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Abstract

An algorithm for sorting on a mesh by alternately transforming the rows
and columns is presented. The algorithm runs in constant number of row-
and column-transformation phases (16 phases), an improvement over the
previous best upper bound of O(loglog m) phases, m being the number of
rows in the mesh. A corresponding lower bound of five phases is also
shown.
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1. Introduction

A two-dimensional mesh consists of mn processors organized in a rectangular grid of m
rows and n columns. Each pair of adjacent processors along the same row or column are con-
nected by a bidirectional communication link. Computation proceeds in synchronous parallel
steps, during each of which a processor may transfer a value to a neighbor or perform some ele-
mentary local operation. Each processor has a constant amount of local memory. The regularity
of the interconnection pattern and the modularity of the layout make the mesh an ideal model for
VLSI applications. 1t is therefore that considerable attention has been given to the study of algo-
rithms for this model.

In this paper we consider the problem of sorting on a mesh. It is defined as follows: a col-
lection of elements is distributed in the mesh, one element per processor; viewing the input as an
mxn matrix, sort the matrix into row-major order. Two commonly used row-major orders are:
(row, column)-lexicographic, and snake-like [Thom77]. We develop a sorting algorithm that
works by alternately transforming the rows and columns of the mesh. This approach is particu-
larly attractive for VLSI, since it lends itself easily to systolic implementation.

Recent results by Bilardi and Preparata [Bila85] and by Leighton [Leig85] have esta-
blished the VLSI optimality of the AKS sorting network [Ajta83]. Yet, the enormous constants
involved in the AKS network render it largely impractical. This further motivates the effort to
find simple sorting methods for regular interconnection structures such as the mesh.

The asymptotic lower bound for sorting on a mesh is (n+m) parallel steps, established
by Thompson and Kung [Thom77]. Numerous researchers have developed optimal algorithms,
including Thompson and Kung [Thom77], Nassimi and Sahni [Nass79], Kumar and Hirschberg
[Kuma83], Lang, Schimmler, Schmeck and Schroder [Lang85}, and Schnorr and Shamir
[Schn86]. All the above-mentioned algorithms proceed by dividing the mesh into submeshes,
working on the submeshes recursively in parallel, then combining the results in some fashion.
Recently, Scherson, Sen and Shamir [Sche86] have discovered an algorithm that is based on an
entirely different approach. It proceeds by alternately sorting the rows and columns of the mesh,
as follows.



Algorithm SHEARSORT [Sche86]
Repeat [log m|+1 times steps 1 and 2 below.
1. Sort all even-numbered rows to the right and all odd-numbered rows to the left.

2. Sort all the columns downwards.

This novel algorithm is considerably simpler than previous solutions to the sorting prob-
lem. The only computation required is sorting along a line, which can be done using the
straightforward odd/even transposition method [Knut73]. Consequently, the algorithm entails
relatively little control logic for the routing of data. Moreover, the row/column approach lends
itself naturally to systolic implementation. Notice, however, that SHEARSORT is not optimal;
consisting of logm sorting phases, it requires a total of O((m+n)logm) steps. Schnorr and
Shamir [Schn86] have subsequently developed an improved version of the algorithm, called
REVSORT, which runs in loglog m sorting phases and a total of O ((m+n)loglog m) steps.

Let us define a row-phase of a mesh algorithm as a maximal sequence of steps in which
all the data movement is along the rows. A column-phase is defined similarly. Thus, a row-
phase (column-phase) results in some arbitrary transformation of each row (column). An algo-
rithm that operates in alternating row- and column-phases is called a row/column algorithm. An
open question posed in [Schn86] is whether there exists a row/column sorting algorithm with
fewer than O(loglog m) phases (which is the number of phases in REVSORT). In this paper we
answer this question affirmatively. Specifically, we develop an algorithm that runs in a constant
number of phases (16 phases), requiring a total of O(m+n) steps, which is optimal. We use only
two types of transformations during a phase: sorting and rotation. Since rotation can be emu-
lated by sorting, the algorithm can be implemented entirely by means of basic
compare/exchange steps. We also prove that five phases is a lower bound for row/column sort-
ing. Our results demonstrate the viability of the row/column approach, providing motivation to
investigate its applicability to other problems.

The remainder of the paper is organized as follows. The sorting algorithm is presented in
Section 2. Its proof of correctness and complexity analysis are given in Section 3. In section 4
we show the lower bound. Concluding remarks are given in Section 5.



