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1. INTRODUCTION

The objective of the dissertation is the development of a set of tools to optim-
ize the use of multiprocessor computer systems in the simulation of the dynamics of
space structures. For the better understanding of the scope of the dissertation, the
requirements of the simulation of the dynamics of space structures are presented in
the first section. Section 2 presents the particular multiprocessor computer architec-
tures that are considered. Then, important software with which this computers have
to be equipped is discussed in Section 3. The objective of the dissertation and the
approach are discussed in Section 4, followed by a presentation of the contributions
of the dissertation in Section 5. An outline of the dissertation is given at the end of

the chapter, in Section 6.

1.I Dynamic simulation of space structures

There has been a great interest in the recent years in a new generation of
space systems, space transportation systems, such as the space shuttles and space sta-
tions. These vehicles contain large multibodied flexible mechanical structures. The
structure of a typical space shuttle is shown in Figure 1.1. The dynamic response of
space structures to any type of excitations is in general characterized by oscillations.
In the case of the space shuttle of Figure 1.1 for example, the application by the
operator of a force on one of the arms to change the orientation of the array that it
holds, would cause this arm and its array to oscillate until they reach the desired
steady state position. Due to their physical coupling with the arm, other bodies will
be forced to follow these oscillations. The oscillations contain high frequencies due
to the flexibility of some of the bodies. In addition, they are slowly damped due to

the lack of air friction in space.
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Figure 1.1: The structure of a space shuttle.

The optimization of the design of the bodies of the structure and of the sys-
tems to control their oscillations requires the estimation of several of their charac-
teristics, such as frequency content, amplitude and damping rate. The cost of creat-
ing space conditions prohibits the measurement of these characteristics by experi-
menting with real vehicles. Instead computer simulations must be performed so that
the dynamic response of the space structure is computed from its mathematical

model.

The need to advance the state of the art in these simulations is apparent in the
space industry. Aerospace engineers require tools that could permit high speed and
Jow cost simulations. The hardware and the architecture of modem computer sys-
tems has reached the speed required by such simulations. However, sufficiently

powerful software that fully exploits this computer power has not as yet been



developed. Moreover, most of the existing high speed computers are too expensive.

The need for higher speed and lower cost in the simulations is due to the
complexity of the mathematical models of the dynamics of the space structures. To
appreciate the complexity of the models the reader is suggested to refer to the widely
accepted DISCOS model [Bodl78], available commercially as a program. The larg-
est part of the computation involved in the manipulation of such mathematical
models by a computer, is the solution of a system of ordinary differential equations
(ODESs) with very high computational requirements. This ODE system expresses the
acceleration of the oscillating motion of the bodies and of the hinges that connect
them. The solution of this ODE system provides the velocities and displacements of

their oscillations, which in turn can provide any other information needed.
The solution of these ODE systems is time consuming because they are:
1. Large, consisted of hundreds of ODEs.
2. Highly oscillating and lightly damped.
3. Highly nonlinear including discontinuities.

The computational requirements are increased additionally by the need for high
speed and high accuracy solutions. In particular, the transient solution of the ODE
system has to be obtained in detail and accurately. The high frequencies of the oscil-
lations of the transient and the length of the transient due to the low damping of the
oscillations, require that a large number of solution points be computed. The accu-

rate computation of these points is a difficult task.



1.2 The multiprocessor computer architecture

With today’s technology single processor computers are not capable in gen-
eral to handle computations of size and complexity of the order of our simulations.
Experiments with computers with a single very powerful processor, reported in
[Gluc85], show their inadequacy to achieve high speed simulation of the dynamics
of the space shuttle shown in Figure 1.1. These experiments included among others
the CRAY 18, the Cyber 205 and large IBM mainframes, all employing a very
powerful general purpose processor. Even computer systems that employ a special
purpose processor as a peripheral device attached to a minicomputer host, called
peripheral array processor (PAP) computer systems, are shown to be inadequate.
Two of most powerful PAPs, the AD 10 and the FPS 164, were included in the
experimental comparison. The need for multiprocessor architecture computers is

apparent.

The multiprocessor computers can be classified as:
1. Shared memory distributed systems
2. Message passing distributed systems

Shared memory computers are tightly coupled distributed systems that
employ a number of parallel processors that share a common multiport memory. The
processors access the modules of the memory through an interconnection network.
The CRAY XMP computer is a well known example of shared memory system. The
shared rﬁemory systems are more efficient for computations which permit data
"transfer" between the processors without causing conflicts in accessing the common

memory. If there is a need to transfer the same data from one processor to all or



some of the others, memory access conflicts would occur. The resolution of the
memory access conflicts causes an overhead that reduces the speed of the simulation.
In Chapter 6 it is shown that the solution of the ODE systems in our simulation prob-
lems requires periodically some processors to transfer their results to several of the
other processors at the same time. This means that several processors have to access
the same data on a processor simultaneously resulting in a conflict. The computation
involved however, consists of long loosely coupled processes. As a result, the inter-
processor communication is relatively infrequent, and the memory access conflict

resolutions overhead would not be significant.

Message passing computers are either loosely coupled or tightly coupled dis-
tributed systems that employ a number of processors with their own memory that are
interconnected via a network. Loosely coupled systems use simple inexpensive com-
munication networks, such a small number of busses. They are preferable for com-
putations with fairly independent processes, such as ours. The Cm" is a well known
example of loosely coupled system. Similar to the memory access conflicts for
shared memory systems, bus access conflicts cause an overhead in loosely coupled
systems. Again, the relatively infrequent communication required would not cause a
significant overhead. Tightly coupled systems use more sophisticated and expensive
communication networks to reduce the communication overhead. They are more
appropriate for computations with highly dependent processes. A network of
moderate sophistication would be an appropriate compromise between speed and
cost. The CAPPS system [Gluc85] developed by Paragon Pacific is an interesting

example based on this compromise. It is discussed briefly in Appendix A.



The conclusion of the above discussion is that both shared memory and mes-
sage passing multiprocessor computers can be appropriate for our computations. The
studies in this dissertation are applicable to both architectures. Abstract models of
the two architectures that are adapted are shown in Figure 1.2 and 1.3. It should be
realized that in addition to memory or bus access overhead, both architectures
encounter another overhead due to the execution of the protocols of communication.
A drastic reduction of this overhead can be achieved by using a input/output (I/0)
system that operates relatively independently from the other operations within the
processors. The execution of I/O operations of the processors can then be over-
lapped to a great extend with the arithmetic or other operations of the processors.

The models in Figure 1.2 and 1.3 take this approach.
1.3 Software for the simulation process
The simulation process consists of:

1. The mathematical modeling of the dynamics of the space structure.

2. The development, from the mathematical model, of the application program

to be executed by each processor of the computer.

3. The translation of the application program by the system software of the
computer, to machine code executable by the hardware of each of the proces-

Sors.

4, The execution of the machine code by the processors that produces the simu-

lation results.
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Figure 1.2: Abstract model of a shared memory multiprocessor computer

The efficiency of a simulation for a specific computer is primarily determined
by the simplicity and accuracy of the mathematical model and by the speed and
accuracy of the numerical algorithm used to compute the dynamic response of the
space structure from its model. Benchmarks have shown clearly that currently avail-
able computers cannot efficiently handle detailed models. Therefore the design
analysts must provide simplified models to the computer. These simplifications
entail the elimination of those terms in the model that have a negligible effect on the

solution, so that the accuracy of the simulation is not reduced excessively.
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Figure 1.3: Abstract model of a message passing multiprocessor computer

Straightforward modeling results in an implicit formulation of the ODE sys-
tem, as D(x,x,u,t)=0, where the state variables x(t) and the input variables u(t)
represent the velocities and the excitations of the structure. This is the only feasible
analytic modeling for large and complex problems like ours. The model DISCOS is
an implicit one. Unfortunately, simplifications on an implicit ODE system are prac-
tically impossible for large systems. Terms that could be eliminated are not easily

identifiable. Therefore the analyst has no direct control over the complexity of his



model. On the other hand, explicit formulation of the ODEs, i.e. formulation as state
equations Xx=F(x,u,t), permits simplifications. Unfortunately, the size and complexity
of our simulations prohibits explicit formulation analytically. The task of producing
an explicit model from an implicit model has to be left to the computer. Symbolic
manipulation programs are now available that can perform such a task. The SMP
program [Cole81], an advanced version of MACSYMA, can reformulate an implicit
ODE system ®(x,x,u,1)=0 as A(x,H)x=b(x,u,t). This is not exactly an explicit formu-
lation, but one that can be termed semiexplicit. It has however, the characteristics of
an explicit formulation that terms that can be eliminated are easy to identify. The
semiexplicit formulation is obtained by gathering together in matrix form the
acceleration terms on the left hand side and the rest of the terms on the right hand

side.

The simulation process can be depicted as shown in Figure 1.4. This is not
the only possible approach but it seems to be the most efficient. Other approaches
skip the semiexplicit formulation and develop the application software based on
numerical techniques to solve implicit ODE systems. The inefficiency of the implicit

model however then limits the performance of the simulation,

1.4 The objective and approach of the dissertation

Although sufficient techniques and software exist for the modeling and the
translation tasks, this cannot be claimed for the most important part, the application
software generation, This task is heavily dependent upon the particular hardware.
Each computer, or limited class of computers, requires an individual application

software generator, However, concepts and techniques can be developed, that can
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Figure 1.4: The simulation process using a symbolic manipulation program

apply to the generation of application software for any multiprocessor computer. The
objective of this dissertation is the development of tools that facilitate the design and
development of the application software generator for any multiprocessor computer
system with an architecture such as the one shown in Figures 1.2 or 1.3. The criteria

for the development of the design tools are the criteria for the efficiency of the
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application software generator. These criteria should be related to the ultimate goal
of the maximization of the speed and of the minimization of the cost of the entire

simulation process.

The speed of a simulation depends primarily on the speed of the solution of
the ODE system involved. The solution speed in turn is primarily dependent on the
efficiency of the model and of application software. Provided that the model has
been optimized, the primary design objective of the application software generation
is the maximization of the speed of the solution. This maximization is constrained by
the required accuracy of the solution and by the hardware. Minimum hardware, i.e.
minimum number of processors, is required to minimize the simulation cost. The
maximization of the speed itself is an important contribution to the minimization of

the cost as well.

A significant reduction of the simulation cost can be achieved by having a
simple and modular enough application software generator. A simple and modular
generator has several desirable features. It is easy to implement, to debug and to
modify. In addition, it makes the prediction of performance easier. These are impor-
tant contributions to the minimization of the simulation cost. The speed of the gen-
erator is not crucial because the application software can be, and usually is, gen-
erated in advance of the execution of the simulation. The translation of the applica-
tion program to machine code is also performed in advance. The simulation time is
therefore reduced to the time of the actual execution of the machine code. The time
spent in the automatic generation of the application software however, is desirable to
be short in order to minimize the entire simulation cost. A simple generator would,

in most cases, also be faster,
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The criteria for the development of the design tools are:

1. Maximization of the speed of the solution of the ODE system: The applica-

tion software to be generated should provide a fast enough solution.

2. Simplicity of the tools: The generator, and therefore the tools for its develop-
ment, should be simple and should provide the application software as

rapidly as possible.
The solution speed in particular, can be maximized by:
1. The minimization of the computational load.

2. The optimization of the distribution of the minimized computational load

among the processors.

The computational load depends primarily upon the numerical algorithm that is used
to solve the ODE system. Therefore, the minimization of the computational load can
be achieved by an appropriate selection of the algorithm. The appropriate implemen-
tation of the algorithm on the multiprocessor architecture optimizes the computa-
tional load distribution. The design tools that are developed in this dissertation

include:

L. A procedure for the selection of the appropriate numerical algorithm to solve

the system of ODEs that appears in the mathematical model.

2. A procedure for the multiprocessor implementation of the algorithm on a par-
ticular computer.
3. A procedure for the prediction of the performance of the particular computer.

12



The procedure for algorithm selection is based on the performance evaluation
of a set of candidate algorithms. It accepts as inputs a description of the ODE system

and of the candidate algorithms, as well as the bounds on the performance, and per-

forms a:
1. Specification of the optimal characteristics of each algorithm.
2. Assignment of a relative value of performance to every algorithm with its

optimal characteristics.

3. Selection of the algorithm with the highest performance.

The procedure for the multiprocessor implementation of the selected algo-
rithm accepts as inputs a description of the ODE system, of the algorithm to be used

and of the computer architecture, as well as the performance bounds, and performs a:

1. Selection of the number of processors.

2 Partitioning of the computation into a number of tasks.

3. Assignment of these tasks to the processors for execution.
4, Scheduling of the execution of the tasks on each processor.

The procedure for the prediction of the performance of the computer is a part
of the procedure for the multiprocessor implementation of algorithms. It accepts as
inputs the computer architecture and the results of the multiprocessor implementa-
tion of the algorithm, and provides timing information of the computation. This
information includes the time to obtain one point of the solution and the efficiency of

the utilization of the parallel processors. The performance prediction can be imple-
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mented with the help of any commercially available computer system simulator.

An analysis of the performance of the procedures for the selection of algo-
rithms and for their multiprocessor implementation is included. This analysis is
based on a set of benchmark ODE systems that are constructed synthetically to con-
tain all the required characteristics, as well as on the architecture of the multiproces-
sor computer CAPPS. The verification of the procedures is an important byproduct

of the performance analysis.

1.5 Contribution of the dissertation

The results of this dissertation aim to improve the state of the art of advanced
simulations of dynamic structures, with particular emphasis on the structures of the
modern space transportation systems. Its particular contribution is in the area of
efficient use of multiprocessor computers to be used for such simulations. More gen-
eral, the dissertation aims to be an important contribution to the field of distributed
processing of ODEs. Although it focuses on the solution of systems of ODEs that
appear in the dynamic simulation of space structures with computers of particular
multiprocessor architectures, great effort is maid to keep the procedures applicable to
a wide variety of cases. In general, the procedures and results of the dissertation pro-
vide useful indications for the approach to be taken in case of different multiproces-
sor architectures, of ODE systems with different characteristics and formulation, and

of different algorithms.

As a result, the procedures and the results of this dissertation are useful in
other dynamic structures applications including aerospace and robotics. The simula-

tion of the dynamics of helicopters or the arms of robots for example, constitutes

14



similar computational requirements and therefore can very well be approached in a

way similar to the one proposed for space structures.

In addition to the development of the application software generator, the

design tools can be useful starting points for:
1. The design of parallel numerical algorithms.

2. The design of the architecture of multiprocessor computers to be used for

computations that involve the solution of ODE systems.

3. The design of system software, such as distributed compilers, for such mul-

tiprocessor computers.

1.6 Organization of the dissertation

The main purpose of this chapter is the presentation of the objective of the
dissertation and the approach that will be taken to achieve this objective. Chapters 2,
3, 5 and 6 are devoted to the procedure for the selection of the algorithm. Chapter 2
introduces the procedure at a high level that is applicable to any type of ODE sys-
tems. Chapter 3 specifies the implementation of the procedure in the case of ODE
systems that appear in the simulation of the dynamics of space structures. The selec-
tion of the candidate algorithms to solve this particular class of ODE systems is
included. Chapter 6 evaluates the performance of the procedure when applied to

benchmark ODE systems that are selected in Chapter 5.

Chapters 4, 5 and 7 are devoted to the procedure for the multiprocessor
implementation of algorithms. Chapter 4 introduces the procedure and specifies

ways for its implementation. It includes suggestions for the prediction of the

15



performance of the computer. Chapter 7 evaluates the performance of the procedure
when applied to benchmarks selected in Chapter 5. An important byproduct of this
performance analysis is the comparison of the candidate algorithms for the simula-

tion of space structures and the indication of the most advantageous of them.

Finally, Chapter 8 constitutes the conclusion of the dissertation. It includes a
summary, a conclusion and suggestions for improvements and complementary future

work.

Several Appendices appear at the end of the dissertation. These Appendices
contain specialized information, that is more or less peripheral to the main objective
of the dissertation, but could be of interest to some readers. Appendix A presents a
description of the architecture of the CAPPS computer, an interesting message pass-
ing distributed system, which is selected in this dissertation to demonstrate and ver-
ify the proposed procedures. The benchmark ODE systems used for the performance
analysis of the procedures are shown in Appendix B. Implementation of several
modules of the multiprocessor implementation procedure, as FORTRAN subrou-
tines, are presented in Appendix C. This appendix includes a subroutine that gen-
erates the benchmarks and subroutines that implement the two most interesting algo-

rithms, the Explicit Power Series Expansion and the Adams Bashforth.

1.7 Summary

The design of the structure and the controls of the space systems, particularly
of the recently developed space transportation systems, requires computer simula-
tions of their dynamics. There is need to improve the speed and cost of these simula-

tions, which require the solution of a large, nonlinear, highly oscillating and lightly
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damped system of ODEs. The long transient solution has to be obtained with high
speed, high accuracy and low cost. Simplifications of the mathematical model of the
ODE system are very important means to increase the speed of their solution. A
semiexplicit formulation of the ODE system as A(x,Dx=b(x,u,t) has been proposed,
because it permits the control of the complexity of the mathematical model. A sem-
iexplicit ODE system can be derived automatically from the implicit formulation,
which is easier to develop manually, using a symbolic manipulation program. The
size and complexity of these ODE systems requires multiprocessor computers. The
results of the dissertation are applicable to both message-passing and shared memory

multiprocessor architectures.

The dissertation aims to improve the state of the art of the dynamic simula-
tion of space structures. Its particular contribution is in the area of the efficient use of
multiprocessor computers for such simulations. The objective of the dissertation is
the development of a set of tools that facilitate the automatic generation of the appli-
cation software for each processor. In particular, these tools include the selection of
the appropriate algorithm to solve the ODE system, the multiprocessor implementa-
tion of this algorithm, and the prediction of the performance of the multiprocessor
computer. The criteria for the development of the design tools include the maximiza-
tion of the speed of the solution of the ODE system and the simplicity of the tools.
These criteria are related to the maximization of the speed and the minimization of

the cost of the simulations.

