and those obtained for
non-dominant greedily optimized problems. We are
interested in identifying sufficient conditions which are
stronger than (14) and may be easier to verify. Again, we
focus on greedy rules which are ranking functions.

Since a dominant ranking function is optimizing, it is
determined by the order imposed by the cost function on pairs
of elements and should satisfy the condition of Theorem 5,
and since the cost function is defined for sequences of one ele-
ment, we must have f () =C(e) and:

ifCl{a,b)>C(ba)thenC(a) > C(b). (20)

To test this property, one should check the behavior of C(e)
as a ranking function: if inconsistency is found in the order
induced by C(e) and the order induced by the cost on pairs

(given that both orders are well defined) then the hypothesis
that the problem has a dominant optimizing ranking function
can be rejected. (It still may have a non-dominant optimizing
ranking function as in (17).)

The necessary conditions for a dominant cost function
requires the following definitions. Let Ij, denote all
sequences for which element a4 immediately precedes b when
b is the last element in the sequence.

Definition: A cost function is tail pairwise preferentially
independent (t.p.w.p.i.) if either

C(o)2C(0®) ¥V 6e I, @an
with strict inequality for at least one sequence, or
C@<C(o?) V oe I,
with strict inequality for at least one sequence, of
C(o)=C(0°) ¥ g« zl

In the first two cases we say that C prefers a on b {resp. b
on a) t.p.w., and denote it by a>,,,, b (resp. b>(p0.a)- In
the third case we say that C is indifferent between a and b
tp.w and use the notation a~, . b. If the relation is acyclic
then it induces 2 wezk order on the clements of E.

Definition: A cost function is order preserving if
Vi ifCley,....8)2C eye) and Cla)2Cle) (22)
then Cler..... o) 2C ey .. .0 i)

Theorem 7:
Let C be a cost function in P = (E ,PAR,C) which is both
order preserving and tp.w.pi. If C{a)2 C(b) implies that
C(ab)2C(b,a), then C is greedily optimized by a dom-
inant ranking function.

[

It is easy to show that a cost function which is
t.p.w.p.i. and order preserving is also p.w.p.i. Therefore, a
cost function satisfying the conditions of Theorem 7 is
p-w.p.i. and has a dominant optimizing ranking function. For
example, the function

n

LPyPy P (23)

i=1
is both p.w.p.i. and order preserving. The ranking function
f(p)=p results in a dominant optimal solution. For C(e}) 10
be an optimizing ranking function, it is important to verify
that the order induced by C {e) agrecs with that induced by the
p-w.p.i. property (i.c. the last condition of Theorem 7). For
instance, the cost function

n .
¥ (24)
“

is both p.w.p.i. and order preserving. However, the ordering
implied by C(p) results in a decreasing sequence while the
(optimal) ordering implied by exchanging adjacent clements is
nondecreasing in p. Indeed, this cost function is greedily
optimized with f (p) = —p, but is not dotninantly optimized.

Up to now all the “‘nice’” greedily optimized cost
function properties we described required the cost function to
be p.w.p.i. (or t.p.w.p.i). Since this property is not a neces-
sary condition it is natural to look for cost functions that are
greedily optimized but not p.w.p.i. We show that the p.w.p.i.
property may indeed be replaced by another strong property of
cost functions.

Definition: A cost function is strong order preserving if Vi
andVxyekE

C(el:""

Cley....sx)>Cle’y, ..

,)>Cle’y,....e7) = {25)

-ey)

For example, A lexicographical order zmong sequence
of integers is strong order preserving. The cost function

Cley . - rea) =3 le—tisn | 107 @6)
ixl

for ¢; € [0,10), is strong order preserving but not p.w.p.i.

Theorem 8:
If a cost function is strong order preserving then it is dom-
inantly optimized.

O

V.EXAMPLES

In this section we illustrate the ideas presented above by veri-
fying the properties of two greedily optimized problems.

The first problem is Sequencing Jobs according to
due-dates. Given n jobs, each associated with a deadline d;
and a processing time p;, find an optimal sequencing that
minimized the maximum job lateness defined by:

ma.x{F, _dl'}
Where F; is the flow time of job i defined by:

1
F;=3p;
=t
Jackson [3] had shown that the problem is p.w.p.i. and sug-
gested the due-dates as the ranking function.

Let ey=(p1.d,} and e; =(p,,d;) be a pair of jobs
with their processing times and due-dates. Using the process
suggested by Theorem 5, of identifying ranking functions
based on costs of pairs, it can be shown that

Cley,er) > Clege) — d) > d;, 27N
that is,
max{p,—-dy,py+py—dy) > max(py~dy,py+p—d,) (28)

= dy>d;.

The cost of one element is
C(¢1)=p1—d!. (29)

This cost does not provide the same ordering as the due-dates
and, therefore, the cost function is greedily optimized but not
dominant.