2. The Sorting Algorithm

We denote the positions in the mesh by the (row, column) pairs (i, j), where 0<ism-1
and 0<j<n—1. For simplicity, we assume m=2% and n=2% where 52t (the results can be general-
ized for other values of m and »n).

A slice is a submesh of size n**x n, consisting of all rows i such that kn “<ig(k+1)n%-1

for some given k20. A block is a submesh of size n”xn", consisting of all positions (i, j) such
that kn %2 <i<(k+1)n*-1 and In**<j<(I+1)n*—1 for some given k20 and /20. Figure 1 illustrates

these definitions.

It is convenient to analyze the sorting algorithm via the 0-1 principle [Knut73]. This
principle states that if a sorting algorithm works correctly on an arbitrary input of 0’s and 1°s,
then it works correctly on any input. Given a mesh with 0-1 input, we say that a given region
(e.g., row, slice, block) is dirty if it contains both 0’s and 1’s; otherwise it is clean. The correct-
ness of a sorting algorithm can be shown by identifying the regions of the mesh that become
dirty or clean at any given point. Clearly, upon termination, there should remain at most one

dirty row.

We begin by specifying several macros (or procedures), which serve as building-blocks
for the main algorithm. Each macro comprises a sequence of phases that accomplish a specific
transformation on the mesh.

Macro BALANCE

Applied to a (sub)mesh of size vxw, this macro ‘‘balances’ the distribution of 0’s and 1’s
among the columns, thereby reducing the number of dirty rows to at most min{v, w}. This is
accomplished by ‘‘dealing’’ the sorted elements of each column in round-robin fashion to all the
columns. The macro consists of the following three steps.

(a) Sort all the columns downwards.
(b) Rotate each row i (i mod w) positions to the right.

(c) Sort all the columns downwards.



Macro UNBLOCK

This macro distributes the elements of each block among all the columns (i.e., it “‘unblocks’’ the
blocks), thereby effectively generating a clean row from every clean block, and a (possibly) dirty
row from every dirty block. A similar idea is used in the REVSORT algorithm [Schn86], except
that the goal there is to ‘‘un-rectangle’’ arbitrary rectangles of area n, not just square blocks.
The macro consists of the following two steps.

(a) Rotate eachrowi (i mod nv") positions to the right.

(b) Sort all the columns downwards.

Macro SHEAR

This macro emulates one iteration of the SHEARSORT algorithm [Sche86]. Assuming that all
dirty rows are in one contiguous region, each pair of adjacent dirty rows are reorganized into one
clean row and one (possibly) dirty row, thereby cutting the number of dirty rows by half. This is
effectively accomplished by sorting alternate rows in opposite directions (i.e., ‘‘shearing’” the
rows). The macro consists of the following two steps.

(a) Sort all even-numbered rows to the right and all odd-numbered rows to the left.

(b) Sort all the columns downwards.

We now specify the main algorithm, called ROTATESORT, using the above macros. A
complete proof of correctness and complexity analysis are given in Section 3.



Algorithm ROTATESORT

1. BALANCE the mesh.
{ now there are at most » dirty rows )

2. Sort all the rows to the right.
{ now there are at most 2n * dirty blocks )

3. UNBLOCK the mesh.
{ now there are at most 2n* dirty rows )

4. BALANCE each slice as if it were an nxn “ mesh lying on its side.

{ now there are at most 6 dirty blocks )

5. UNBLOCK the mesh.
{ now there are at most 6 dirty rows )

6. Repeat macro SHEAR three times.
{ now there is at most one dirty row )

7. Sort all the rows to the right to obtain lexicographic order, or alternating
rows in opposite directions to obtain snake-like order.

w

Correctness and Complexity

To prove the correctness of ROTATESORT using the 0-1 principle, we need to show that
upon termination:

(a) there exists at most one dirty row;
(b) the dirty row is sorted in accordance with the choice of row-major order;
(c) the dirty row separates the clean rows of 0’s from the clean rows of 1’s.

We first prove the correctness of the three macros. Once the macros are validated, it is
straightforward to prove the main algorithm.

Lemma 1. After applying macro BALANCE to a mesh of size vxw, there remain at most
min{v, w} dirty rows.

Proof. The claim is trivial when v<w. We now discuss the case v>w. Step (b) of BALANCE
has the effect of ‘‘dealing’’ the elements of each column in round-robin fashion among all the
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columns. Since the columns were previously sorted in step (a), the difference between the
number of (’s that any two columns receive from a given column is at most one. Thus, the total
difference in the number of 0’s between any two columns after step (b) is at most w. Sorting the
columnns in step () thus yields at most w dirty rows. Moreover, all the resulting dirty rows are in
one contiguous region that separates the clean rows of 0’s from the clean rows of 1’s (see Figure
2. m

Lemma 2. After applying macro UNBLOCK to a mesh with k dirty blocks, there remain at most

k dirty rows.