More general, the dissertation aims to be an important contribution to the
field of distributed processing of ODEs. The design tools that are developed are gen-

eral enough so as to be applicable to a wide variety of ODE systems, algorithms and

17



multiprocessor computers. Therefore, the results of the dissertation can be useful to
other engineering applications as well. The design tools offer a base for the develop-
ment of parallel algorithms, and for the design of system software and hardware for

multiprocessor computers to be used for similar applications.
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2. SELECTION OF ALGORITHMS

As discussed in the introductory chapter, one of the objectives of the disserta-
tion is the development of a procedure which can facilitate the automatic selection of
an appropriate algorithm to solve ODE systems that appear in the mathematical
models of the dynamics of space structures. The purpose of this and the following
three chapters is to propose such a procedure. This chapter is devoted to the intro-
duction of the procedure at a high level that is applicable to any type of ODE sys-
tems, The next chapter specifies the implementation of the high level components of
the procedure in the case of ODE systems that appear in the models of the dynamics
of space structures. Chapter 5 evaluates the performance of the procedure when
applied on a benchmark ODE system that is proposed in Chapter 4. Here, the objec-
tive of the procedure is presented in the first section. Then, Section 2 introduces
briefly the terms and issues in the numerical solution of ODEs that are related to the
algorithm selection. This is followed by an approach to develop the procedure, sug-
gested in Section 3. Section 4 is devoted to the presentation of the procedure itself. A

brief informal validation of the procedure is given in the final Section 5.

2.1 The objective of the procedure

There has always been a great interest in the automation of the selection of
algorithms for various classes of problems, including the solution of systems of
ODEs. The selection of an algorithm to solve ODE systems is probably the most
difficult; due to the usually large number of candidate algorithms for every ODE sys-
tem. Despite of the great demand however, no software exists as yet to perform such
a selection task. The reason probably is, that the problem is too wide and compli-

cated to be solved in its generality. Different ODE systems may require a
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significantly different approach for selecting the appropriate algorithm for their solu-
tion. In addition, although the concepts and tradeoffs in selecting an algorithm are
more or less understood, no complete and organized procedure that incorporates
these concepts and tradeoffs, has as yet been suggested. As a result, analysts are

forced to improvise every time they encounter such task.

The objective of this chapter is to propose a procedure based on an organized
and quantitative strategy to select an algorithm. The procedure is modular enough
so that its automation is feasible. It should be realized that the procedure aims to pro-
vide only a helpful starting point for the automation of the algorithm selection, The
complete coverage of the details for different ODE systems and the actual imple-
mentation of the procedure is beyond the scope of this dissertation. A secondary pur-
pose for developing the procedure is to investigate which algorithms might be the
most advantageous to solve ODE systems that appear in the dynamic simulation of

space structures. This investigation takes place in Chapter 5.

2.2 Numerical solution of systems of ODEs

Numerical algorithms work in a stepwise fashion. The entire solution is parti-
tioned into a sequence of points. At every step, the algorithms compute the next
point of the solution by using a recursive formula. The recursive formulations of the
algorithms are approximate due to the finite number of terms that they incorporate.
As a result, the points of the solution that the algorithms provide can only approxi-
mate the exact solution. The algorithms therefore operate like an approximate sam-

pling of the exact solution.
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An algorithm can be characterized by the order and step size of its formula.
The order m denotes the number of terms in the formula. A different formula will
result for different number of terms. It is apparent, that every algorithm has an
infinite number of formulas. The step size h denotes the time distance between two
consecutive points of the solution. In other words, the step size represents the inverse
of the sampling rate of the solution. The selection of an algorithm means the selec-

tion of one of its formulas with particular order and step size.

For many ODEs, the use of constant order and step size would be preferable
to variable ones. If variable order and step size are used for some ODE, a separate
selection for each point of its solution must be made. This may result in a more
optimal selection than the constant one. However, the decision process that has to be
executed for each point of the solution can cause a significant overhead that could
not be possible to compensate by the use of a more optimal order and step size. This
is particularly the case for ODEs whose solution requires the same order and step
size throughout most of the solution domain. As it is explained more clearly in the
next chapter, the ODEs that appear in the models of the dynamics of space structures
belong to this case. Another serious problem with the selection of variable order and
step size is the complexity that is introduced in the programming of the processors.
The conclusion is that variable order and step size should be used only in certain
unusual cases. This dissertation is limited to the case of using constant order and step
size, except under specir;\l conditions such as the solution of the ODEs across discon-

tinuities.

Tt should be realized that the solution of different ODEs may have different
computational needs. As a result, different algorithms or different formulas of the

same algorithm may be suggested as optimal for each ODE of the system. This
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would result in the partition of the entire ODE system into groups of ODEs each of
which would be solved with different means. Algorithms that are used with different
step size and order for different groups of ODEs are called "multi-rate” in distinction
to "single-rate" algorithms. Multi-rate implementation of algorithms is discussed in
detail in Chapter 3. The use of different order and step sizes can be handled rela-
tively easy. The use of different algorithms however, may be very complicated to
implement. With the exception of special cases, the same algorithm should be used
for all the groups of ODEs. The approach that is proposed in this chapter is limited
to the use of the same algorithm for the entire ODE system. The extension to the
case of selecting different algorithms for different ODEs is fairly apparent. As
explained in the next section, multiple application of the procedure must be per-

formed for different combinations of candidate algorithms.
2.3 Development of the procedure

According to the previous section, the algorithm selection procedure must:

1. Partition the entire ODE system into groups of ODEs that require the same

means for their solution.
2. Suggest the algorithm that should be used for the entire ODE system.

3. Specify the order and step size of the particular formula of the algorithm that

should be used for each of the groups of ODEs.

The criteria for the development of the algorithm selection procedure were stated in

the introductory chapter as:

1. Maximization of the speed of the solution of the ODE system.
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2. Simplicity of the procedure.

A procedure that meets these criteria should select an algorithm which provides a
sufficiently accurate solution of the ODE system with the highest speed. In addition,
this procedure should be simple and modular enough so that it is easy to automate

and should select an algorithm relatively rapidly.

The selection of the most appropriate algorithm including its order and step
size for each group of ODEs, can be based on the comparison of the performance of
a set of candidate algorithms. The performance of an algorithm can be measured as a

combination of its:

1. Speed
2. Accuracy
3. Stability

The definition of this combination depends on the simulation requirements. A simple
but sufficient approach is the linear combination. With this approach, the perfor-
mance P of an algorithm can be expressed as the following weighted sum of its

speed S, its accuracy E and its stability Q:

P=ws S+ wg E+WQQ
(2.1)

The weights wg, wg and wgq are the same for every algorithm and should be left as
constant parameters of the algorithm selection procedure. The assignment of these

weights is left to the user.
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The speed S of an algorithm can be measured by the inverse of the time to
compute one point of the solution of all the ODEs relative to the real time, averaged
over all the points of the solution. The time to compute one point of the solution
depends on the order of the formula. The step size at every point of the solution, can
be a measure of real time. For an algorithm to be able to provide the solution at real
time speed, it has to be able to compute every succeeding point of the solution
within a time that does not exceed the corresponding step size. If the time required
by the algorithm to obtain the pth point of the solution of the ith ODE is t;,(mjp),
there are N ODEs and the solution consists of n points, then the speed of the algo-

rithm can be approximated as:

S 1 i . {hip }
=— min
n lsisN lnslgﬁ{tip(mip)} (2.2)

The speed increases with the step size and decreases with the order. The speed of an
algorithm can therefore be controlled by tuning its order and step size. This control
is essentially equivalent to the selection of the appropriate formula of the algorithm.
As explained in the preceding section, only constant order and step size are to be
considered, except in special cases. Then the speed of the algorithm can be approxi-

mated as:

S 1 i . {hi]
=— min
n SjisisN | max (Tip(m;)} 2.3)

The evaluation of the speed of an algorithm has to incorporate the multiprocessor
implementation of the algorithm. An important product of the procedure for the mul-

tiprocessor implementation of algorithms, presented in Chapter 6, is the evaluation
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of the speed of the algorithms.

The accuracy E of an algorithm can be measured by the inverse of the error
in the solution due to the approximations introduced by the formulas of the algo-

rithm, averaged over all ODEs. Typical measures of this error include:

1. The error 1, introduced at each point p of the solution of the ith state vari-
able. This is termed the local error of the algorithm. It can always be

expressed as:

Li(tp) = Bip hip® xi(ﬁp)(mwl) where t,, <&, <t;, k>0 =
(2.

where the coefficient B and the integer k are characteristics of the formula
used by the algorithm and depend on the order of the formula. The local
error essentially represents the remaining term of the approximate formula.
When the local error is measured as a percentage of the magnitude of the

solution x;(tp) at the particular point, is termed the relative local error.

2. The accumulated local error over the entire solution. This is termed the glo-
bal error g of the algorithm. When the global error is measured as a percen-
tage of the magnitude of the solution x;(t,) at the particular point, is termed

the relative global error G.

The selection of the error measure depends on the simulation requirements, or
equivalently on the kind of accuracy required for the solution. The algorithm selec-
tion procedure is not sensitive to the particular error measure. Therefore, the adapta-
tion of a particular error measure does not reduce the generality of the procedure.
The relative global error is considered here, because it is the most representative.

The accuracy can then be expressed as:
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1 N 1

E=xZ where <&, <t, k>0
Nis1z motl | x;(Ei) ™t bk <Gip <l Ki
. Z Bip hip'p il L
"l xi(tp)
or for constant order and step size:
N
E= -;I—E 1
= |Bi HAR 4 ' (2.5)
_Llax@™
1 n =1 Xi (tp)

Similar to the speed, it is apparent that it is possible to control the accuracy of an
algorithm by tuning its order and step size. This control is equivalent to the selection
of the appropriate formula. It should be realized that there exist an upper bound on
the accuracy of each algorithm. Therefore, some algorithms may not have any for-
mulation that can provide the desirable accuracy and therefore have to be excluded

from further consideration.

The stability Q can be measured by the rate of error accumulation throughout
the computation. If an algorithm accumulates error at a high rate, the solution
diverges from the actual one and the algorithm is unstable. A stable algorithm on the
other hand, even if its accuracy is low, does not accumulate error at a high rate. As a

result, it provides a solution that converges to the correct one,

A standard measure of the stability of an algorithm of a particular order and
step size is the "stability region”. The stability region of an algorithm refers to a

linear ODE:

X = Ax (2.6)
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where A in general is complex. Any numerical algorithm applied to such ODE can

be formulated as:

Xpr1 = O, k)

The stability region of an algorithm is the locus of points in the complex plane s=hA

that:

|®(s)| <1 (2.8)

The boundary of the stability region in the direction of the angle 0 <8 <2r, is
defined as the locus of the points s(8) such that:

O@s)=1=¢® 2.9)

The solution of (2.9) requires the solution of a linear polynomial equation. It should
be recognized that X is the eigenvalue of the ODE (2.6). An algorithm with a specific
step size cannot provide a stable enough solution of an ODE whose eigenvalue A
violates (2.8). If such violation occurs, hA lies outside the stability region. If the
point hA lies within the stability region, the algorithm has the effect of damping the
solution. This prevents the divergence of the solution with the small accuracy cost
introduced by the damping. The closer to the boundary of the stability region this
point hA is, the lighter the damping. In the case of a linear system of N ODEs with
eigenvalues {lj, j=1...,N}, all the points {hilj, i,j=1,...,.N} must fall inside the stabil-

ity region.

The concept of the stability region can be extended to a nonlinear ODE sys-
tem by referring to its linearized equivalent. The stability of an algorithm to solve a
nonlinear ODE cannot be assured on the basis of the stability region of the
equivalent linearized ODE. A trial and error selection of the order and the step size

has to be performed. Every trial consists of the actual solution of the nonlinear ODE
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with a new doubled or halved order and step size. The order and step size that are
selected on the basis of the stability region of the linearized ODE, are usually an
excellent starting point of the trial and error process. In most cases it is unnecessary

to improve this initial order and step size.

The stability of an algorithm depends on its order and step size. Therefore, it
is possible to control the stability of an algorithm by tuning its order and step size.
Upper limits of the required stability may disqualify some algorithms from further
consideration. The stability region of an algorithm is a nonlinear function of its
order and a linear function of its step size. Its dependence on the order is mostly
monotonous, either increasingly or decreasingly, depending on the algorithm. For
different order, it has a different shape. It is always decreasingly monotonous with
the step size. For a specific order the stability region is enlarged or diminished pro-
portionally to the step size. The selection of the largest order and the smallest step
size of an algorithm that provides a stable solution of a given ODE system is
equivalent to the selection of the formula with the smallest stability region that
includes all the points {h;A;, i,j=1....,N}. In addition, the stability region should be

such that these points are not far from its boundary.

If one or more of the points {h;A;, i,j=1,...,.N} does not fall in the stability
region of an algorithm, the stability of this algorithm should be counted as zero.
Otherwise, the stability of an algorithm can be measured as the amount that its sta-
bility region exceeds the absolute minimum stability region required, as defined by
the poimts {h;A;, i,j=1,...,N}. Assuming constant order and step size for each state

variable x;, this corresponds to the mathematical expression:
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N
Q= lrgilsr;‘l{jEISi(ej) —hiM) e forall j: 5i(8j) 2 hi}y

0 else (2.10)

where 6; is the angle direction of the eigenvalue A;. This definition of stability

reflects the safety margin of the algorithms.

For a specific algorithm, the selection of the order and the step size for a
group of ODEs is equivalent to the selection of a particular formula of the algorithm.
Recall that for each algorithm, the use of a different number of terms results in a
different formula. Therefore, there is an infinite number of formulas for each algo-
rithm. To minimize the number of comparisons, a minimum number of the most
competitive formulas has to be selected for each algorithm. This filtering of formu-
las can be based either on the speed bound, S,, or on the accuracy and stability
bounds, E, and Q, respectively. In simulations, the speed criterion is usually the
most important. Then candidate algorithms should be compared primarily on the
basis of their speed, and the filtering of the formulas should be based on the accuracy
and stability bounds. For each algorithm, the smallest set of formulas that provides
accuracy and stability that is not below the limits E, and Q,, should be selected first.
Then the performance of each of the selected formulas should be evaluated using
(2.1). Finally, there should be a comparison of the performance of all the formulas

that have been selected for all the algorithms.

According to (2.2), the maximization of the speed of an algorithm requires
the use of a formula with the maximum step size and the minimum order that the
restriction of the accuracy and stability limits permit, Then the filtering of the formu-

las using the accuracy and stability bounds can be performed in the following way.
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For each algorithm, the formulas with the minimum order and the maximum step
size for each group of ODEs that satisfy the accuracy and stability limits are
selected. In most cases, only one formula will correspond to the optimum pair of step
size and order, and therefore pass this filtering test. An algorithm that has no formula
that can satisfy the accuracy and stability limits should not be considered further.
Similarly, a particular formula of a candidate algorithm that satisfies the accuracy
and stability limits, but does not satisfy the speed limit, should be excluded from

further consideration.

The partitioning of the ODE system into groups of ODEs requires the deter-
mination as to which ODEs require the same means for their solution. As explained
in the next section, as well as in the next chapter, the selection of an algorithm and
the specification of its order and step size, depends on some of the characteristics of
the solution, including the frequency content and the damping of the oscillations of
the solution of each ODE. A frequency analysis of the solution can be used to find
the groups of ODEs with similar frequency content. An eigenvalue analysis of the
linearized equivalent of the ODE system can provide an estimate of the frequency

content of the ODE system. An ODE system with eigenvalues {A; =o;+jw;,

O)j .
—, j=1,..,N}. If the
19

j=1,....N} has a solution which contains the frequencies {f; = 5

real solution is available, a Fourier analysis of this solution can provide an estimate

of the frequency content. Test solutions can be used for this analysis.
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2.4 Description of the procedure

Assume that L algorithms have been selected as candidates to solve a given
ODE system. According to the approach suggested in the previous section, the algo-
rithm selection procedure can follow the scheme shown in Figure 2.1. The COM-
PARISON module requires simply the computation of the maximum performance of

the L algorithms. The PERFORMANCE EVALUATION module of each algorithm

is shown in Figure 2.2.
Algorithm 1 Algorithm 2 Algorithm L
ODE system
& other inputs ‘
PERFORMANCE PERFORMANCE |, .| PERFORMANCE
EVALUATION EVALUATION EVALUATION
X \
COMPARISON
Selected algorithm

Figure 2.1: The procedure for the selection of an algorithm

Let us discuss each of the three modules of Figure 2.2 in more detail. The
module of the SPEED EVALUATION of the algorithm for the optimized orders and
step sizes, shown in Figure 2.2, is performed together with the generation of its mul-
tiprocessor implementation. This is discussed in Chapter 4. The evaluation of the
speed is based on the entire ODE system rather than on an individual group of
ODEs. The module of the COMPUTATION OF THE PERFORMANCE can be

based on the expression (2.1).
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Figure 2.2: Performance evaluation of an algorithm

The module of the SELECTION OF FORMULAS partitions the entire ODE

system into, say K, groups of ODEs that require the same means for their solution.

Then it selects the formula of the minimum order and the maximum step size for

each of the groups of ODEs, Finally, it estimates the accuracy and the stability of the

algorithm for the particular orders and step sizes that were selected for the K groups
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of ODEs. Figure 2.3 shows the implementation of the module.

ESTIMATION OF ACCURACY & STABILITY

bound on bound on ODE
solution accuracy solution stability algorithm system
| S |
1 |
l FREQUENCY ANALYSIS 1
; I
i ]
] ]
] 1
X Group 1 Group 2 Group K :
3 i :
: FORMULA FORMULA vee FORMULA :
: SELECTION SELECTION SELECTION :
i :
: ' :
| 1
] 1
] 1
] 1
] |
i |

accuracy & stability of the algorithm order & stepsize of the algorithm
for each group of ODEs

Figure 2.3: Selection of formulas to satisfy accuracy and stability requirements

The FREQUENCY ANALYSIS can be based on the eigenvalue analysis of
the linearized equivalent of the ODE system. The ESTIMATION OF ACCURACY
& STABILITY can be based on (2.5) and (2.10). For each group of ODEs, the FOR-
MULA SELECTION or equivalently the selection of the order and step size can be

be formulated as the following nonlinear optimization problem:

Find a set {(m;,h;), i=1,...,N} that maximizes § 2.1
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under the constrains: E2E,; and Q2 Q,

where S, E and Q are defined in (2.3), (2.5) and (2.10). This optimization problem
can be solved heuristically by decreasing m; and increasing h; until a maximum of §
is realized. The monotonicity of the dependence of the accuracy and the stability on
the order and the step size guarantees the uniqueness of the optimal pair or order and
step size. The step size affects the speed more than the order. Halving the order
reduces the amount of computation needed for the computation of each point of the
solution, while doubling the step size eliminates 50% of the points of the solution
that need to be computed. Therefore, the maximization of the step size should be
given priority over the minimization of the order. This means that within the trial
and error process of the determination of the optimal step size and order, for each
order there should be an exhaustive search for the longest step size before the order

is minimized.