The second problem is Minimizing maximum Flow-
time in a two-machine flow-shop. Let (4;.B;} be a pair
associated with each job. A; is the work to perform on the first
machine of the shop and B; is the work to be performed on
the second machine. For each i A; must be completed before
B, can begin. Given the 2n values: AAg,.., 4, ,
B ,B,..B,, find the ordering of these jobs on cach of the
two machines so that ncither the precedence nor the occu-
pancy constraints are violated and so that the maximum of the
flow time F; is made as small as possible.

It has been shown [1] that the maximum flow-time is
minimized if job j precedes job j+1 when
min{A;,B;,)} < minfA;,,B;} . Go
Looking only on two-job problems, it is easily verified that
the ordering dictated by (30) coincides with the order deter-
mined by costs on pairs. If (4 ,8,) and (4,,B) are two jobs
then the cost function for the sequence (e ,22) is:
Cleyez) =Ay+max{As,B,} +B;. an
It can be shown that
Ay +max{A2,Blj +B, <« A2+max{A1,B,} +8 (32)
iff
min{A ,,B,} < min{A,,B} 33

This criterion is the one known in the literature, From the
transitivity property of the order induced by (33) we know
that there exist a ranking function £ that induces an indivi-
dual order. After some manipulation such a ranking function
can indeed be formed. It can be shown that if:

min{A B4} < min{fA,B) (34
then
sign(A,—B,) sign(Az-Bp . 35)
min(A,,B,) min(A, , B;)
Therefore the function
sign(A; = B;)
f@B)= “minA, By (36)

is a uniform ranking function for the problem. The cost for
one element only is Ay + B and it does not coincide with the
ranking function (36). We can therefore conclude that this
cost function is not dominant.

VI. SUMMARY AND CONCLUSIONS

This paper discusses the conditions for optimization
ordering problems to be greedily optimized and the relation-
ships between thesc conditions and the corresponding optim-
izing greedy rules. Within the greedily optimized problems,
we identify a class of pairwise preferentially independent and
acyclic (p.w.p.i) problems that are optimized via a tniform
ranking function, and show that several well known examples
fall into this class. We provide a procedure which, in certain
cases, can be used to verify the p.w.p.i property and to iden-
tify uniform ranking functions.

Observing that the optimal solutions to many greedily
optimized selection and tree-construction problems are dom-
inant, we study this property in connection with ordering
problems. This property is of particular interest because (as
human intuition usually dictates) it makes the cost function
itself an optimizing greedy rule. We show that p.w.p.i prob-
lems do not necessarily have dominant solutions, and that
dominantly optimized problems are not necessarily p.w.p.i.
We ziso give sufficient conditions for a problem to be both
p.w.p.i and dominantly optimized. The relationship between
the different classes is presented in Figure 1.

ACKNOWLEDGEMENT

We would like to thank Judea Pearl for contributing some of
the ideas developed in this paper.

1]

(2

3

{4)

(51

(6]

(71

81

9

[10]

lems Greadily Optimized
Ranking Function

PW.PL
Problems

TPW.P.1 an
Ordar Presrving

Figure ! - Relationships Among Classes of Greedily

blems

REFERENCES

Conway, RW., W L. Maxwell, and L.W. Miller,
Theory of scheduling, Reading, Massachusetts:
Addison-wesley Publishing company, 1967.

Dechter, R., "‘Properties of greedily optimized
problems,”” UCLA, Summer quartely , Los
Angeles, Cai, Tech. Rep. Computer Science
department, 1985.

Jackson, 1. R., *‘Scheduling a production line to
minimize maximum tardiness,’”” UCLA, Los
Angeles, Cal, Tech. Rep. Management Scicnces
Research Project, 1955,

Korte, B. and L. Lovasz, ‘*Mathematical struc-
tures underlying greedy algorithms.,” in
Proceedings Fundamentals of compusation
theory, Szeged, Hungary: 1981, pp. 205-210.
Springer Verlang's lecture Notes in Computer-
Science #117.

Krantz, D., D. Luce, S. Suppes, and A. Tversky,
Foundarions of Measurement, Vol 1., New-York
and London: Academic Press, 1971.

Lawler, EL., Combinatorial optimization, Net-
works and Matroids: Holt, Rinehart, and Wins-
ton, 1976.

Nilsson, N., Principals of Artificial Intelligence,
Palo Alto, California: Tioga, 1980.

Parker, D.S., ““Conditions for optimality of the
Huffman algorithm.,”” SIAM Journal of Comput-
ing, Vol. 9, No. 3, 1980.

Pearl, J, *'On the discovery and generation of
certain heuristics,”” Al Magazine, No. 22-23,
1983.

Simon, H. A. and J. B. Kadane, *‘Optimal prob-
lem solving search: all or none soiutions.,”
gm'ﬁcaiai Intelligence, Vol. 6, 1975, pp. 235-
47,

Dechter, R., & Dechter, A., *‘Properties of Greedily Optimized Ordering Problems,”” UCLA Cog-
nitive Systems Laboratory Technical Report CSD-860048 (R-57); Proceedings, 1986 Canadian

Al Conference, Montreal, May 1986.