Proof. Step (a) of UNBLOCK moves each of the n elements of a block into a different column.
Since there are k dirty blocks, the difference in the number of 0’s between any two columns after
step (a) is at most k. The Lemma follows since the columns are subsequently sorted in step (b).
As in Lemma 1, the dirty rows are in one contiguous region that separates the clean rows of 0’s
from the clean rows of 1’s. B

Lemma 3. After applying macro SHEAR to a mesh with £ dirty rows, there remain at most f-g-'l

dirty rows.

Proof. The proof is based on [Sche86]. We assume that upon invocation of SHEAR all the dirty
rows are in one contiguous region. Consider a pair of adjacent dirty rows. After step (a), the 0’s
are packed in opposite ends in the two rows (see Figure 3). Let z; and z, denote the number of
0’s in the rows. If z{+z,2n, then there is at least one 0 in each column in the pair; otherwise,
there is at least one 1 in each column. In either case, the difference between the number of (’s in

any two columns in the pair is at most one. Since there are rg] disjoint pairs of adjacent dirty
rows (when k is odd, one pair has only one dirty row), the total difference in the number of 0’s
between any two columns in the mesh at the end of step (a) is at most %1 The Lemma follows

since the columns are subsequently sorted in step (b). Asin Lemmas 1 and 2, the resulting dirty
rows are in one contiguous region. W



Theorem 1. Statements 1-7 below describe the configuration of the mesh after steps 1-7, respec-
tively, of algorithm ROTATESORT.

- RV R SR

After step 1 there are at most n dirty rows.
After step 2 there are at most 2n** dirty blocks.
After step 3 there are at most 2n “ dirty rows.
After step 4 there are at most 6 dirty blocks.
After step S there are at most 6 dirty rows.
After step 6 there is at most one dirty row.

After step 7 the mesh is sorted.

Proof,

The result follows immediately from Lemma 1.

The proof is based on [Schn86]. Notice that at the end of step 1 the columns are sorted.
Sorting the rows in step 2 thus results in the following configuration (see Figure 4): all the
0’s are in the upper-left corner of the mesh, whereas the 1’s are in the lower-right. The
number of dirty rows remains unchanged, i.e., at most n. However, the boundary between
the 0’s and 1’s is now monotonic (in the sense that it does not cross the same row or column
twice), and therefore traverses at most 2n"* blocks. Clearly, the blocks traversed by the
boundary are dirty, whereas the remaining blocks are clean.

The result follows immediately from claim 2 of this Theorem and from Lemma 2.

The 2n* dirty rows that remain at the beginning of step 4 are in one contiguous region
(Lemma 2). Hence, there are at most three dirty slices in the mesh. We now view each slice
as a mesh of size nxn* lying on its side, and apply BALANCE to it. By Lemma 1, this

% Moreover, the

reduces the number of dirty ‘‘rows’’ in each inverted slice to at most n
dirty *“‘rows’’ in each slice are in one contiguous region (see Figure 5). Hence, at the end of
step 4 there are at most two dirty blocks in each dirty slice, for a total of six dirty blocks in

the entire mesh.
The result follows immediately from claim 4 of this Theorem and from Lemma 2.
By Lemma 3, each application of macro SHEAR reduces the number of dirty rows in the

mesh by half. Thus, after [logo6]=3 applications, there remains at most one dirty row.
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Moreover, the dirty row separates the clean rows of 0's from the clean rows of 1’s. Hence,
termination requirements (a) and (b) are satisfied after step 6.

7. Step 7 sorts each row in accordance with the choice of row-major order, thereby satisfying
termination requirement (c). This completes the correctness proof. m

We now discuss the complexity of ROTATESORT. 1t is easy to see that the algorithm
runs in constant number of phases. Each application of BALANCE takes three phases, whereas
UNBLOCK and SHEAR each take two phases. Summing over the entire algorithm, one would
get a total of 18 phases. Yet, a closer look at the sequence of steps reveals that steps 2 and 3(a)
both operate on rows, and hence, by definition, constitute a single phase. The same observation
holds for steps 4(c) and 5(a). The correct number of phases is therefore 16.