The initial m; should be the minimum order that the particular algorithm per-
mits. Most of the algorithms have formulas of first order. The initial h; should be the
maximum step size that the expected frequency content of the solution permits. It
was explained earlier that a rough but simple and fast estimate of the frequency con-
tent of the solution can be obtained from the imaginary part of the eigenvalues of the
linearized ODE system. The maximum frequency, say frax, that appears in the solu-
tion, dictates the initial step size. The accurate representation of the solution requires
that at least 10 points over the period of the oscillation with the highest frequency be

obtaincd. Then:

oo
e 10 (2.12)

An eigenvalue analysis is therefore needed at the beginning of each FORMULA
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SELECTION module to estimate the maximum possible step size. Any of the com-
mercially available software, such as the EISPACK, can be used to compute the
eigenvalues of the specific algorithm. This can be part of the FREQUENCY
ANALYSIS that has to be performed for the partition of the ODE system into groups
of ODEs. The entire procedure for the FORMULA SELECTION is shown in Figure
24.

To determine the minimum order, a table can be maintained that indicates the
minimum order that each of the candidate algorithms permits. The computation of
the maximum step size can be based on (2.12). The estimations of the accuracy and
the stability can be based on (2.5) and (2.10). The decisions of acceptability of the
accuracy and the stability can be based on the satisfaction of the constrains in (2.11).
Different type of ODE systems may require different approaches for the computation
of E and Q. An approach for ODE systems that appear in space structures is
presented in the next chapter, Finally, the decision "WORSEN STEPSIZE 7" is
based on the comparison of the longest step size that the present and the previous

values of the order permit.

2.5 Validation of the procedure

The completion of the presentation of the procedure requires a validation of
the procedure with reference to the criteria of Section 2.3. In Chapter 1, it was
pointed out that the selection of the appropriate algorithm contributes to the maximi-
zation of the solution speed by minimizing the computational load. The other mean
of maximizing of the solution speed, that is the optimization of the distribution of
this load, is to be achieved by the multiprocessor implementation of the algorithm

that is selected. The use of a formula of minimum order and maximum step size is
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Figure 2.4: Selection of the formula of an algorithm for a group of ODEs
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the most effective mean to minimize the computational load. Therefore, the pro-
cedure that is proposed indeed selects the algorithm that provides the highest solu-
tion speed. In addition, the procedure is simple, quantitative, systematic and modu-
lar. The modules that correspond to the estimate of the accuracy and the stability of
the algorithms are the only ones that may introduce some high complexity. This
complexity can be controlled however, by the approach that is taken for these esti-
mations. Finally, the speed with which the procedure selects an algorithm is also
controllable, because it depends also on the complexity of the approach that is taken

for the accuracy and stability estimations.

2.6 Summary

This chapter is devoted to the high level presentation of the algorithm selec-
tion procedure, applicable to any type of ODE system. The procedure partitions the
entire ODE system into groups of ODEs that require the same means for their solu-
tion. It then selects the appropriate algorithm to solve the entire ODE system, and
specifies the order and the step size of the formulas that should be used for each of
the groups of ODEs. The selection is based on the comparison of the performance of
the candidate algorithms, as shown in Figure 2.1. The evaluation of the performance
of each algorithm is shown in Figure 2.2. The performance evaluation of each algo-
rithm includes the selection of the optimal formula that provides a sufficiently accu-
rate and stable solution with the highest speed, as shown in Figure 2.3. This is the
formula with the optimum combination of order and step size. For each of the groups
of ODEg, the selection of the optimum formula for a particular algorithm is shown in
Figure 2.4. The procedure is simple, systematic, quantitative and sufficiently modu-

lar so as to be easy to automate. Therefore, the procedure meets the criteria of max-
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imization of the speed of the solution of the ODE system and simplicity.
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3. ALGORITHMS FOR SIMULATION OF SPACE STRUCTURES

The preceding chapter introduced in a high level a procedure that selects
algorithms to solve ODE systems. This chapter is devoted to the specialization of the
procedure for ODE systems that appear in the models of the dynamics of space
structures. It offers suggestions for the implementation of the high level modules for
the specific ODE systems. The presentation of the procedure in this chapter can be
considered also as an illustrative demonstration for a specific but representative case.
The first section of this chapter includes an analysis of the computational charac-
teristics of the ODE systems that appear in the models of space structures. This is
followed by a discussion on the requirements for the solution of these ODE systems.
These discussions lead, in the next section, to suggestions for the implementation of
the procedure for the performance evaluation of the algorithms. The following sec-
tion is devoted to the selection of the set of candidate algorithms from a large assort-
ment of widely used algorithms. The next section proceeds to a more detailed com-
parison of the candidate algorithms. In particular it discusses the performance of the
algorithms in computing the solution across discontinuities. The final section

explains the multirate implementation of the algorithms.

3.1 Characteristics of the ODE systems

The evaluation of an algorithm to solve an ODE system requires an analysis
and a measurement of the computational requirements for the solution of the ODE
system. These requirements are imposed by the following characteristics of the ODE

system:

1. Size and complexity.
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2. Frequency content and damping of the oscillations of the state variables.

The systems that appear in the models of the dynamics of space structures usually
consist of few hundreds of ODEs. In [Gluc85], for example, it is reported that a
simplified modeling of the space shuttle of Figure 1.1 resulted in 130 ODEs. These
large ODE systems are also highly complex. The main source of their complexity

are several type of nonlinearities, including:

1. Simple nonlinear mathematical expressions of the state variables, such as
squares or higher powers. These nonlinearities may appear in the elements of

both the matrix A and the vector b,

2. Trigonometric expressions of the state variables or of time, due to the oscil-
lating nature of the dynamics of the space structures and due to coordinate
transformations. These nonlinearities may also appear in the elements of both

the matrix A and the vector b.

3. Functions of the state variables or of time, that contain discontinuities, such
as steps, absolute values, pulses, hystereses, dead zone delimiters and relays.

Such nonlinearities may be introduced by:

a. The sudden application or removal of the excitations. These appear in

the elements of the vector b only.

b. The property of the materials. These may appear in the elements of

both the matrix A and the vector b.

c. The control systems., These may also appear in the elements of both

the matrix A and the vector b.
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The evaluation of these nonlinear expressions is usually very time consuming. In
many simulations it is the major part of the entire computation. Several approximate
techniques can be used to speedup the evaluation of some of them, including table

lookups.

The frequency content of the oscillation of the state variables is usually wide.
In addition, the damping is usually very slow. In a typical case, such as the space
shuttle of Figure 1.1, the oscillations of bodies may contain frequencies in the range

0.5 - 100 Hz, and may be damped by 99% after 300 secs.

The conclusion is that the ODE systems that appear in the mathematical

models of the dynamics of space structures are:
1. Large

2. Highly nonlinear

3. Highly oscillating

4, Lightly damped

5. Formulated as A(x,t)x=b(x,11,t)

3.2 Requirements for the solution of the ODE systems

As stated in Chapter 1, the transient solution of the ODE systems with a high

speed and high accuracy has to be obtained. Let us analyze these requirements.
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Speed

Often, a real time solution is required. Each point of the solution then has to
be computed in time that is at most equal to the corresponding step size. The size
and the complexity of the ODE system together with the small size of the step size
that has to be used to maintain high accuracy, as discussed below, may require a
large number of processors to achieve real time computation. Such a large number of
processors may not be available however, or their power may be wasted during most
of the computation because many of the processors may stay idle. Then it may be

preferable for a user to relax the real time requirement in favor of the cost.
Accuracy

Reasonable accuracy is always required. Often the global relative error must
be limited to 1%, so that the needed characteristics of the oscillations of the state

variables can be determined with the required accuracy.

The requirement for high accuracy has the general impact that for each state
variable all the important frequency components should appear accurately in the
solution. Components with relatively small amplitude can be ignored because of
their small contribution to the solution. In addition, the step size at each point of the
solution should be small enough to follow the highest frequency component F that is
to appear accurately. If it is assumed that at least 10 points per period are required to
represent with sufficient accuracy one period of an one frequency oscillation, the

maximum step size that can be used for the ith ODE is:

R S
= 10F; (3.1)
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However, the step size is bounded more strictly by (2.12). This is because the
highest frequency fn.x that appears in the solution is larger than or equal to the
highest frequency F that must be represented accurately in the solution. An algo-
rithm with the appropriate characteristics concerning stability should damp the com-
ponents with frequencies larger than F fast enough so that their presence in the ODE
system can be ignored. Then (3.1) can be used instead of (2.12) in the estimation of
the MAX STEPSIZE in Figure 2.4, The upper bound on the step size expressed by
(3.1) implies also the potential use of a different step size for different groups of
ODEs having different F. Then a multirate implementation of the algorithms must

be used.

The accuracy of the computation for each point of the solution can be con-
trolled relatively easily in most cases. The accumulation of error however, is more
difficult to control because of the large number of points of the solution that usually
need to be computed. For example, if a 100 Hz frequeacy has to appear accurately in
the solution, the step size cannot be larger than 0.001 secs, according to (3.1). If the
physical damping of the oscillations takes 300 secs, then 300000 solution points
have to be computed. The stability of such long solution may be poor unless the

proper techniques are used.

3.3 Performance evaluation of algorithms

This section is devoted to the presentation of an implementation of some
interesting parts of the algorithm selection procedure that is presented in a high level
in Chapter 2, the specific case of the dynamic simulation of space structures. In par-
ticular, this presentation is concerned with the implementation of the two modules in

Figure 2.4, that is the estimation of the accuracy and the stability of the algorithms,
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and with the definition of the speed, accuracy and stability bounds. The rest of the
modules of the algorithm selection procedure, as shown in Figures 2.1, 2.2, 2.3 and

2.4, require no further explanation,
Estimation of Accuracy

The accuracy of an algorithm for chosen orders and step sizes can be deter-
mined from (2.5). The high derivatives xi(m‘ﬂ) are the only terms that need further
discussion. Their estimation for highly oscillating problems is a crucial step in com-
puting E. The efficient but also accurate estimation of this derivative is however
difficult in general. It is still an open problem in numerical analysis. An estimation
using "brute force" is the most practical way to provide the derivative fairly accu-

rately. Such an estimation is based on a finite difference approximation of the deriva-

tives, such as:

xi(Gip)®) = xi(tpi )

(Eip WD =
i(Gip Eip—tp, (3.2)

This requires an apriori test solution and a recursive application of (3.2) for
p=1....,m;. Some algorithms incorporate the computation of all or some of the lower
derivatives, up to the mth derivative, In those cases, (3.2} has to be applied only for
H=m;. The "brute force" approach is fairly accurate but expensive. A rough but
significantly less expensive estimate can be obtained by assuming that the solution
xi(t) of the ith state variable of the ODE system A(X,t)x=b(x,u,t) can be approxi-
mated by the solution X;(t) of the ith state variable of the linearized equivalent ODE
system. in that case x;(t) can be approximated by a combination of N decaying oscil-

lations as:
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N N
i) = Ty =X pixe
k=1 k=1 (3.3)

N
Pix = Tix X, Tiw " %0 (0)

v=1

where the generally complex number py is a measure of the contribution of the
A = O +j2rf; eigenvalue to the solution of the ith state variable. T is the generally
complex matrix of the eigenvectors of the system. The eigenvalues and eigenvectors
of the ODE system can be obtained from the FREQUENCY ANALYSIS module in
Figure 2.3. It can then be shown that:

(me+1) _ N
507 = Y wi(Dyi(t)
k=1 (3.4)

M+ i+ )an [i:l]
wik(D) = (6+2nf)?) 2 e -

Then the estimation of the accuracy can follow (2.5) with:

N

| n EWLk(ﬁip)Ync(E,ip) Dt

;Z 2
p=1

2 (3.5)

where & =

N
Z Yik (tp )
k=1

A more simple approximation can be derived from (3.4) by observing that all os are
very small. For oscillations that are damped by 99% after 300 secs, os would be
approximately 0.015. As a result, terms that contain powers of os are negligible.
Furthermore, one can approximate ¥ with its upper bound, which is of the order of
(anmu)m‘”. In this case however, it should be expected that the estimation of the
accuracy, and therefore of the orders and the step sizes, might be a little conserva-

tive.
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Estimation of stability

The estimation of the stability of an algorithm can be based on (2.10). This
includes the computation of the eigenvalues {A;, j=1,...N} which can be performed
i the FREQUENCY ANALYSIS module of Figure 2.3. The set of points {h;A;,
j=1.....N} define the absolutely minimum desirable stability region. Let us determine

this minimum stability region for the specific ODE systems of interest.

The eigenvalues of a lightly damped ODE system are nearly imaginary, i.e.
they lie close to the imaginary axis on the complex plane. If the eigenvalue with the
largest imaginary part is o+j2nf,,,, the stability region has to include the area close
to the imaginary axis up to j2nfy,,h;. In addition, recall that the algorithm to be used
has to provide a solution that represents accurately only the frequency components
that make a significant contribution to the solution. This means that if the highest
important frequency for the ith state variable is F;, the algorithm must dampen fast
enough the components with frequency higher than F; and dampen as slow as possi-
ble the components with frequency lower or equal to F;. The points up to j2nF;h;
have to be close to the boundary of the stability region, while the points further than
j2nF;h; should lie deeply in the stability region. Figure 3.1 shows the stability
behavior that is required. The STABLE areas define the stability region that is
needed.

Speed, accuracy and stability bounds

If real time stable solution is required, with relative global error limited to

1%, then from (2.3), (2.5) and (2.10):
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3.4 Selection of the candidate algorithms
The most widely used algorithms belong to the following families: [Gear71]
1. Explicit Power Series Expansion
2, Explicit Runge Kutta
3. Explicit Multi-step
4. Implicit Power Series Expansion

5. Implicit Runge Kutta
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6. Implicit Multi-step
7. Implicit Multi-step Multi-derivative

A rough qualitative estimate of the performance of all these algorithms is needed to
select the candidate algorithms to be compared. The comparison of the speed of the
algorithms can be based on the number of inversions of the matrix A(x,t), the
number of derivatives of the state vector and the number of iterations they require
per step. The comparison of the accuracy of the algorithms can be based on their
parameter . According to (2.5), the smaller this parameter is, the higher the accu-
racy. Figure 3.10 compares the beta parameters of the algorithms. The comparison of
the stability of the algorithms can be based on their stability region. The closer the
stability region is to the one shown in Figure 3.1 and the larger it is, the higher the
stability. Figure 3.11 compares the stability region of the algorithms close to the

imaginary axis.

Single-step algorithms, such as the Power Series Expansion and the Runge
Kutta, compute the next point of the solution based on the points only one step back,

that is on the previous point. They are formulated as:

Xoep =DPX,)  Or  Xppp = O(Xpep5Xp)
Pt P pt ptlsop 37

Multi-step algorithms compute the next step of the solution based on the points more

than one step back, that is on several previous points. They are formulated as:

Xp+1 =(D(xp,xp_1,...,xp_k) Or  Xp4 =<D(xp+1,xp,xp_1,...,xp_k) 33)

Multi-step algorithms have more simple formulations. Therefore they usually are
faster per step. Single-step algorithms usually allow larger step size however, due to

their higher accuracy and stability. Therefore, the overall speed of the single-siep
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algorithms, as defined in (2.2), can be competitive to that of the multi-step ones.

Explicit algorithms are based on formulations that express the next point of

the solution explicitly, such as:

Xppp =DP(xy) o X = D(Xp,Xpa1s e Xp-k)
Pt P pt+ PP P (39)

while implicit are based on formulations that express the next point of the solution

implicitly, such as:

Xoirl = PXpeirXp) OF  Xpp) = D(Xpt1:Xps Xp—15ee: Xpk)
p+ p+rlsip p+ plsApr fp— p- (3.10)

Implicit algorithms are slower per step because they require iterative computation of
Xp+1, but they usually allow larger step sizes due to their greater stability and accu-

racy. Therefore their overall speed is competitive with that of the explicit ones.

The rest of this section compares the algorithms based on a qualitative
analysis of their speed, accuracy and stability. The conclusion of this comparison is

shown in Table 3.1 at the end of the section.
Explicit Power Series Expansion

A standard technique to compute the next point of the solution from the
present one is the Taylor series expansion of the solution at the next point [Gear71]

as follows:

m; v
X = ZE‘_X (v)

L Y (3.11)

The expiicit power series expansion algorithm (EPSE) is an efficient technique to
compute the terms of the Taylor series. Although this technique was introduced

many decades ago for numerical differentiation, its use in solving ODEs only
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recently gained popularity, as a result of the contributions of Dr. Halin [Hali83]. To
compute the derivatives that appear in the series expansion, semianalytical
differentiation of x; is employed, rather than the classical analytical methods which
may be difficult and time consuming. This semianalytical differentiation is based on
the decomposition of the mathematical expression of x; into a number of elementary
expressions whose derivation is easily performed recursively. As a simple example

consider the ODE:
X = xe*+sinx (3.12)

x can be decomposed into p+r, where p=xq, g=e* and r=sinx. Then the derivatives of
x can be computed recursively in the following sequence:
v-1

®=3 [val]x(v—j)xo)’ vo1

=0 (3.13)

V=3 \_']x(v—j)q@), V30
70
v=1

™ = Y [Vfl]x("—j)so), vl
0~

-1
W =y [V‘jl]x(v-j)r(i), vl
ot

xM = pMV w20

For ODE systems of the form Ax=b, two levels of recursion have to be applied. In
the upper level the following recursion has to be introduced for the computation of

the derivatives of the vector x:
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by,

v) _ a~1 - -
xp) =AL'z,, where z,= 1 Y2 =1 4 Gy tvmi
P P |:b§)v 1)_.21 [VJ }Ag)ng J)]’ v>1 (3.14)
J=

v=1

It is important to notice that the vector z can be computed recursively as:

- ’ ’ V"l
Zy, = 2y-1, —Apxg, )

(3.15)

In the lower level, recursion has to be introduced in the computation of the deriva-
tives of the elements of the matrix A and the vector b. In addition, a more efficient
evaluation of the series (3.11) can be based on the nested computation of polynomi-

als as follows:

x; Y+ b y v<m,
Xi, =Yyo Wwhere y, = LT A '
0, vom; (3.16)

Each point of the solution of x; requires one inversion of the matrix A shared
by all state variables, the recursive computation of the derivatives of the elements of
the ith row of the matrix A and the ith element of the vector b, the computation of
the derivatives of x; based on (3.14), and the evaluation of the new x; based on
(3.16). For most large ODE systems the inversion of A is the most time consuming
part of the computation of the next point of the solution. The need for inversion of A
only once is a great advantage of the EPSE algorithm comparing to most other algo-

rithms which require the inversion of A many times for each point of the solution.

The parameter B of the EPSE algorithm, shown in Figure 3.10 in comparison

with the other algorithms, is:
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1

i = (my+1)! 3.17)

Figure 3.10 indicates that the accuracy of the EPSE algorithm is among the highest.
The stability region of the EPSE algorithm is shown in Figure 3.2, and compared
with other algorithms in Figure 3.11. Comparing Figure 3.2 to Figure 3.1, it is recog-
nized that the stability region of the EPSE algorithm has the desirable shape and that
the minimum order has to be 3. Figure 3.11 indicates that the stability of the EPSE
algorithm is among the highest. Both the accuracy and stability increase monotoni-
cally with order and decrease monotonically with step size. This is another important
advantage of the EPSE algorithm, because the selection of the order and the step size
to satisfy the accuracy requirements does not contradict the selection criterion to
satisfy stability requirements. Therefore, the optimal order and step size are closer to

the desirable values, that is the absolute minimum and maximum respectively.

The complexity of the algorithm to compute one point of the solution based
on (3.14) and (3.16) is relatively low. The recursive computation of the derivatives,
the need to invert A only once, and the relatively small order contribute significantly
to the lowering of this complexity. In addition, the relatively high accuracy and sta-
bility of the algorithm allows the use of fairly large step sizes. As a result, the speed
of the algorithm, according to (2.2) is in general fairly high. This leads to the conclu-

sion that the EPSE algorithm definitely qualifies as a candidate for comparison,
Explicit Runge-Kutta

The Explicit Runge Kutta (ERK) algorithm replaces the computation of the
derivatives in the Taylor series (3.11) with an averaging of values of the first deriva-

tive at m; points between the present and the next step, x, and X, respectively
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Figure 3.2: Stability of the Explicit Power Series Expansion algorithm
The algorithm is stable inside the curves

[Gear71], as:
m=1 hixi(tp),  v=0
X, =X+ Y YKy where K, =9 . v
TR v hixi(tp+ Y Cuuku1),  v21 (3.18)
p=1

The x and ¥y parameters are selected so that (3.18) matches the Taylor series (3.11).
Thus the ERK algorithm has accuracy and stability performance similar to the EPSE.
The computation of (3.18) however, is significantly more time consuming than the
combination of (3.14) and (3.16), because it requires m; inversions of A, one for
each of the xs. The inferiority of the ERK algorithm when compared to the EPSE is

apparent. Therefore, the ERK is not a candidate algorithm.
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Explicit Multi-step

These algorithms use polynomial interpolation formulas to compute the next
point of the solution from a number of previous points. The number of previous
points defines the order of the formula. The most widely used explicit multi-step
algorithm is the following Adams-Bashforth (AB) formula:

P+l

Xi,,, =Xj +hi Z Yj’.(ij
o (3.19)

Each point of the solution of x; requires one inversion of the matrix A shared by ail

state variables, and the evaluation of the new x; based on (3.19).

The parameter P is shown in Figure 3.10. The stability region is shown in
Figure 3.3. Figures 3.10 and 3.11 indicate that both the accuracy and the stability of
the AB algorithm for the same order and step size are poor compared to the EPSE.
The need of a high order to control the accuracy has to compete with the need for a
smaller order to control the stability. Only a significantly smaller step size can
satisfy the accuracy and the stability requirements. This is a serious disadvantage in
terms of speed. However, the time to compute one point of the solution is smaller
than the EPSE. This can keep the AB algorithm in a competitive level, and therefore

qualify it to be a candidate algorithm.

Implicit Power Series Expansion

The Implicit Power Series Expansion (IPSE) algorithm extends the EPSE by
including a series expansion of x,;; as well. Instead of the Taylor series expansion,

uses an expansion based on the Pade approximation of e, It is formulated as:
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Figure 3.3: The stability region of the Adams Bashforth algorithm
The algorithm is stable within the curves

mli mg,
1
xi, =%+ 3 dy hi'x O+ 3 10" e hyrx O
vl-_-'l v2=1 (3.20)

where the d and e coefficients are the coefficients of the nominator and the denomi-
nator of the Pade approximation of € [Twiz81]. The order of this formula is
my;=m; +my_. Provided that an infinite number of iterations has been applied to
obtain an exact solution of (3.20), the B parameter, shown in Figure 3.10, is smaller
than (my,+mp +1)~! resulting in higher accuracy than the EPSE. For a small number
of iterations the accuracy of the IPSE algorithm is close to that of the EPSE. The
IPSE algorithm is popular because of its strong stability. Figure 3.4 shows the stabil-
ity region of several IPSE formulas, provided that an infinite number of iterations
have been employed to obtain the exact solution of (3.20). The stability region for
finite number of iterations is a subset of those shown in Figure 3.4. Formulas with
m,; >m; are always unstable. Formulas with m; <mj; are too stable to be used because
according to Figure 3.1 they would damp the components with frequencies lower

than F. Only the formulas with m; =m;_have stability regions that are acceptable,
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despite the fact that they do not damp the high frequency components. The high sta-

bility of the IPSE algorithms allows large step sizes.

joh

(rn)

(1,2)

Figure 3.4: Stability of the Implicit Power Series Expansion algorithm
The algorithm is stable outside the curves

The computation of x,,; requires the solution of (3.20). The least time con-

suming solution can be obtained by the following fixed point iteration:

w _pyw Tl , e
A(p,_,‘)x;vl) =b§v, 1)“_2 [Vl. 1 Ag)(u)xg.!, ) o vi=l,...my

=L (3.21)
A(],l.) (v)® _ b(Vz'l)w vl vy—-1 A(j)m) (v-H¥ =1
prXpri =bp T X |74 T |Aph Xpa T . Vo=l..my
il

Va+l 2y ) _

my, my
(V) v
Xip W) - Xi,+ 3. dy, h;"xip iy 2 D ey, hitxy 8

vi=1 vy=1
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The EPSE algorithm can be used to obtain the initial guess for X,,;. The conver-

gence of fixed point iteration requires that:

d mz‘ X: (VZ)
_9g | _ Z (_1)V2+1ev2h;’z Iy <1

dxpe vaml dXp41 (3.22)

The satisfaction of (3.22) may impose a very small step size, negating therefore, the
stability advantages of the algorithm. The stability region of the algorithm is the sub-
set of the one shown in Figure 3.4 that satisfies (3.22). Figure 3.5 shows the stability
region of the (1,1) formula. In case a finite number of iterations is taken, the stability

region is a subset of the one shown in Figure 3.5.

jwoh

= —

-2 -1 0

Figure 3.5: Stability of the (1,1) Implicit Power Series Expansion algorithm
for fixed point iterations. The algorithm is stable inside the curve

To avoid this limitation, one can use the following Newton iteration:

v-1 e
Agu)xl()vl)‘"’ - b](,v;-l)‘“’_ ‘E vi-1 Ag){wx;v,—n‘ ' v=l,..my
=1 ) (3.23)
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The convergence of the Newton iteration requires that for Ny = Xpy1—8ps1:

n dznpﬂ
prl dxgﬂ

<1
dNp+1 (3.24)
de,'_l

Therefore, the convergence can be controlled by the selection of the initial guess for

x®. If this initial x%) is such that M,,1=0, then the convergence is nearly
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guaranteed to be quadratic.

Figure 3.11 indicates that the stability of the IPSE algorithm is hardly higher
than the one of EPSE if an infinite number of fixed point iterations is used, while it is
infinitely large if an infinite number of Newton iterations are used. If a finite number
of iterations are used, for both type of iterations the stability region is closer to that
of EPSE. The requirement to use the extremely time consuming Newton iteration
(3.23) lowers the speed of the IPSE algorithm so much that even with the maximum
step size of (3.1) it is much slower than the EPSE. Therefore, IPSE is not among the

candidate algorithms.
Implicit Runge Kunta

The Implicit Runge Kutta (IRK) algorithm is based on implicit expressions
for ks [Gear71]. It has accuracy and stability similar to IPSE, but it is even slower.
It requires the iterative solution of m; equations, one for each x, instead of one equa-

tion for IPSE. Therefore, it is not considered as a candidate.
Implicit Multi-step

The most widely used Implicit Multi-step algorithms are the Adams Moulton

(AM) and the Gear (GR) methods. The AM algorithms [Gear71] are formulated as:

pmy+2
i =xi+h 3 ik
e TR S (325)

Provided that an infinite number of iterations has been applied to obtain the exact
solution of (3.25), the parameter [, is shown in Figure 3.10. The stability region, for
an infinite number of iterations is shown in Figure 3.6. Figures 3.10 and 3.11 indi-

cate that the accuracy and stability of the AM algorithm is between those of the
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EPSE and the AB algorithms. For a finite number of iterations its accuracy and sta-
bility is close to that of the AB algorithm. Being an implicit algorithm, AM requires
a time consuming iterative solution of (3.25). The AB formula of the same order can
be used to obtain the initial guess for xp,. Unlike the IPSE algorithm it can be
shown that fixed point iteration suffices for the solution of (3.25). Even with fixed
point iteration however, AM is still significantly slower per step than AB, while its
accuracy and stability performance is hardly higher than the AB, as indicated by Fig-
ures 3.10 and 3.11. This apparent inferiority compared to the AB algorithm

disqualifies the AM algorithm to be among the candidates.

-6 5 4 3 2 1 0

Figure 3.6: The stability region of the Adams Moulton algorithm
The algorithm is stable inside the curves

An intermediate solution to the low speed problem of the AM algorithm
against the AB is the Adams Moulton Predictor Corrector (AMPC) algorithm. This
corresponds to the AM with only one iteration of (3.25). Then an AB formula is used

to "predict’ the value of x,. and the AM formula is used to "correct” this
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prediction, as follows:

p-m+1
P, =xi+h Y ek
m g (3.26)
p-m;+2 )
Xip'_l =xip+hi('Yp+1Pi,,,k+ E "ijij)
=p

Still (3.26) requires about twice as much computation as (3.19). Therefore, the
AMPC algorithm is only half as fast as the AB algorithm. In addition, the B parame-
ter, shown in Figure 3.10, indicates that the accuracy of the AMPC algorithm is
lower than that of the AB. On the other hand, the stability region of the AMPC algo-
rithm, shown in Figure 3.7, is a subset of the one shown in Figure 3.6. Figure 3.11
indicates that the stability performance of the AMPC algorithm is slightly better than
that of the AB. Despite of the relatively close competition with AB, the AMPC is

apparently inferior to the AB and cannot be among the candidate algorithms.

-2 -1

(=)

Figure 3.7: Stability of the Adams Moulton Predictor Corrector algorithm
The algorithm is stable inside the curves
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The GR algorithm [Gear71] is based on the following backward
differentiation formula (BDF):
pm;+2

Xi, = X 8 thiYprXi,,
ip o jRj Tl ipe 3.27)

An iterative solution of (3.27) is again required. The GR algorithm is widely used
for stiff ODEs due to its very high stability. The B parameter, shown in Figure 3.10
for infinite number of iterations, indicates significantly lower accuracy than that of
the EPSE. For an infinite number of iterations, the stability region is shown in Figure
3.8 and compared with the other algorithms in Figure 3.11. The formulas with order
higher than 2 are unstable close to the imaginary axis and the formulas with order up
to 2 are too stable as they would damp the low frequency components. This inap-
propriate stability region prevents the GR algorithms from being considered as can-

didates.

Implicit Multi-step Multi-derivative

The Implicit Multi-step Multi-derivative algorithms attempt to improve the
stability region of the GR algorithm by introducing terms with higher derivatives.
The Enright (ER) algorithm [Enri74, Chak83, Jelt77] is the most widely used. It is
limited to the use of up to second derivative terms so that it does not become as time

consuming as the IPSE algorithm. It is formulated as:

pki+2 pk+2 ) 5 pk+2 .
X = Z ajX; +hi Z bj Xi +hi E CjX;,
= o e (3.28)

The order of this algorithm is k;+2. For an infinite number of iterations, the § param-
eter, shown in Figure 3.10, indicates that its accuracy is lower than that of the EPSE.

For an infinite number of iterations, the stability region is shown in Figure 3.9 and
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Figure 3.8: Stability region of the Gear algorithm
The algorithm 1s stable outside the curves

compared with the other algorithms in Figure 3.11. Apparently only the fourth order
(k;=2) formula has an appropriate stability region, despite the fact that it damps the
components with frequencies only higher than 2/h;>F;. The p parameter of the 4th
order formula is approximately only 0.01. This limits the performance of the ER
algorithm because even the largest step size defined in (3.1) cannot provide an
acceptable accuracy as can be seen from (2.5). The ER algorithm is therefore not

among the candidates.

Conclusion

Figures 3.10 and 3.11 compare the accuracy and the stability of the above
discussed algorithms. Table 3.1 summarizes the performance of the algorithms. As

can be seen from this table, the algorithms that are candidates to solve ODE systems
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Figure 3.9: The stability region of the Enright algorithm
The algonthm is stable outside the curves

that appear in the mathematical models of the dynamics of space systems, are:
1. Explicit Power Series Expansion

2. Adams Bashforth

3.5 Further comparison of the candidate algorithms

The mathematical models of the dynamics of space structures may contain a
number of functions of the state variables that include discontinuities, such as steps,

hystereses, dead zone delimiters etc. Such functions can generally be modeled as:

fx.0) = {fl x,t) rx,tz20 (3.29)
fo(x,t) r(x,t)<0
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Figure 3.10: The inverse of the p parameters of the algorithms
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Figure 3.11: The stability region of the algorithms close to the imaginary axis



Table 3.1: Comparative performance of algorithms

SPEED EXPECTED
ALGORITHM pER STEP | ACCURACY | STABILITY | pppenRMANCE
Explicit Power
Series Expansion | 8004 | verygood | very good good
Explicit Runge Kutta poor very good very good poor
Adams Bashforth very good poor poor good
fw:ry good
Implicit P or m;=m
Serpigsl%xpgnws?gn very poor very good bllxt : very poor
very poor else
fvery good
Implicit Runge Kutta | very poor very good or r;:lt-mz very poor
very poor else
Adams Moulton VEry poor good medium very poor
Adams Moulton .
Predictor Corrector good poor poor medium
Gear poor medium very poor very poor
good for m=4
Enright very poor good but very poor
very poor else

These discontinuities may cause a discontinuity in the solution as shown in Figure

3.12.

Proceeding with a regular step size to compute xp,q from x, with f(x,1) =
f1 (x,t) would produce the erroncous result X,,;. The accurate computation of the
solution requires the solution at t = T from x, with f(x,t) = f, (x,1), followed by the
computation of x,,;; from the solution at t = T with f(x,t) = f2(x,t). The determination
of T requires iterative solution with different step sizes until a solution Ratt=1is

obtained so that r(i,{‘) < g, where ¢ is sufficiently small. Then 1 can be approximated
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r(x,t)=0

v T b

Figure 3.12: Solution across discontinuities

by 1. The repetitive solution can be carried out by doubling or halving the step size.

For the EPSE algorithm, the repetition of the solution does not cause a
significant overhead. This overhead includes only the evaluation of the Taylor series
(3.11) for different step sizes. Therefore, every repetition includes the evaluation of &

polynomial with m terms.

For the AB algorithm however, as well as for any other multi-step algorithm,
the repetition of the solution causes a serious overhead. Each repetition includes the
computation of the solution of m+1 points of the solution, i.e. m past points, which
are no longer available, and the new point. To reduce this overhead, first order for-
mulas can be used. Then no past points are required. It should be realized however,
that first order formulas provide less accuracy, In addition, the computation of the
first m points after the solution at t = T, requires the use of formulas of orders that

start from 1 for x5, and advance by one for every subsequent point until order m for
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Xp+m- Therefore, the accuracy in computing these m points would be reduced.

It should be also recognized that the other algorithms, such as the explicit
Runge Kutta or any of the implicit ones, require an enormous overhead for comput-
ing the solution across discontinuities. The superiority of the EPSE algorithm in
computing the solution across discontinuities is a very important advantage for this
algorithm in the solution of ODEs that appear in the models of the dynamics of

space structures where the discontinuities are usually frequent.

Although the models of dynamics of space systems are not expected to have
complicating features other than discontinuities, it is important to mention that the
superiority of the EPSE algorithm applies to other types of peculiarities, such as
singularities and time delays. It is also important to realize that the ESPE algorithm

is more more difficult to implement and requires more storage.

The EPSE algorithm has additional advantages compared to the AB algo-
rithm, when implemented in a multi-rate scheme. As explained in Section 2.2, in a
multirate implementation of an algorithm different step sizes and orders are used for
different groups of ODEs, The following section suggests multirate implementations
for each of the candidate algorithms and shows the advantages of the EPSE algo-

rithm.

3.6 Multirate implementation of the candidate algorithms

In most cases, the frequency content of the state variables may be quite
different. Higher frequencies may affect significantly only state variables that
correspond to flexible bodies and bodies of small mass. Depending on their fre-

quency content, the ODEs of a system can be grouped, as shown in Figure 2.3, so

69



that the ODEs in each group require the same means for their solution, Different step
sizes and orders can be used for different groups of ODEs to increase the speed of
the solution of the entire ODE system. Then the algorithm to be used has to be
implemented in a multirate scheme, that is, it will solve the different groups of CDEs

in parallel but with different rates.

Let us explain the multirate implementation of algorithms with the aid of an
example. Also consider for the moment the use of different step sizes. Assume thata
system of N ODEs is to be partitioned into three groups of Nj, Np and N3 ODEs
respectively. A typical reason for such a decision can be the fact that Ny of the

ODEs are expected, after the frequency analysis shown in Figure 2.3, to have

significant frequency content up to F Hz, Ny of the ODEs up to % Hz, and Nj of the

ODEs up to % Hz. Then the maximum step size that can be used for each of the
groups is hy; = h, hy = 5h and hy = 20h respectively. Figure 3.13 shows the points of
the solution that are to be computed for each of the three groups. The sequence of
the computation of points of the solution that is shown in Figure 3.13 is periodically
repeated. The largest step size h; = 20h defines the period. It should be recognized

that at every step different groups of ODEs are to be solved. The following three

cases appear:

1. The next point of the group #1 of N; ODEs is to be computed with step size
hy.

2. The next point of the group #1 of N; ODEs and of the group #2 of N; ODEs

is to be computed with step size h; and h; respectively.