The algorithm uses only two types of transformations during a phase: sorting and rota-
tion. Since rotation can be emulated by sorting, each row-phase can be implemented in O(n)
basic compare/exchange steps, using odd/even transposition sort [Knut73]. Similarly, a
column-phase can be implemented in O (m) compare/exchange steps. Thus, the total number of
basic steps in the entire algorithm is O (m+n), which is optimal.

It can be seen from Lemma 1 that when m<n, the application of BALANCE in step 1 is
redundant and can be replaced with a single phase that sorts all the columns downwards. Conse-
quently, for m<n, and in particular for square meshes, we obtain an algorithm with 14 phases
and O (n) basic steps.

4. A Lower Bound

An obvious question to be posed at this point is whether ROTATESORT is optimal in the
number of phases. In an effort to answer this question, we show that five phases is a lower
bound. However, we suspect that neither this lower bound, nor the upper bound of 16 phases are
tight.

The lower bound argument proceeds by constructing for any given algorithm an input
that requires five phases. We assume that the algorithm is comparison-based, i.e., that the values
of the elements are used only in comparisons with each other. The bound is valid regardless of
the sorting order being used (i.e., not just for row-major order).



We use the following notation. Two positions (i1, ) and (i3, j2) in the mesh are rela-
tively independent if i #i, and j,#j,. Position (i, f) is said to have row-rank r at a given point
in the algorithm, if at that point the element located in (i, j) is the r-th smallest element in row i.
The term column-rank is defined similarly. The row-rank and column-rank of position (i, j) at
the end of phase ¢, 121, are denoted RR, (i, j) and CR,(i, j), respectively.

We assume without loss of generality that all elements are distinct. The i-th smallest ele-
ment, 1<i<mn, is denoted e;.

The property of row/column sorting upon which the proof of the lower bound hinges is
the following.

Lemma 4. Let ¢, and ¢; be two elements that belong in the same column (in the same row,
respectively) in the sorted order, If at the end of a given column-phase ¢ (row-phase ) both ¢,
and e, are located in the same row (same column), then the algorithm requires at least 743
phases.

Proof. We only prove the case where ¢, and e, belong in the same column in the sorted order.
The other case can be shown by reversing the roles of row and column.

In order to move ¢, and ¢, from the same row to the same column after phase 7, we need
at least one more column-phase followed by a row-phase. Since phase #+1 is a row-phase, at
least 3 additional phases are required. M

To obtain the lower bound of five phases, we construct an input such that the premise of
Lemma 4 is satisfied at the end of phase 2 (clearly, two phases are always necessary).

Theorem 2. Any row/column sorting algorithm on a mesh of size mxn, where m28, n28,
requires at least five phases.

Proof. We distinguish between an algorithm that begins with a row-phase, and one that begins

with a column-phase. We discuss only the former case. By symmetry, the other case can be
shown by reversing the roles of row and column.
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Given that the first phase is a row-phase, we show how to construct, for any given sorting
algorithm, an input such that two elements which belong in the same column in the sorted order
are located in the same row at the end of the phase 2.

Let ! be some fixed integer, / Smn —max{m, n}, called the partition index. We partition
the input into three different classes with respect to /: elements e; such that i</ are called very
small, elements e; such that / <i <!+max{m, n} are called intermediate;, the remaining ele-
ments, i.e., elements ¢; such that i >/+max{m, n} are called very large. Regardless of the actual
value of /, one can always identify three intermediate elements: e, , €p, and ep, , such that e,
and €, belong in the same column in the sorted order, whereas €p, belongs in a different
column, This is because the number of intermediate elements (max{m, n} +1) is larger than the
number of rows or columns. We call each of €p, > €p, and €p, a pivot.

Consider an input I such that at the end of phase 1 the position of each pivot is indepen-
dent from the position of any other intermediate element (including the other two pivots). In
other words, no pivot ‘‘sees’” any of the other intermediate elements during phases 1 and 2.
Now, let us form another input by permuting the pivots in / among themselves in some arbitrary
fashion, leaving all the remaining positions unchanged. It can be seen that at the end of phase 2
cach element other than the pivots will occupy the exact same position under any such permuta-
tion, whereas the pivots will be permuted. This is because the three pivots have the same rela-
tive order with respect to any very small or very large element, thus rendering a permutation of
the pivots transparent to the algorithm during the first two phases.