3. The next point of the group #1 of N; ODEs, of the group #2 of N, ODEs and
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of the group #3 of N3 ODE:s is to be computed with step size h;, hy and hy
respectively.
Each of the solution points in Figure 3.13 is marked according to which case it
belongs. Due to the relative magnitude of the step sizes, the first case appears 80% of

the cases, the second case 16% and the third case 4%.

x(t)
A

3111121111211 1121111

GI'OLI]J #1 A4 .. 8 & 8 a_ _a__a & & & & & & 4 .2 s+ 2 -t
3 2 2 2

Group #2 s a . o -t
3

Group #3 a =t

Figure 3.13: Multirate solution of an ODE system

The computation of the next solution point requires the availability of the
solution at past points. For algorithms that require the computation of high deriva-
tives, such as the EPSE, the derivatives at past points are needed too for the compu-
tation of the next solution point. For most of the points however, not all the needed
past points or derivatives would be available. The computation of the solution at
t=2h; of the ODEs in group #1 for example, needs the solution and the derivatives
for the ODEs of group #2 and #3 at t=h;, which are not available. Points that are not
available can be approximated by an interpolation between available points. Deriva-
tives that are not available can be approximated with finite differences. The order of

the interpolation and finite difference formulas can be selected according to the
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desirable accuracy. Linear interpolations and first order finite differences can be used

to minimize the overhead.

The impact of the multirate implementation of algorithms is that significant
part of the computation to obtain the next point in the solution, for 84% of the points
for the ODEs in group #2 and 96% of the points for the ODEs in group #3, is
skipped or substituted by relatively much less time consuming interpolation and

evaluation of finite differences.

According to (3.19), the computation of each solution point, say p, with the

AB algorithm requires:
1. The evaluation of the elements of the matrix Ap and the vector bp.
2. The evaluation of the elements of the vector icp from the sclution of the linear

system ApX,=by,.
3. The evaluation of the elements of the vector Xp,) from (3.19).
4, The evaluation of the elements of the vector x at t=kh; by interpolation.

Figure 3.14 shows the parts of the mathematical model that must be processed for
each of the three solution cases mentioned above. For the sake of clarity of the Fig-
ure, it is assumed that the first Ny rows constitute the group #1, the following Nj the

group #2 and the last N3 the group #3.
Figure 3.15 shows the multirate implementation of the AB algorithm, and

particularly the steps that have to be taken during each period of the solution. Each

step involves the computation of one of the three cases, marked as I, II and III
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Figure 3.14: Multirate AB algorithm

respectively. The meaning of the three symbols is the following:

1. The circles represent a full computation of the formula of the algorithm. The

process of group #1 of case #1 is an example.

2, The crossed circles represent a full computation of the formula followed by

an interpolation. The process of group #2 of case #2 is an example.

3. The squares represent a partial computation of the formula due to the savings

explained in Figure 3.12. The process of group #2 of case #1 is an example.
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Figure 3.15: The implementation of multirate algorithms

According to (3.14) and (3.16), the computation of each solution point, with

the EPSE algorithm requires:
1. The evaluation of the elements of the matrix Ap and the vector bp
2. The evaluation of the elements of the vector )'cp from the solution of the linear

system A, x,=b,,.

3. The evaluation of the elements of each of the m derivatives, say the vth

derivative, of the vector x, according to the following steps:

i Evaluation of the vth derivative of the elements of the matrix Ap and

the vector bp

ii. Evaluation of the vector zy, either from (3.14) or from (3.15),

depending on the group. It can be shown that the evaluation from
(3.15) reduces to z, = bg"l)

iid, Evaluation of the vth derivative of the elements of the vector x, from
the solution of the linear system Apr,")=zvp.

or by finite differences, depending on the group.
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4. The evaluation of the elements of the vector xp,; from (3.16).
5. The evaluation of the elements of the vector x at t=kh, by interpolation.

Figure 3.16 shows the parts of the mathematical model that must be processed for
each of the three solution cases mentioned above. Figure 3.15 can express the mul-
tirate implementation of the EPSE as well. The boxes represent a computation that
evaluates the vector z from (3.15) and evaluates the derivatives of the vector x by

finite differences.

Figures 3.14 and 3.16 indicate that the computation that is saved for the
EPSE algorithm is much more significant than the AB algorithm because the evalua-
tion of the elements of the matrix A, the vector b and their derivatives is the most

time consuming part of the solution process.

In addition to different step sizes, the groups of ODEs may need to be solved
with formulas of different order. This does not create any additional complications
for the AB algorithm. If the EPSE algorithm is to be used however, then a slight
modification of the cases #2 and #3, as shown in Figure 3.16, has to be introduced.
Let us assume that the relation between the orders to be used for the three groups is
m;>m,>ms. Then in case #2 for example, the computation of the vectors z, and
x™ has to switch to (3.15) and finite differences respectively for my<v<m,. This is
equivalent to switching from case #2 to case #1. Similarly for case #3 one has to
switch to case #2 for my<v<m; and to case #1 for my<v<m;. The computational
savings offered by this switching requirement are much more significant for the

EPSE algorithm than for the other candidates.
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Figure 3.16: Multirate EPSE algorithm
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Finally it is important to realize that a reduction of the accuracy and the sta-
bility of the algorithms is a penalty to pay for the speedup of the solution that the
multi-rate implementation offers. The magnitude of this reduction is usually small
enough however, so that the multirate implementation of algorithms is in general

recommended.

3.7 Summary

Chapter 2 introduced in a high level the procedure for the selection of algo-
rithms to solve ODE systems. The procedure in its high level is applicable to any
type of ODEs. This chapter suggests the implementation of the high level modules in
the case of the specific ODE systems that appear in the space structures simulation,

The selection of the algorithms itself appears in the next two chapters.

An analysis of the computational characteristics of the ODE systems that
appear in the models of space structures shows that these ODE systems are large
consisting of several hundreds of ODEs, highly nonlinear including trigonometric
functions and discontinuities, highly oscillating with a range of frequencies of 0.5 -
100 Hz, lightly damped taking around 300 secs to reach steady state, and in semiex-
plicit form A(x,H)x=b(x,u,t). An analysis of the requirements of the solution of the
ODE systems shows that real time solution may require a large number of proces-
sors, while an accuracy corresponding to up to 1% error is desirable. A fairly small
step size defined by (3.1) is required to represent the high frequency components
accurately. The slow damping of the oscillations together with the need for small
step size require that a large number of points of the solution is computed. Then a

very stable algorithm is needed to achieve acceptable accuracy. The desirable stabil-
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ity region is shown in Figure 3.1. The implementation of the accuracy estimation
module of the algorithm selection procedure, and in particular of the part shown in
Figure 2.4, is suggested to be based on (2.5) and (3.5). The speed, accuracy and sta-
bility bounds of the procedure are specified in (3.6) and Figure 3.1. A qualitative
performance comparison of a set of the most widely used algorithms is performed.
Table 3.1 summarizes the results of this comparison. These results suggest the can-
didate algorithms to be further compared using the algorithm selection procedure.
The Explicit Power Series Expansion and the Adams Bashforth algorithm are finally
included among the candidates. It is realized that in most cases the algorithms would
have to be implemented in a multirate scheme. The last section of the chapter
includes suggestions for the multirate implementation of the candidate algorithms.
Overall it is expected that Explicit Power Series Expansion algorithm would be the
most advantageous in most cases. It is shown to be far superior in computing the
solution across discontinuities. It also exploits the multirate scheme significantly

more than the other candidates.
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4. MULTIPROCESSOR IMPLEMENTATION OF ALGORITHMS

Chapters 2 and 3 present a procedure that automatically selects algorithms to
solve ODE systems that appear in the models of the dynamics of space structures.
This chapter proposes a procedure for the implementation of the algorithms on mul-
tiprocessor computers. The first section defines the problem of the implementation
and the criteria for its optimization. The second section presents the procedure
defining its components in a high level. The following 5 sections are devoted to the
detailed presentation of each of the modules of the procedure. These modules
include the partition of the computation into tasks, the selection of the optimal
number of processors, the assignment of the tasks to the processors, the sequencing
of the execution of the tasks on each processor, and the iterative improvement of the

implementation.

4.1 The objective of the procedure

The procedure for the multiprocessor implementation of algorithms that
solve ODE systems is an important part of the application software generator of mul-
tiprocessor computers with architectures like those shown in Figures 1.2 and 1.3. It
has to optimize the utilization of the hardware power of such multiprocessor com-
puters in solving ODE systems that appear in the models of the dynamics of space
structures. The multiprocessor implementation of algorithms is still an open distri-
buted processing problem. No standard software or even techniques exist yet, despite
of the great demand. The problem is too broad to be solved in full generality. There
are many kinds of algorithms, of formulation of ODE systems and of multiprocessor
architectures. The procedure that is proposed in this dissertation entails the follow-

ing assumptions:
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1. The ODE system is of the form of A(x,1)x(t)=b(x,u,t).

2. The multi-rate EPSE or AB algorithms are employed, since they were shown
in Chapters 3 to be the most advantageous one for solving the ODE systems

of interest.

3. The processors of the multiprocessor computer include 1/O units that function
independently from their ALUs allowing the interprocessor communication

to be performed simultaneously with the arithmetic operations.

4. The interprocessor communication takes relatively short time.

The procedure is sufficiently general so that it can be easily modified to apply to
different multiprocessor architectures, different formulation of the ODE systems, and

different algorithms.

The procedure can suggest either static or dynamic implementations, involv-
ing off line or on line decisions respectively. A dynamic implementation is more
general and easier to develop, but it may cause a serious overhead. This overhead
can be the result of delays due to the need to monitor the status of the processors or
due to the need for more interprocessor and processor-host communication. A 50-
100% overhead would not be surprising. In addition, a dynamic implementation can-
not be optimal because an on-line prediction of the characteristics of the computa-

tion is practically impossible. It is apparent that the procedure should be static.

As explained in Chapter 1, the procedure to be developed has to meet the fol-

lowing criteria:

1. Maximization of the speed of the solution of the ODE system.
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2. Minimization of the simulation cost: This can be accomplished by minimiz-

ing the hardware required and by having a simple and fast procedure.

According to (2.2), the solution speed can be maximized by:

1. Maximization of the step size used for the solution.

2. Minimization of the time to compute one point of the solution. This can be
achieved by the:
a. Minimization of the computational load involved in the solution.
b. Optimization of the distribution of this minimized computational load

among the processors.

C. Minimization of the interprocessor communication. This involves:
i, Execution of I/O operations, including communication proto-
cols.
ii. Transferring data among processors.
iti. Time during which processors remain idle because they are

awaiting data from other processors.

The maximization of the step size and the minimization of the computational
load are part of of the algorithm selection procedure. The contribution of the mul-
tiprocessor implementation of algorithms to the maximization of the solution speed

could consist of:

1. Balanced distribution of the computational load among the processors.
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2. Minimization of interprocessor communication.

It should be recognized that the execution of I/O operations can be overlapped with
the execution of arithmetic operations. In addition, the time that is required to
transfer data between processors depends on the power of the communication media,
which can be either a shared memory or a communication network. The minimiza-
tion of this time is a hardware design issue not related to the optimality of the mul-
tiprocessor implementation procedure. As a result, the maximum solution speed cri-

terion suggests a computational load distribution which achieves:
1. Balanced computational load of the processors.

2. Minimum idle time of the processors.

The achievement of this combination requires in sequence:

1. Optimal partitioning of the computation involved in the solution of the ODE

system into a number of computational tasks.
2. Optimal assignment of these tasks to the processors.

3. Optimal sequencing of the execution of the tasks that have been assigned to

each processor.

In addition to maximizing the solution speed, the procedure should be simple
and fast. The simplicity criterion refers to the consideration of developing a pro-
cedure that is easy to implement and modular enough to be easy to modify and
debug. The criterion of fast procedure refers to the consideration of developing a
procedure that is the least time consuming possible to achieve a desirable solution

speed.
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Finally the impact of the minimum hardware criterion is the consideration of
minimizing the number of processors and the storage needed, to achieve a desirable
speed. The development of the procedure is directed, on one hand to taking max-
imum advantage of available hardware, and on the other hand to indicating the

number of processors which are required for optimal operation.

4.2 The multiprocessor implementation procedure

The complexity of the multiprocessor implementation of an algorithm that
solves an ODE system depends on the structure of the computation involved. The
computation of the entire solution consists of the sum of the computations of the
individual points of the solution. The structure of the computation is very similar for
each solution point. Only special cases, such as the solution across discontinuities,
require computations of different structure. Still the differences however, are not
major. The implementation of an algorithm in regular cases can clearly imply the
implementation in special cases. It is therefore necessary, to optimize the multipro-
cessor implementation of an algorithm based only on the computation involved in

the evaluation of a typical point of the solution.

The computation involved in the evaluation of one point of the solution of an
ODE system can be represented in a computational graph. Such graphs, called pre-
cedence graphs, show the precedence relations between different parts of the compu-
tation. The representation can be in many levels of complexity, At one extreme, one
can have a trivial graph with one node representing the entire computation. In
another extreme, one can have a very large graph with nodes representing elemen-
tary operations. Figure 4.1 shows the graph at the level of elements of the matrices

and vectors of an ODE system in the form A(x,t)x = b(x,u,t), when it is solved using
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the single-rate EPSE algorithm according to (3.14) and (3.16). Note that the graph
has the pattern of an array with N columns, one for each of the N state variables, and
m rows, one for each of the m derivatives of the state variables. Each element of the
array includes the computation of one derivative of a state variable. The structure of
the computation for all the derivatives is the same with the exception of the first
derivative, which includes the computation required for the inversion of the matrix

A.

For the multi-rate EPSE algorithm, the computation involved in the evalua-
tion of one point of the solution in each of the solution cases can be represented by a
graph similar to the one in Figure 4.1. Referring back to Figures 3.13 and 3.14, note
that the computations marked with a circle in Figure 3.13 can be represented by one
of the columns of the graph in Figure 4.1. The computations marked with a crossed
circle can be represented in the same way, including however, the computation of an
interpolation formula in the evaluation of x,,;, shown in the bottom nodes. The
computations marked with a square can be represented by a subset of a column of
the graph. The second column of the graph in Figure 4.2 shows such a computation.
The nodes that represent the evaluation of the vector z, and the vector x™ are based
on (3.15) and finite differences respectively. As a result, the graph of the cases #1
and #2 in Figure 3.13 can be represented by Figure 4.2, while the graph of the case
#3 can be represented by Figure 4.1. In the case of different orders for the different
groups of ODEs, there will be columns that combine the upper nodes of the first
column with the lower nodes of the second column in Figure 4.2, It is apparent that
in every case, the array structure of the graph is preserved in the multi-rate imple-

mentation of the EPSE algorithm.
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The structure of the graph of any other algorithm follows closely the array
pattern as well. All graphs have N columns but differ in the number of rows. Multi-
step algorithms do not include the rows corresponding to the evaluation of the higher
derivatives. Implicit methods repeat the rows of the corresponding explicit ones.
The computational graph for the AB algorithm for example, is a subset of the one
shown in Figure 4.1. It does not include the computation below the evaluation of the

first derivative of x with the exception of the evaluation of the vector xp,;.

The determination of an optimal multiprocessor implementation of an algo-
rithm is a typical resource allocation or scheduling problem, which requires the
optimal schedule of the execution of a number of nodes of a graph by a number of

processors. In the present case:

1. The graph is deterministic, i.e. all the information needed about it is known.
2. The graph is acyclic, i.e. it does not have any loops or cycles.

3. The graph is unconditional, i.e. it does not have any decision nodes.

4. The graph has a general precedence structure, i.e. each node can have an

arbitrary number of predecessors an successors.

5. The times of the execution of the nodes are of unequal length,
6. The number of processors is not limited to two.
7. The goals of optimization are:
i Minimization of the completion time ®, which is the time to finish the

execution of all the nodes.
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ii, Achievement of a completion time that is not later than a deadline 1,

specified by the bound on the solution time S,;.

iii. Minimization of the number of processors that are required to meet

the deadline.

It is also assumed that:

1.

The processors are identical.

Unlimited resources, such as storage or interprocessor communication paths,

are available.

The interprocessor communication delay is short and constant. As soon as a
datum to be transferred becomes available, it is assumed to become also
available to any processor that is expecting it in a short constant time. This
may not be a realistic assumption for some computer systems. Variations of
the communication delay can be introduced by the I/O mechanism or by the
communication protocols, including routing and retransmission in case of
error. The assumption simplifies the resource allocation problem however,
because it is very difficult in general to model variable communication delays
deterministically. The capability of processors to have their I/O operations
overlapped with the arithmetic reduces the harmful impacts of such an

assumption.

No preemption takes place, that is, a node cannot be interrupted to execute
another node of higher priority. Preemption may increase the execution speed

but is more difficult to implement.
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5. No deadlines exist for individual nodes or clusters of nodes.

The great modularity of the procedure that is proposed in this chapter provides
enough flexibility to allow a user desiring to improve the procedure and willing to
pay the price of higher complexity, to insert different modules, that employ hetero-

geneous processors, limited resources, preemption or individual node deadlines.

Such resource allocation or scheduling problems are known to be NP-
complete [Coff75, Gare79]. Their optimal solution cannot be obtained in polyno-
mial time O(NK) but rather in exponential time O(MN“), where Ny is the number of
nodes and M is the number of processors. This is because all the different combina-
tions of nodes and processors have to be compared. For a relatively small problem
of 100 ODEs, a graph representation of the level shown in Figure 4.1 would result in
120,000 nodes. The number of different combinations to be compared for a computer

with 4 processors is of the order of 105890,

Low complexity heuristic methods have been developed to solve scheduling
problems. In [Gonz77] one can find an excellent survey of scheduling heuristics.
Heuristics do not in general provide optimal solutions, i.e. minimum completion
time or minimum number of processors, but attempt to provide near optimal solu-
tions. The performance of a heuristic depends on the particular graph. It can be
measured in terms of the proximity of the heuristic solution for the particular graph,
@ and M, to the optimal one, ®, and M,. The following percentage measures are
usually (_:onsidcred:
pe-so|

% and P=100

P =100
Wo M, 4.1)
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Worst or average case performance can establish a heuristic method. It should be
recognized, that there can always be a best case graph that a heuristic is optimal. In
developing a heuristic one should realize that lower complexity methods are usually
less optimal. It should also be mentioned that the analytic determination of the per-

formance or the complexity of many heuristics is practically impossible.

Among the several heuristics that could apply to our case, the most widely
accepted assign individual nodes to a given number of processors by trying to limit
the total execution time to the time to execute the nodes on the longest path of the
graph [Kohl75, Ravi86], termed the critical path. This is because, the time to exe-
cute sequentiaily the nodes on the longest path is the minimum possible time to exe-
cute the entire graph. In [Fern73] one can also find a bound on the number of proces-
sors required to prevent the completion time from exceeding the longest path. The
computational complexity of the most efficient of these heuristics is O(NnlogaNn)
to O(Ng;), depending on their optimality. For a relatively small problem with 100
ODEs, 4 processors and a graph representation of the level of Figure 4.1, these
heuristics would take 107 to 10'® steps. Although this is not unacceptably long,
many users would like to have a heuristic that is linear or logarithmic or at most low
order polynomial with the number N of ODEs, rather than with the number of nodes
Ny, so that the results are delivered promptly. The procedure that is proposed in this
chapter attempts to serve such a purpose and follows a different approach. To
reduce the computational complexity involved, the procedure suggests the partition-
ing of the graph into a number of clusters of nodes. This results in a graph with a
smaller number of nodes Ny. In particular, as is explained in the following section,
it suggests a partitioning that results in a number of clusters of nodes that is of the

order of the number of ODEs of the system.
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The procedure is based on a heuristic approach specialized for the computa-
tion shown in Figure 4.1. As is the case for all heuristics, the procedure cannot
guarantee an optimal solution, i.e. maximum speed for the solution of the ODE sys-
tem or minimum number of processors. It rather attempts to approximate closely
enough the optimal solution. The procedure does however, allow the asymptotic
approach to the optimal solution speed. The user can specify the bound on the solu-
tion speed that the procedure should achieve. The closer to maximum the desirable

solution speed is, the more time does it take the procedure to achieve it.

To summarize, the procedure for the multiprocessor implementation of

multi-rate algorithms should suggest for each solution case the optimal:

1. Partition of the computational graph into a number of clusters of nodes,
called tasks.

2. Number of processors.

3. Assignment for execution of the tasks to the processors.

4. Sequence of the execution of the tasks on each processor.

Figure 4.3 shows the modules of the procedure at a high level. The following 5 sec-
tions in this chapter are devoted to the detailed description and suggestion for the

implementation of these modules.

Finally it should be recognized, that an optimal schedule should in fact try to
exploit all the kinds and levels of parallelism that appear in the computation. To
exploit parallelism that might exist at levels lower than the one shown in Figure 4.1,

a larger more detailed graph would be needed. Then the time to obtain an optimal
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Figure 4.3: High level components of the multiprocessor implementation procedure

allocation would be even longer. Optimizing the schedule of the execution of the
nodes of a graph at a high level, such as the one in Figure 4.1, constitutes a
compromise between absolute optimality and complexity. The same compromise
applies in optimizing the multiprocessor implementation of an algorithm over the
computation involved in the evaluation of one point of the solution, rather than the

entire solution, as mentioned in the beginning of this section.

4.3 The partitioning module

In order to keep the multiprocessor implementation procedure from becom-
ing excessively complex and time consuming, it appears reasonable to partition the
computational graph of Figure 4.1 or 4.2 into a small number of large autonomous

clusters of nodes, called tasks, that are tightly coupled to each other and relatively
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loosely coupled to the nodes of the other clusters. This is because, the computational
complexity of the assigning and sequencing procedures depends directly on the
number of the tasks that the graph has been partitioned and the complexity of their
interdependence. In addition, the minimization of the task interdependence results
in minimum storage requirements. This is because, the data needed to be duplicated
in different processors is minimized. It is important to realize, that the introduction
of clustering does not absolutely lead to maximum integration speed, but constitutes
a compromise. It sacrifices a small amount of integration speed for simplicity and

for economy of storage.

In order to achieve high integration speed it is necessary to satisfy simultane-

ously two goals:

1. The partitioning of the graph into a number of tasks with minimum inter-

dependence. This aims to minimize the idle time of the processors.

2. The partitioning of the graph into a number of tasks with such execution time
lengths so that the optimal assignment of these tasks to the processors results

in a balanced distribution of the overall computation.

In the graph shown in Figure 4.1 it is easy to observe the the nodes in each
column are tightly coupled to each other and loosely coupled to the nodes in the
other columns. For each state variable, say xg, the nodes that constitute the kth
column of the graph correspond to the processing of the elements of the kth row of
the ODE system. Therefore, the nodes that represent the operations involved in the
processing of each one of the rows of the ODE system seem to be the best candidates
to be clustered together and assigned to the same processor. For multi-rate algo-

rithms, the computational graph of each solution case has to be partitioned into tasks.
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As each case contains all the rows of the previous cases, it appears reasonable to
apply the partitioning on the entire ODE system, or equivalently on the last case,

rather than on individual cases separately.

This partitioning results in only N loosely coupled tasks. It is very simple but
sufficient. It may occur occasionally however,that one or more of the tasks is longer
than the deadline T, allowed by the bound S, on the speed of the solution of the
ODE system. Then, even an optimal assignment would result in a load for some pro-

cessors that violate the speed constraint, as shown in Figure 4.4,

Ty

i
!
'
Ty :
!
!
'

Figure 4.4: A long task that violates the speed constrain

In that event it is feasible to partition each of the long tasks into a number of
subtasks. If a task is of length Lt,+T, where T, < T, and L is a positive integer, then
the task should be partitioned into L+1 tasks. The first L tasks should be of the max-
imum possible length that does not exceed T,. The remainder should constitute the

last subtask. Task 2 in Figure 4.4 for example, should be partitioned into 2 subtasks,
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one of length 3 and one of length 2. This strategy of partitioning long tasks should be
preferred because it can enhance the performance of the assignment procedure. Each
of the subtasks of length 1T, will occupy entirely one processor. Then, fewer proces-
sors will be left for the rest of the tasks. As explained in the next section, the heuris-
tic assignment of a number of tasks to a number of processors performs better for a

smaller number of processors.

One can recognize that the longest row corresponds to the longest path of the
graph. Heuristics that are based on preventing the solution speed from exceeding the
longest path computation may face the problem that the minimum solution time
specified by the longest path exceeds the deadline 1,. The partition of long rows can
be considered equivalent to shortening the longest path of the graph. The graph

would become shorter and wider resulting in more parallelism.

No special treatment is required for multi-rate algorithms. The problem
shown in Figure 4.4 may appear to any row of any solution case. Therefore, this

additional partitioning of long rows should be applied on the entire ODE system.

Although the partition of long tasks guarantees that the speed constrain will
not be violated, it may still occur that one or more of the tasks is far longer than the
other tasks. The appropriate selection of the number of processors would rarely
allow this to happen. Nevertheless, the partitioning procedure should provide means
to cover this rare case. Consider, for example, a situation in which most of the com-
putation is concentrated in one row of a 10 ODE system A(X,0)x(t)=b(x,t). A reason
can be that a large number of function generations are required for the evaluation of
the elements of that row, while the rest of the system is sparse with relatively simple

non-zero elements. In that event, the optimal assignment may result in the situation
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illustrated in Figure 4.5, resulting in a substantial unbalance.

T
1
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a A A re A C t
P1 T1 + T6 + Tm :
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P4 T4 + T7 + Tg :
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Figure 4.5: Very unequal length tasks may lead to poorly balanced distribution

Then, it is feasible again to partition the long tasks into a number of subtasks.
It is explained in the next section, that a heuristic assignment performs better for

equal length tasks. It is preferable therefore, that the subtasks be as equal in length

as possible. If a long task, say T;, is of length Lt;+1;, where 1, = -ﬁ[(j%Tj)—Ti],
T,<t; and L is an integer, then the task should be partitioned into L+1 tasks of as
equal a length as possible. In addition, the number of subtasks should never exceed
the number of processors. In case L+1 > M, the long task should be partitioned into
M tasks only. Then the M equal length tasks will be assigned to the M processors in
a very balanced way, and the assignment of the rest of the tasks on the top of these
M tasks will result in an overall balanced distribution. This second partition of long
tasks again corresponds to a shortening and widening of the graph resulting in an

increase of the parallelism.
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For a multi-rate algorithm, this second partitioning has to be performed
separately on each of the solution cases. This is because there may be differences
between the graphs of the cases such as the problem shown in Figure 4.5. One
should apply this partitioning first to the case with the least ODEs and then to the
cases in the order of increasing number of ODEs. Then the long tasks of the first
case are partitioned first, followed by the partitioning of the long tasks of the second

case and so on. This order is justified by the facts that:

1. Cases with fewer ODEs are to be solved more frequently and should there-

fore have priority.

2. Each case contains the ODEs of the previous cases that would have already

been "smoothed".

The entire procedure, for the partitioning of the graphs of multi-rate algo-
rithms used to solve ODE systems in the form A(x,t)x=b(x,u,t), is shown in Figure
4.6. The selection of the number of processors is discussed in Section 4.6. For the
sake of simplicity, the partitioning of long tasks should be performed as an augmen-
tation of the ODE system by adding new L+1 state variables, rather than partitioning
the corresponding column of the graph in Figure 4.1. Such partitioning preserves the
simple concept of the partitioning of the graph by rows. Figure 4.7 shows an exam-
ple of such an augmentation of an ODE system. In this example, the task that
corresponds to the kth row is decided to be partitioned into 4 subtasks labeled by i, ii,
ili and iv. The partitioning is implemented by the insertion of three new rows and
three neﬁ columns to the system, corresponding to three new state variables xn.1,
XNs2 and Xn3. Figure 4.7a shows the original ODE system, and 4.7b shows the aug-

mented one.
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Figure 4.6: Implementation of the partitioning module
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Figure 4.7 Partition of the long task k into four subtasks

The suggested partitioning procedure is very simple and easy to implement.

It can be considered as an extension of the segmentation technique reported in

[Fran78]. It can also be considered as the partitioning part of a "group scheduling"”

procedure, where entire groups of tasks are suggested to be assigned to processors.

The concept of group scheduling is discussed in [Jone79].

Resulting in few loosely coupled tasks, as well as in tasks that are not of very

different lengths and guaranteeing that the speed bound will not be violated, it

enhances the performance of the assigning and sequencing procedures too. Serving

to minimize interprocessor communication, it minimizes the local memory required

in each processor as well. This is because a partitioning resulting in more interpro-

cessor communication, would require a larger amount of data to be transferred and

equivalently would require more storage in the processors.
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The partitioning procedure constitutes a compromise between optimality and
simplicity. Greater processing speed may be possible to achieve by clustering the
nodes of a more detailed graph so that elementary arithmetic operations are individu-
ally allocated. Such a partitioning would however increase the cost of the entire mul-

tiprocessor implementation.

4.4 The assigning module

Clustering the nodes of the graph as suggested by the partitioning procedure
results in the problem of assigning Nt loosely coupled tasks to a given number of
processors. Each of the tasks represents the computation of one of the clusters of
nodes. Initially, the number of processors is the one suggested by the INITIAL
SELECTION OF NUMBER OF PROCESSORS module in Figure 4.6.

In order to achieve high speed in the solution of the ODE system, it is neces-

sary to determine an assignment that results in:

1. Balanced distribution of the tasks among the processors.
2. Minimization of the idle time of the processor due to interprocessor com-
munication.

In general, the problems of optimal assignment of Nt coupled or uncoupled
tasks to M processors under several or no restrictions are NP-complete. In fact, the
NP-completeness of the entire scheduling problem is due to the NP-completeness of
the assigning problem. High performance heuristics have been suggested for compu-
tations of coupled tasks that can be represented in a precedence graph, such as the

one in Figure 4.1. The couplings between the tasks in our case are Cross-
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precedences. Each task depends on all the other and all the tasks have to be executed
in parallel. Therefore, the computation cannot be represented by a precedence graph.
The development of an accurate heuristic for such computation is very difficult. Sto-
chastic scheduling approaches have been suggested [Coff73, Robi79]. Apparently
they are inherently not accurate. In addition, the complexity of the queueing model-
ing of the computation that is involved is relatively high. A much more simple
approach is suggested in this section. This approach is based on the assumption that
the processors idle time effect of the coupling between the tasks is negligible. Then
the tasks can be considered as independent and one can use one of the several widely

accepted high performance low complexity heuristics.

Neglecting the effect of the coupling between the tasks is a reasonable
assumption because, as can be noticed from Figure 4.1, the impact of the interpro-
cessor communication on the total execution time is relatively very small. Interpro-
cessor communication is already significantly reduced by the partitioning strategy.
The optimal sequencing of the execution of the tasks reduces the idle time of the
processors even more. In a typical case, the evaluation of the elements of a row of
the ODE system would take several thousands of instructions, while the transfer of a
datum, such as the value of the element of the vector z, would take only few tens of
instructions. As can be noticed from Figure 4.1, this would result in an interproces-
sor communication time that is of the order of 1% the entire solution time. Having
architectural features that allow overlapping of the I/O operations with the arithmetic
operations, as shown in Figures 1.2 and 1.3, can reduce the idle time of the proces-
sors below 1%. A further reduction can be achieved by combining task preemption

with task sequencing.
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The criteria to select a heuristic that optimizes the assignment of Nt indepen-

dent tasks to M processors are:
1. Balance of computational load distribution.
2. Simplicity of the heuristic.

Table 4.1 compares the two heuristics that are at present considered to have the
highest performance. The parameter r is the number of tasks assigned to the proces-

sor which finishes last. It has been selected to be close to Nt/M as expected for most

of the cases.
Table 4.1: Comparison of the LPT and IC heuristics
Parameters Criterion LPT IC
Nr computational complexity | ONtlogsNr+NrlogaM+N7) | O(N7logaM+Nr)
M
I worst performance M-1 ML
™ M-M+1
Nt=100 computational complexity 0(965) (o1K0)]
M=4
r=20 worst performance 3.75% 3.89%
Nt=100 computational complexity 0O(1065) 0O(400)
M=8
=10 worst performance 8.75% 9.59%

The LPT (Longest Processing Time first) heuristic [Coff73, Grah69, Coff76]
is the closest to optimal, while the IC (1/0-Interchange) heuristic [Finn79] is nearly

as optimal but relatively faster. The inferiority of LPT heuristic in terms of computa-
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tional complexity is due to the fact that it requires initially the sorting of the Ny
tasks. The fastest sorting is known to require O(Nrlog,Nt) steps. Therefore, the
sorting dominates the computational complexity of the LPT heuristic resulting in an
inferiority against the IC heuristic. Although the IC heuristic would be the clear
choice, in our case the LPT heuristic is preferable. This is because the LPT heuristic
can be relieved from the need to sort the tasks before assignment. As explained in
Section 4.6, the sorting of the tasks is already performed by the procedure that is
suggested to select the number of processors. Figure 4.8 shows the LPT heuristic.
Figure 4.9 shows the assignment that the LPT heuristic would suggest for the case of

10 preordered tasks.

For multi-rate algorithms, an assignment has to be suggested for the tasks of
each solution case. In all the cases, the number of processors would be the one sug-
gested by the module INITIAL SELECTION OF NUMBER OF PROCESSSORS.

The following two alternatives can be considered:
1. Individually optimal assignments for the different cases.
2. Global assignment for all the cases.

Changing the assignment of the tasks over the entire solution at the points of transi-
tion from one case to another, would cause an overhead due to the large amount of
data required to be transferred between the processors. In addition, such a multi-
assignment process would be more complicated to implement. It is therefore desir-
able to determine a global assignment that is to be used in all the solution cases. A
global assignment can be deterrnined by the optimal combination of the assignments

that the LPT heuristic suggests for the different cases. Figure 4.10 shows a heuristic

103



tasks processors

N R |

SORT TASKS IN DECREASING ORDER

FIND PROCESSOR P,
WITH SHORTEST FINISH TIME

y

ASSIGN T; TO PROCESSOR Py,

!

UPDATE PROCESSOR Py,

assignment

Figure 4.8: The LPT heuristic

way to determine a global assignment. This heuristic constitutes a compromise

between optimality and simplicity.

This implementation of the assignment module is very simple. It can be con-
sidered as an extension of the simple LPT heuristic for multirate algorithms without
the need inidally to sort the tasks. In addition, its computational complexity is only
of the order of O(KNtlogaM). It also provides an assignment that is fairly close to

the optimal, as can be seen from Table 4.1.
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Figure 4.9: An example of LPT assignment

4.5 The sequencing module

The sequencing module determines the priority of execution of the different
parts of the computation that is involved in the tasks that are assigned to each pro-
cessor. The sequencing can be considered at several levels of complexity. At one
extreme, one can consider the entire computation as one task. In this trivial case
there is no need for sequencing. At the other extreme, one can schedule the execu-
tion of the individual elementary operations. This corresponds to the highest level of
complexity that apparently can produce a more optimal sequence. Sequencing the
execution of the Ny tasks constitutes a compromise between optimality and simpli-

city.

The contribution of an optimal sequencing to the multiprocessor implementa-
tion procedure is the minimization of the processor idle times. To minimize the idle

time of a processor, each of the tasks that are assigned to it should be assigned an
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Figure 4.10: The assigning module

execution priority in the order of the amount of its total dependency on the tasks that
have been assigned to the other processors. Such a dependency of a task i that has

been assigned to the processor j can be measured by the MxNt matrix V, defined as:
V=(1-E)U

(4.2)

where the MxNy matrix E specifies the assignment of the tasks to the processors and
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is defined as:

E. = 1 iftaskiis assigned to processor ]
10 else 4.3)

and the NpxNrt matrix U represents the mutual coupling between the tasks and is

defined as:

U = 1 if row i depends on x;
710 else (4.4)

Sequencing smaller tasks, such as individual elements of the rows of the ODE sys-
tem or individual elementary operations, can be based on the expression (4.2) with a

definition of the matrices e and U similar to (4.3) and (4.4).

In case of multi-rate algorithms, the tasks that are assigned to processors
differ for every solution case. Therefore, a separate scheduling has to be performed

for each case as shown in Figure 4.11.

4.6 The module for selection of the number of processors

The optimization of the number of processors contributes to:
1. Minimization of the hardware cost.
2, Maximization of the solution speed.