We now prove that the premise of Lemma 4 is satisfied at the end of phase 2 by some of
the 3!=6 possible pivot permutations of input /. Let S denote the set of elements comprising the
three pivots plus the m—2 non-pivot elements that in the sorted order belong in the same column
as ep, and e,,. The positions occupied by the elements in S at the end of phase 2 are fixed up to
permutation among the pivot positions. Moreover, since there are m+1 elements in S but only m
rows, two of the elements in § must be in the same row at all times, particularly at the end of
phase 2. In other words, there exist two fixed positions, both in the same row, that contain ele-
ments from S at the end of phase 2 under all six permutations. Now, e,, can occupy one of the
two positions in at most four permutations. This leaves two permutations in which both posi-
tions are occupied by elements from S—{e,, }. Since these elements belong in the same column

in the sorted order, the premise of Lemma 4 is satisfied.
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To complete the proof of the theorem, we need to show how to construct input /. Let us
assume, for now, that the partition index / is a parameter. Later, we will show how to determine

its exact value.

First, we arbitrarily fix the order among the elements in each row of the input. This
enables us to uniquely determine, for a given algorithm, the row-rank of every position at the
end of phase 1. Notice that we are still left with complete freedom to decide which element goes
in which row. As will be seen below, knowing all the RR | values suffices in order to construct
the proper input.

We construct the input row by row, first taking care of the rows that contain pivots. To
this end, we need to guarantee that at the end of phase 1 the pivots will be in independent posi-
tions. Let (r1, c1), (r2, €2y, and (r3, ¢3) be three pairwise independent positions. To each row
ri, 15j<3, we allocate the following elements:

OX
(b) RR((r;, ¢j)—1 very small elements;

(c) n—RR{r;, c;) very large elements.

It can be seen that €, is the element of rank RR; (7}, ¢;) in its row. Hence, it will be in position

(r» ¢;) at the end of phase 1.

We now construct the rows that contain the remaining intermediate elements. We must
make sure that no intermediate element will be in column ¢4, ¢ or ¢35 at the end of phase 1. Let
us consider an arbitrary empty row k. We assume without loss of generality that RR(k, ¢1) <
RR(k, c2) SRR (k, c3) (if not, simply ‘‘rename’’ the columns). Since the number of elements
in a row is n, at least one of the following four inequalities must always hold.

n-3
(a) RR(k, cq)—-12 e
n—3
4
n—-3
4

(b) RRy(k, c2)—RR(k, c1)-12

(€) RR(k, c3)—RR(k, c2)-12

n—3

(@ n=RR1(k, c3)2 7
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n-3

Thus, it is always possible to allocate intermediate elements to row k. For exam-

ple, assume inequality (b) holds. First, we allocate to row k RR j(k, c1) very small elements and
n—RR {(k, ¢9)+1 very large elements. This leaves room for at least —’-1-;—3 additional elements.

Any intermediate element we now allocate to row & must, by definition, have a rank (among the
elements in the row) which is larger than RR ;(k, ¢1) and smaller than RR ;(k, c¢;). This guaran-
tees that at the end of phase 1 such an element will not be in any of the columns containing a

pivot. Inequalities (a), (¢) and (d) are handled in a similar way. Thus, all the max{m, n}-2
4 (max{m, n}-2)
=3 1 rows.

intermediate elements that are not pivots can be accommodated in [

This takes care of all the rows that contain intermediate elements. The remaining rows,
if any, can be constructed arbitrarily from the remaining elements.

The construction imposes the following constraints on the size of the mesh. We need

I-4 (max'{z 72_,311 ] -2)" rows for the remaining inter-
4 (max{m, n}-2)
n-3

three rows for the pivots, and as many as

mediate elements. Thus, the inequality m = +3 must hold.! It can be seen

that this occurs when m28, n=8.

It remains to fix the value of [, the partition index. Let % and v be the total number of
very small and very large elements, respectively, allocated to rows containing intermediate ele-
ments. [ can be set to any integer in the range [u+1, mn—max{m, n} -v]. &

5. Conclusion

We have presented an optimal algorithm for sorting on a mesh by means of alternating
row and column transformations. Qur results demonstrate that the row/column approach is
viable, providing motivation to investigate its applicability to other problems.

An interesting open question is to determine the VLSI complexity of ROTATESORT.
Another issue that remains open is to bridge the gap between the upper bound of 16 phases and
the lower bound of five phases. We suspect that neither bound is tight. Specifically, the large
degree of freedom in the construction in Theorem 2 suggests that there is room for improvement
of the lower bound. Also, it might be possible to reduce the upper bound by using more power-
ful ransformations.

1 The [ ] operator is not needed in the inequality since m is always an integer.
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Figure 2. Clean and dirty regions after sorting the columns
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Figure 3. Two adjacent dirty rows sorted in opposite directions

Figure 5. The mesh after step 4
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