In particular, the optimization of the number of processors M requires the determina-
tion of the minimum number of processors M,, that the multiprocessor computer
system should utilize to achieve the desirable speed S, in the solution of the ODE

system,
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Figure 4.11: The sequencing module

The solution time t depends monotonically on the number of processors, as
shown in Figure 4.12. Notice that, as the partitioning procedure, shown in Figure

4.6, suggests that for each solution case, say #k, Nt, tasks are to be distributed to the

M processors, it is necessary that:
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1<M, €N, “s)

for each iteration k=1,...,.K of the second loop in Figure 4.6. M, can be determined
to be the maximum integer M that satisfies the relation T©(M) <1,. M, could be
derived from such a relation if T(M) could be expressed analytically. However, the

formulation of such an analytic expression is extremely difficult.

t(N1,)

» M

1 M, Nr,

Figure 4.12: The solution time decreases with the number of processors

Alternatively, the determination of M, could also be seen as a combinatorial
problem, such as the assigning problem. This is the problem of determining the
minimum number of processors that can execute a graph of N, loosely coupled
tasks in a time that does not exceed a predefined deadline t,. Such combinatorial
problems are again NP-complete. A heuristic has to be selected to provide a quick

approximate solution. The heuristics that have been proposed for coupled tasks,
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such as in [Fern73), apply again for precedence type of coupling. They cannot be
used in our case of cross-precedence couplings. Similarly the approach to determine

an optimal assignment, the Nt_ tasks for the case #k can be considered as indepen-

dent. This assumption introduces again a compromise between optimality and sim-
plicity. The problem of determining the minimum number of processors that can
execute a set of independent tasks with a predefined deadline, can be modeled as a
classical bin-packing problem. The FFD (First Fit Decreasing) heuristic {John74,
Coff78), shown in Figure 4.13, has been used successfully to find a quick approxi-
mate solution to the bin-packing problem. It suggests a number of processors 1\710

which in the worst case is bounded, relative to the optimal number M,, as:

M, < -1—91—M°+4

(4.6)
In addition, its computational complexity is only of the order of O(N, log,Nr, ).
Therefore, it combines high performance with simplicity and low computational
complexity. Figure 4.14 shows the number of processors that the FFD heuristic

would suggest for the case of the 10 preordered tasks shown in Figure 4.9.

4.7 The performance improvement module

The heuristics, that are proposed in Sections 4.3 through 4.6 to determine the
optimal multiprocessor implementation of algorithms, are claimed to be of high per-
formance. They are expected in most cases to provide a multiprocessor implementa-
tion that leads to maximum speed of the algorithms. In some cases however, due to
the nonoptimality of the heuristics or due to the assumptions that are introduced, the

multiprocessor implementation that is suggested by the heuristics may not be as
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Figure 4.13: The module for the selection of the number of processors

close to the optimum as one might require. It may also happen that the speed of the
algorithms finally falls below the desirable lowest bound, although the heuristics
attempt to prevent such a situation. Or it may happen that the estimation of the
number of processors by the heuristics was too conservative, that is, fewer proces-
sors would suffice to achieve the desirable speed. As discussed in Section 4.2, the

heuristics should be enhanced with capabilities to asymptotically improve their
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Figure 4.14: An example of FFD determination of the number of processors

results. The entire procedure of the multiprocessor implementation consists of a

combination of heuristics and improvements features.

The detection of the need for improvement can be based on an estimation of
the speed of the solution of the ODE system. Any of the commercially available
discrete event simulators or simulation languages can provide such an estimate. The
multiprocessor implementation procedure should include a module that generates

automatically the code of such a simulator. This code should include:

L. Emulation of hardware: A representation of the architecture of the multipro-
CESSOT computer.
2. Emulation of software: A representation of the computation to be executed

by the computer.

The criteria to select a simulator include:
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L. The simulator should have enough features that allow the representation of

all the important hardware and software parts of the computation.

2. The simulator should be simple enough so that the generation of its code is
an easy task.

3. The simulator should be fast enough so that it does not slow down the entire
procedure.

The main reasons for failing to achieve a desirable solution speed are related
to the compromise between maximum solution speed and simplicity and speed of the

procedure. These reasons can be:
1. The decision to partition the computation into few large tasks.
2. The decision to neglect the coupling between the tasks.

The first decision is the most important feature of the procedure that serves the cri-
terion of having a fast procedure. No improvement of the results of the heuristics
should be sought through the consideration of smaller tasks. The second decision
serves the important criterion of simplicity of the procedure. Although again such a

decision should not be dropped, additional care can be taken to reduce its effects.

The coupling between the tasks may result in processors idle times and slow
down the algorithms further than the heuristics can predict and control. Processor
idle times could be controlled by controlling the interprocessor communication that
is rcquiréd. Forcing highly coupled tasks to be executed by the same processor may
reduce the interprocessor communication required. Therefore, an improvement of

the multiprocessor implementation can be attempted by iteratively merging the pair
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Figure 4.15: The multiprocessor implementation procedure
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THE TIME TO SOLVE THE ODE SYSTEM, while Figure 4.17 shows an imple-
mentation of the module MERGING HIGHEST COUPLED TASKS.

A heuristic iterative tuning of the number of processors can be based on Fig-
ure 4.12. In particular, as discussed in Section 4.6, M,, can be determined to be the
largest integer M that satisfies the relation T{M)<t,. A piecewise linear approxima-
tion between already available values can be used to express ©(M). Then, at each
improvement iteration a new value of V, can be determined by linear interpolation,
as shown in Figure 4.18. This iterative improvement requires initially the availability
of at least two values of T(M) for two different number of processors. These two

values can be:

1. The solution time for the number of processors that the module SELECTION
OF THE NUMBER OF PROCESSORS suggests.

2. The solution time for one processor that can easily be estimated with an
actual run of the simulation without any need for multiprocessor implementa-

tion of the algorithm.

It is easy to show that at every iteration step the new value of M, say k+1,

can be computed from:

T(Mg-1)-Ty + Ty —T(My) 2
Mo )-tMy) ) UMy M) @7

My = My

"

The "+"'sign corresponds to interpolation between t(My_;) and ©(My), while the
sign corresponds to extrapolation. The module for TUNING NUMBER OF PRO-

CESSORS, shown in Figure 4.19, includes a capability to detect if an interpolation
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or an extrapolation is needed.

> M

1 M, M; M, Ny,

Figure 4.18: The iterative tuning of the number of processors

The implementation of the entire module of performance improvement that is
proposed in this section, is fairly simple to implement. It is expected to require no
more than a few iterations. It does not therefore, significantly increase the complex-
ity and decrease the speed of the multiprocessor implementation procedure. In addi-
tion, it allows the asymptotic approximation of the maximum solution speed by tun-

ing appropriately the tolerances of the decisions involved.

It should be recognized that the multiprocessor implementation procedure

offers for free a prediction of the performance of the computer to be used to solve the
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the interprocessor communication operations with the arithmetic operations. How-
ever, the procedure is fairly general to apply to different multiprocessor architec-

tures, different algorithms and different formulations of the ODE systems.

The procedure is developed to meet the criteria of simplicity and of max-
imum speed of the algorithms. The first criterion can be achieved by developing a
fast and easy-to-implement procedure. The second criterion can be achieved by a
balanced distribution of the computational load and a minimization of the idle time
of the processors. The problem of the determination of the optimal multiprocessor
implementation is an NP-complete problem. A heuristic approach is suggested to
provide a quick approximate solution. Figure 4.3 shows the necessary components

of the procedure to meet this criterion.

The module of partiioning requires the partitioning of the computational
graph that represents the computation that is involved, as shown in Figures 4.1 and
4.2, into few large loosely coupled clusters of nodes, called tasks. The approach that
is proposed is shown in Figure 4.6. It is based on the idea of partitioning the ODE
system by rows. The set of tasks that are to be produced, is expected to guarantee
that the speed of the multiprocessor algorithm will not exceed a predefined lower
bound. In addition, it enhances the performance of the assigning and sequencing

Processes.

The module of selecting the number of processors requires the determination
of the minimum number of processors that can solve the ODE system with a speed
that does not exceed the lower bound. Figure 4.13 shows a possible approach that is
an extension of the FFD heuristic, which attempts to provide a quick approximate

solution to the classical bin-packing problem. This approach is based on neglecting
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the coupling between the tasks.

The module of assigning requires the assignment of the tasks to the proces-
sors for execution. The approach suggested, as shown in Figure 4.10, is based again
on neglecting the coupling between the tasks, and is an extension of the LPT heuris-
tic, which provides a quick approximate solution to the problem of the assignment of

independent tasks.

The module of sequencing requires the assignment of execution priority to
the tasks that are to be executed on each processor. The priorities are suggested to
be assigned according to the dependence of each task on the tasks that are to be exe-

cuted in all the other processors, as shown in Figure 4.11.

The module of performance improvement suggests ways to improve the
results of the previous four modules. It allows an infinite approximation of the max-
imum speed of solution of the ODE system through iteration loops, as shown in Fig-
ure 4.15. The detection of the need for improvement is suggested to be performed
using any of the commercially available discrete event simulators as shown in Figure
4.16. For a particular number of processors, merging the highest coupled tasks into a
single task, as shown in Figure 4.17, may reduce the idle time of the processors and
increase the solution speed. Further improvement can be achieved by tuning

appropriately the number of processors, as shown in Figure 4.19.
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5. ABENCHMARK ODE SYSTEM

This chapter is devoted to the selection of an ODE system that can serve as
benchmark for the performance analysis of the procedures for algorithm selection,
that is introduced in Chapter 2 and 3, and for multiprocessor implementation of algo-
rithms, that is introduced in Chapter 4. The first section discusses the requirements
for the characteristics of the benchmark. It is explained that synthetic benchmarks
have to be developed. This leads in the next section to a procedure for the develop-
ment of a synthetic benchmark. A validation of the procedure is presented in the
third section. The development of the benchmarks that are to be used for the two

performance analyzes are presented in the last two sections.
5.1 Requirements for the characteristics of the benchmark

The criteria for the selection of the benchmark ODE system are:

1. Validity: The benchmark must have all the important characteristics and only
those of the ODE systems that appear in the models of the dynamics of space

structures. As explained in Section 3.1, these ODE systems are:
1. Large

2, Highly nonlinear

3. Highly oscillating

4.  Lightly damped

5. In the form A(x,Dx(t)=b(x,u,t)
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In addition, the parameters that achieve these characteristics should be

sufficient for the performance analyzes.

2. Simplicity: The benchmark must be as small and simple as possible so that

the performance analysis tasks are simplified.

It should be recognized that an ODE system involved in the model of a particular
space structure may have only some of the above characteristics. Therefore, the per-
formance analyzes require a set of different benchmark ODE systems representing
different space structures so that all together cover all the required characteristics.
The task of specifying and constructing such a set of ODE systems however, is very
difficult. Ready to use models for numerous different space structures are not avail-
able. Even if such models exist, their conversion to the semiexplicit form
A(x,t)x=b(x,u,t) poses additional problems. It is more practical to develop a syn-
thetic benchmark that includes parameters having the required characteristics. The
benchmark can then be tuned for the needs of the specific performance analysis. The
synthetic benchmark should meet the above two criteria. Let us specify the charac-

teristics that it must have.
Large

The dimension N of the ODE systems that appear in the mathematical
models of the dynamics of modern space transportation systems is usually of the
order of one to two hundred. A simplified modeling of a space shuttle, represented
by 10 bodies interconnected by 10 hinges, led to 130 ODEs [Gluc85]. Extensive
experimentation with benchmarks of that size is excessively time consuming. As a

compromise between realism and simplicity, it has been decided to develop ODE
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systems with dimensions of the order of:

1. N=12 for the analysis of the performance of the procedure for selection of
algorithms.

2. N=48 for the analysis of the procedure for multiprocessor implementation of
algorithms.

Highly Nonlinear

The models of the dynamics of space structures include typically terms of the

form:

1. 7 (constant)

2. o;x; (linear)

3. Bijxin

4, i XiCos(x;)

5. aiijinCOS(Xk)

6. E;0(x;), where ¢(x) is a nonlinear function of x that contains discontinuities

The size of the nonlinear terms is irrelevant to the multiprocessor implementation
procedure. The algorithm selection procedure however, should be tested for various
sizes of the nonlinear terms. In particular, it has been decided to consider the fol-

lowing two cases:

1. The size of the coefficients of the nonlinear terms is of the same order of

those of the linear terms.
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2. The size of the coefficients of the nonlinear terms is one tenth of the order of

those of the linear terms.
Highly Oscillating and Lightly Damped

The typical frequency range of the oscillations is 0.1 - 100 Hz. The typical
duration of the transient is 300 secs. These have the impact that the benchmark when
linearized should have eigenvalues {A;,...,AN]} with real part up to -0.015 and
imaginary part in the range j0.628 - j628.318. It should be recognized that the eigen-

values always appear as complex conjugates pairs.

The linearized benchmark is of the general form:

x = Fx+Gu
(5.1)

where the matrix F represents the interaction between the state variables, and the
matrix G represents the effect of the inputs on the state variables. The mathematical
model consists of real number expressions and this must also be true of the elements
of the matrices F and G. In addition, the eigenvalues of the ODE system are the
eigenvalues of the matrix F. According to the Gerschgorin theorem [Stew73], the

matrix F has eigenvalues that lie in the discs in the complex plane defined as:

|li‘Fii

N
<y ’F-- |, i=1,..,N
= (5.2)
i
and shown in Figure 5.1. For a benchmark to have eigenvalues that are not more
than a tolerance € displaced from a given set of eigenvalues, the matrix F should

have:

1. 2x2-block real number diagonal elements that are related to these given
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eigenvalues. Every pair of complex conjugates eigenvalues A=0+jw and

M—G—jﬂ) COI‘I‘CSpOI‘ld to the block:
| o COI
-0 O

Very small nondiagonal elements so that the sum of each row of F does not
exceed €. The nondiagonal elements represent the coupling between the state
variables. This coupling is related to the coupling of the motion of the bodies

and therefore must be represented by real numbers.

jo S-PLANE

) A=0+jw
N
z[r|
=
i

F;
-
0

. Figure 5.1 : Each eigenvalue }; of the matrix F lies within the disc
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The duration of the transient and the frequency range are irrelevant to the
multiprocessor implementation procedure. The selection of an algorithm however,
depends strongly on both. Since the ODE systems that describe the dynamics of
different space structures may differ significantly only in their frequency range, it has

been decided that the performance of the algorithm procedure is evaluated for:

1. Constant 300 secs transient.
2. Two frequency ranges that correspond to maximum frequencies of 50 and 90
Hz.

The duration of the transient is typical and is selected to be long enough so that the
algorithm selection procedure is tested under "worst case" conditions. The two max-
imum frequencies are also typical and have been selected so that one of them is close
to and the other far from 100 Hz. According to (3.1), 100 Hz, as well as 10 Hz or 1
Hz, is a bounding maximum frequency that requires a step size larger by one order
of magnitude. It should be expected that the more close to such a bounding max-

imum frequency the less accurate the prediction of the optimal orders and step sizes.

Form A(x,t)x(t)=b(x,u,t}

The manipulation of ODE systems with time dependent terms, especially
their linearization and eigenvalue analysis, is in general too complicated to be suit-
able for a benchmark. Neglecting time dependency in the development of the bench-
mark is a very useful simplification. For the same reason, the separation of the terms
dependent on x and the terms dependent on u in the vector b is another useful

simplification. Then the benchmark can be formulated as:
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AX)x = G (x)+E2(u)

(3.3)
The equilibrium point xg of the ODE system is defined as:
Xo=limx(t)
e 5.4
At the equilibrium point it is x(t)=0 or equivalently b(xg,u9)=0, where:
up=limu(t)
10 (5.5)

Then the linearization of the benchmark leads to the following linear ODE system:

dCy (x) | %l dGa(u) ] u
dx Ty du " (5.6)

[AG) X =

The following equalities can identify the matrix A and the vector b of the bench-

mark:

[AX)]x, =L
o (5.7)

dgi(x)
dx ]XD—LF

[

[dC2(u)] LG

du 7y,
An obvious solution of these equations is the following:
Li(x)=LFx and {(u)=LGU (5.8)

The equilibrium point xy can be determined from the equation §;(x)+{z(u) =0

which results in:
xo = -F 1Guy (5.9)

The conclusion of all the above discussion is that the benchmark can be formulated
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as:
AX)X(t) = LFx-+LGu (5.10)
where the matrices F and G are as described above and:

L =[A(X)], (5.11)

Xo = —F-l Guo
ug = limu(t)
[

The elements of the matrix A(x) consist of linear and nonlinear terms such as
those discussed above. The sparsity of the matrix and the complexity of its nonzero
elements are irrelevant to the selection of the algorithms but they are important fac-
tors to the multiprocessor implementation of algorithms. Therefore, it has been
decided to analyze the performance of the multiprocessor implementation procedure

for various sparsities and complexities of the matrix A(x). The necessary set of spar-

sities and complexities is selected in Chapter 7.

5.2 Procedure for the development of the benchmark

Summarizing the discussion in the preceding section, the development of a

specific benchmark takes the following steps:

1. Selection of an interesting mechanical structure corresponding to a simplified

model of a space structure. This structure can be defined by:
a. The number of bodies nb.

b. The relative position and the interconnection of the bodies.
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c. The relative magnitude of the masses and elasticity of the bodies.
d. The degrees of freedom (d.o.f.) of the bodies dfy,...,dfy,.

Calculation of the dimension of the benchmark ODE system as:

nb
N=Y df;
i=1
Selection of a realistic set of eigenvalues {A,...,AyN]. These eigenvalues
must be nearly imaginary and pairwise conjugate. The assignment of their
values can be based on the relative magnitude of the masses and the elasticity
of the bodies. The smallest and most flexible body corresponds to eigen-

values with the maximum imaginary part.

Selection of the tolerance € to be an upper bound for the difference between

the specified eigenvalues and the actual eigenvalues as shown in Figure 5.1,
Development of the matrix F so that:

a. For every pair of conjugate eigenvalues Aj=0+jo and A;=0-jw there

is a 2x2 block along the diagonal in the form
% ¢l
- ©

b. The nondiagonal elements are very small so that the sum of the rows
of F does not exceed €. The nondiagonal elements should represent

the coupling between the state variables.

Selection of the input vector u defined by the number of inputs, the bodies to

which they are applying and their mathematical model. Each input should
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9.

include as many components as there are the d.o.f. of the body to which it is
applied. Each of these components appears as a nonzero element in the vec-

tor u. The rest of the elements are 0.

Development of the matrix G with elements that represent the coupling of the

inputs with the state variables.

Development of the matrix A(x) defined by;

a. The sparsity of the matrix A. The position of the zero elements of the
matrix can be selected randomly with the help of a random number

generator for a specified sparsity s%.

b. The complexity of the nonzero elements of the matrix A that are

expressed as:
Ay=ny+3 .04, xk*‘%?ﬁiju X xl+§zlm,-., Xg COS(X1)+§§Z&,',,. Xy X{COS(Xen )+Z§ij, &(xy)
k m k

¢(x) represents a nonlinear function of x with discontinuities. For
each of the nonzero elements of A there is a need for the selection of
the constant 7, the Nx1 vector o, the NxN matrix [3, the NxN matrix
Y, the NxNxN matrix & and the Nx1 vector &. These vectors and
matrices have to be very sparse in order to keep the benchmark ODE
systems reasonably simple. The position of the zero elements can be
generated randomly. The values of the nonzero elements can be gen-

erated randomly as well.

Computation of the NxI vector ug = limu(t).
[—poe
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10.

11.

12,

13.

Computation of the equilibrium point x5 = ~F ! Gug.

Computation of the matrix L = A(xg), the linearized matrix A(x) around the

equilibrium point.
Computation of the vector b(x,u) = LFx+LGu.

Construction of the overall benchmark A(x)x = b(x,u)

5.3 Validation of the procedure

The ODE systems that the procedure produces are simple and easy to mani-

pulate without omitting any of the important characteristics. They may lack reality

only in the following respects:

Their size may be smaller than real problems so that the results of the perfor-
mance analyzes may be a little super-optimistic. However, they are large

enough to constitute acceptable benchmarks.

They do not include time varying terms. However, neither the procedure for
the algorithm selection nor the procedure for the multiprocessor implementa-
tion of algorithms depend heavily on the existence of time varying terms in
the mathematical models. If needed, damping time varying terms, such as

¢, can be added to the elements of the matrix A or the vector b.

The complexity of their nonzero elements may be lower than in real systems.
The procedures for the algorithm selection and the multiprocessor implemen-
tation however, depend only on the relative, rather than absolute, complexity

of the rows or the elements of the rows of the ODE system.
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4. The vector b does not include any nonlinearities except those introduced by
the input vector u. The matrices {;(x) and {;(u) are selected to be linear for
the sake of simplicity. Again, the procedures for the algorithm selection and
the multiprocessor implementation do not depend crucially on the nature of
the elements of the vector b,

5.4 A benchmark for analysis of the multiprocessor implementation

As an example, let us now apply the procedure to generate a synthetic bench-
mark, variations of which are used for the analysis of the performance of the mul-

tiprocessor implementation procedure.
Selection of the Dynamic Structure

The mechanical structure shown in Figure 5.2 is a very simple one, resem-

bling a space shuttle with one flexible arm that supports a solar array. This structure:
1. Consists of nb=8 interconnected bodies.
2, It has a tree type of topology.

3. The bodies can be ordered as {8,7,6,3,5,2,4,1}, according to their frequency

content in relation to their mass and elasticity.
4. All bodies are assumed to be unconstrained. Therefore they all have 6 d.o.f..
Dimension of the ODE System

N=48 (=6x8) state variables are needed to describe the dynamics of the struc-

ture shown in Figure 5.2.
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and the second box corresponds to the block:

0002 O 0 0 0 0
0 0002 O 0 0 0
0 0 0002 O 0 0
0 0 0 0002 O 0
0 0 0 0 0002 O
| O 0 0 0 0  0.002]

The couplings have been selected so that the sums of the elements of the rows of the

matrix F do not exceed €.

Given the matrix F and the set of eigenvalues, the matrix of the effect p;; of
an eigenvalue A; on a state variable x; is the matrix of the N eigenvectors of F
[Stew73]. Remember that this matrix is needed for the evaluation of the accuracy of

the algorithms.
Selection of the Inputs of the System

Suppose that one is interested in the response of the mechanical structure
when a sudden excitation applies to body #3. In particular, consider this excitation to
be a force in the (x-y) plane of the form of a step function, as shown in Figure 5.2.
This can be the case when a force is used to turn the arm of a space shuttle. Then
input vector consists of only 2 nonzero elements that correspond to the first 2 d.o.f.
of body #3. To assure physical stability a relatively small input, such as 0.05, is con-
sidered.

Selection of the Matrix G

Table 5.3 shows the coupling between the bodies and the inputs. G should be
a 6x6 block matrix similar to the matrix F. The first box in Table 5.3 for example,

corresponds to the block:
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Table 5.1: A set of eigenvalues assumed to be contributed by the bodies

body eigenvalue frequency
8 -0.025+j314.159 50 Hz
7 -0.025+j125.663 20 Hz
6 -0.025+j50.265 8 Hz
3 -0.025+j31.415 5Hz
5 -0.025+j18.849 3Hz
2 -0.025+j12.566 2Hz
4 -0.025+j3.141 0.5Hz
1 -0.025+j1.256 0.2Hz

Selection of the Tolerance €

€ can be selected to be 0.01 so that the real part of the eigenvalues lies
between -0.035 and -0.015. This guarantees that all the components will be damped
in 132-307 secs. In addition, the difference between the specified and the actual

eigenvalues will be sufficiently small.
Development of the Matrix F

Table 5.2 shows the coupling between the bodies together with the eigen-
values selected. Each of the boxes of this table correspond to a 6x6 block for the

matrix F. The first box for example, corresponds to the block:

-0.025 1.256 0 0 0 0
-1.256 -0.025 0 0 0 0

0 0 -0.025 1.256 0 0

0 0 -1.256 ~0.025 0 0

0 0 0 0 -0.025 1.256
L O 0 0 0 -1.256 -0.025]
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]
- ]

1 05 05 05 05 05
05 1 05 05 05 05
05 05 1 05 05 05
05 05 0.5 1 05 05
05 05 05 05 1 05
0.5 05 05 05 05 1|
and the second box cormresponds to the block:
02 02 02 02 02 0.2
02 02 02 02 02 0.2
02 02 02 02 02 0.2
02 02 02 02 02 02
02 02 02 02 02 02
0.2 0.2 0.2 02 0.2 0.2]

Development of the nonlinear matrix A(x)

As the mechanical structure has the topology of a tree and the connectivity of
the bodies is relatively small, A is sparse. For the sake of simplicity, as explained in
Chapter 7, consider a 95% sparsity distributed linearly over the 48 rows as shown in

Figure 7.1a. For each nonzero element of the matrix A:

1. The value of the constant 1 is generated randomly, equally probable to be

either positive or negative, and not greater than 3 in absolute value.

2. The matrices o,B,y,8 and & are randomly developed with 99% sparsity, as
shown in Figure 7.1a, and with values of their nonzero elements equaily
probable to be either positive or negative, and not greater than 35 in absolute

value.

Such an ODE system has nonlinear terms of size similar to the linear ones.
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Computation of the Vector vy

As the two nonzero elements uy3 and uy4 of the vector u are step functions,

the vector ug is identical to u.
Development of the benchmark

Finally the benchmark can be generated following the computations shown in

(5.10) and (5.11).

A FORTRAN subroutine that incorporates all the above considerations is
presented in Appendix C. This subroutine has been applied on the specific structure
discussed above and a complete ODE system, shown in Appendix B, has been gen-
erated. Appendix B contains also all the variations of this benchmark that are used

for the performance analysis of the multiprocessor implementation procedure.

5.5 A benchmark for analysis of the algorithm selection

The benchmark developed in the previous section is sufficient for the analysis
of the performance of the multiprocessor implementation procedure but it is too
large for the analysis of the algorithm selection procedure. It has been decided that
the analysis of the algorithm selection procedure is based on a smaller structure, a

subset of the one shown in Figure 5.2, consisted of:
1. The 6 bodies {1,2,3,6,7,8} numbered as {1,2,3,4,5,6}.
2. Each constrained to move on the (x-y) plane, having therefore only 2 d.o.f..

This structure can be described by N=12 (=6x2) state variables. Tables 5.4 shows the

eigenvalues and the coupling between the bodies. Table 5.5 shows the coupling
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between the bodies and the inputs. Lower sparsities can be used for this benchmark.

It has been decided to use:

1. 50% sparsity for the matrix A, distributed linearly over the rows from 42% to

58% similar to Figure 7.1.
2, 90% sparsity for the matrices o, 3,7,8 and &.

The resulting benchmark is shown in Appendix B together with its variations used

for the analysis of the algorithm selection procedure.

5.6 Summary

This chapter is devoted to the selection of an ODE system to serve as a
benchmark for the performance evaluation of the algorithm selection and the mul-
tiprocessor implementation procedures. These performance analyzes require that the
benchmark is generated artificially rather than representing the dynamics of real
space structures. It is sufficient to generate a simplified benchmark in the form
A(Xx)x=A(xg)Fx+A(xg)Gu, where the matrices F and G represent the coupling of the
state variables x with themselves and with the inputs u respectively, and x; is the
equilibrium state vector. The frequency and damping of the benchmark is expressed
by the 2x2 diagonal blocks of F. The elements of the matrix A include the necessary
nonlinearities and are suggested to be generated randomly. A particular benchmark
is generated as an example to be used for the analysis of the performance of the mul-
tiprocessor implementation procedure. This benchmark consists of 48 ODEs, 90%
sparse with relatively simple nonzero terms, describing the dynamics of the structure

shown in Figure 5.2. Its eigenvalues are shown in Table 5.1. A subset of this bench-
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6. PERFORMANCE OF THE ALGORITHM SELECTION PROCEDURE

This chapter is devoted to the analysis of the performance of the procedure
for selection of algorithms that solve ODE systems. The procedure is presented in
Chapters 2 and 3. The analysis in this chapter shows the performance of the pro-
cedure when applied to variations of the benchmark ODE system which is proposed
in Chapter 5. The first section defines the optimality of the selection of algorithms
and the objectives of the performance analysis of the procedure. The second section
proposes an approach to achieve this objectives as well as an implementation of the
procedure in the different test cases. The last section compares the results of the pro-
cedure with the actual results obtained by the solution of the benchmarks. This com-

parison leads to the performance analysis of the procedure.

6.1 Criteria and objectives of the performance analysis

The procedure for the selection of algorithms is presented in Chapters 2 and
3. Figures 2.1 to 2.4 in particular show the steps of the procedure. One can notice
from these figures, that the analysis of the performance of the procedure requires
only the analysis of the module for the selection of the optimal formula for each
group of ODE:s of the system. The implementation of this module is shown in Figure
2.4. The optimality of the procedure can be measured by the accuracy of the predic-
tion of the optimal order and step size of the formulas that the module suggests. It
should be recognized that the evaluation of the performance of the procedure consti-
tutes essentially a test of the accuracy of the expressions (2.5), (2.10) and (3.5) that

are proposed to evaluate the accuracy and the stability of an algorithm.,
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mark, consisted of 12 ODEs with 50% sparsity, is generated to be used for the
analysis of the algorithm selection procedure. Variations of both benchmarks are to

be used to test the two procedures.
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performance of the procedure can be based on an analysis of its sensitivity to varia-
tions of its inputs, It is sufficient to study the range of possible variation of the values
of the inputs and focus on those values that may have a significant impact on the per-
formance of the procedure. This subset of input values can define the minimum set

of tests required.

According to Figure 2.4, the variable inputs of interest to each formula selec-

tion module include the:
1. ODE system
2. Algorithm

Among the characteristics of the ODE system, the selection of algorithms may

depend significantly only on the:

1. Size of the longest eigenvalue, or equivalently of the size of the highest fre-
quency.
2. Size of the nonlinear terms relatively to the size of the linear terms.

In Chapter 5 it is explained that the procedure should be evaluated for:
1. Highest frequencies of 50 and 90 Hz.

2. Nonlinear terms of size equal to and one tenth than the size of the linear

terms.
An ODE system is proposed in Chapter 5 to serve as a benchmark. This benchmark:

1. Consists of 12 ODE:s.
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The objectives of the performance analysis of the algorithm selection pro-

cedure are:

1. The prediction of its performance under several conditions of interest. Then
characteristics of the procedure can be tuned appropriately to maximize the

accuracy of the selection of algorithms.
2, The verification of the procedure.

3. An indication of how the procedure could be evaluated for different ODE

systems and algorithms,

The performance analysis presented in this chapter is mainly based on the first objec-

tive. The achievement of the other objectives is a byproduct of this analysis.

6.2 An approach for the performance analysis

The evaluation of the performance of the algorithm selection procedure can
be based on the verification of the optimality of the selection of the orders and step
sizes of the candidate algorithms. This can be performed by measuring the actual
optimal orders and step sizes and comparing them with those predicted by the pro-
cedure. The actual optimal orders and step sizes for each algorithm can be deter-
mined by applying again the procedure shown in Figure 2.4 with the accuracy and
the stability measured by actually solving the benchmark, rather than from (2.5) and
(3.5).

The strategy to analyze the performance of the algorithm selection procedure
should combine completeness with simplicity. The smallest but sufficient set of

tests, that are as simple as possible, has to be selected. The analysis of the
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This grouping is justified by the fact that the highest important frequency F for each
group, and equivalently according to (3.1) the maximum step sizes that can be used

for each group, differ by one order of magnitude. Table 6.1 demonstrates this fact.

Table 6.1: The groups of ODEs of the benchmark

Group | N fmax F hiax
1 4 | 50(90) | 50(90) | 0.001
2 6 | 50090) 8 0.01
3 2 | 50(90) 0.2 0.1

Chapter 3 indicates that the following two algorithms are top candidates to
solve the ODE systems that appear in the simulation of the dynamics of space struc-

tures:
1. Explicit Power Series Expansion
2. Adams Bashforth

The algorithm selection procedure should definitely be evaluated for both algo-
rithms. In order to select the optimal orders and step sizes according to Figure 2.4,

for each of the two algorithms recognize that:
EPSE algorithm
1. According to Figure 3.2, the minimum order m that could be used is 3.

2. The accuracy E can be evaluated according to (2.5), with N taken from Table
6.1, the B parameter taken from Figure 3.10, and ¥ calculated from (3.5)
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2.

3.

Its highest frequency is S0Hz.

Its nonlinear terms are of size similar to the size of the linear terms.

The set of all the required benchmarks can be developed by varying the above

benchmark so that its:

1.

Highest frequency is 90 Hz, by specifying in Table 5.1 that the eigenvalue of
the body #8 is -0.025+j565.486.

The its nonlinear terms are one order of magnitude smaller than the linear
terms, by specifying that of each nonzero element of the matrix A the ran-
domly generated nonzero elements of the matrices B,7,0 and & are of abso-

lute value not greater than 0.5.

Referring first to Figure 2.3, for each algorithm one must group the 12 ODEs

of the benchmarks. According to the eigenvalues shown in Table 5.1, the ODEs must

be grouped as follows:

Group #1 consists of 4 ODEs, the 9th-10th and 11th-12th, which correspond
to frequency content 20 Hz and 50(90) Hz respectively, i.e. in the range (10-
100] Hz.

Group #2 consists of 6 ODEs, the 3rd-4th, 5th-6th and 7th-8th, which
correspond to frequency content 2 Hz, 5 Hz and 8 Hz respectively, i.e. in the

range (1-10] Hz.

Group #3 consists of 2 ODEs, the 1st-2nd, which correspond to frequency

content 0.5 Hz, i.e. in the range {0.1-1] Hz.
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Figure 6.1: The test cases for the performance analysis
of the algorithm selection procedure

The implementation of the two algorithms is shown in Appendix C. The
three benchmark ODE systems used by the 4 tests are shown in Appendix B.
6.3 Performance evaluation of the procedure

Consider the application of the algorithm selection procedure, to predict the
orders and step sizes of the formulas that the two candidate algorithms should

employ in the 4 test cases. Table 6.2 shows the results.

Table 6.3 shows the actual optimal orders and step sizes shown to be required

by the experimental solutions of the benchmark. It should be mentioned that 300
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with n=300/h points and eigenvalues taken from Table 5.1.

3. The stability Q can be calculated according to (2.10), with the stability region

s(0) taken from Figure 3.2, and the eigenvalues taken from Table 5.1.

4. The bounds on the accuracy E; and stability Q, can be those indicated in

(3.6).
AB algorithm
1, According to Figure 3.3, the minimum order m that could be used is 2.

2. The accuracy E can be evaluated according to (2.5), with N taken from Table
6.1, the B parameter taken from Figure 3.10, and W calculated from (3.5)

with n=300/h points and eigenvalues taken from Table 5.1.

3. The stability Q can be calculated according to (2.10), with the stability region
s(©) taken from Figure 3.3, and the eigenvalues taken from Table 5.1.

4, The bounds on the accuracy E, and stability Q, can be those indicated in
(3.6).

The generation of the set of tests requires the combination of the above
different values of its inputs. Each user can select the combinations of its interest.
The consideration of all the combinations would result in 36 cases. To avoid per-
forming these many tests, a sufficient subset has to be selected. The 4 tests shown in
Figure 6.1 are sufficient to demonstrate the performance of the procedure. The per-
formance of the procedure in the cases that are not considered can be easily implied

from the results of these 4 tests.
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2. A short period of the solution is obtained.

and does not imply that the procedure is too inaccurate. In addition, the prediction
of the step sizes for the EPSE algorithm are less accurate than those for the AB. This
is because the EPSE algorithm is implemented in a multirate scheme while the AB
algorithm is not. The algorithm selection procedure does not take under account the
loss of accuracy and stability caused by the multirate implementation. Such losses
are too complicated to formulate. This weekness of the procedure is definitely a

point offered for further improvement studies.

A more detailed comparison of the Tables 6.2 and 6.3 indicates that:

1. In the case of 90 Hz maximum frequency the procedure is less accurate than
that in the case of 50 Hz. This implies that closer to bounding frequencies,
such as 1 Hz, 10 Hz or 100 Hz, the predictions of the procedure, particularly
the prediction of the orders, may be less accurate. Nevertheless, the loss of

accuracy is not significant.

2. In the case of larger nonlinearities the predictions of the procedure are less
accurate. However, the loss of accuracy again is insignificant for an increase

of the size of the nonlinearities that does not exceed few orders of magnitude.

In general, the predictions of the procedure although not optimal they are not
excessively inaccurate. Realize that, as explained in Chapter 2, in practice the deter-
mination of the optimal orders and step sizes requires the experimental solution of
the ODE system. The purpose of the algorithm selection procedure is to provide the
users with good initia} estimation of the optimal orders and step sizes. The results of

Table 6.2 are encouraging enough for this purpose.
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Table 6.2: Proposed orders and step sizes of the candidate algorithms

Algorithm Linear terms fax Group | order | step size
equal 1 8 0.001
to 50 Hz 2 16 0.01
nonlinear terms 3 16 0.1
10 times 1 8 0.001
EPSE larger than 50 Hz 2 16 0.01
nonlinear 3 16 0.1
10 times 1 8 0.001
farger than S0 Hz 2 16 0.01
nonlinear 3 16 0.1
equal 1 6 0.0001
AB 10 50 Hz 2 6 0.0001
nonlinear 3 6 0.0001

secs long solutions were experienced to be too expensive computationally. Solutions
with a relatively large step size of the order of 0.001 require the computation of
300,000 points. As a compromise between reality and simplicity it has been decided
to compute solutions as long as 10 secs only corresponding to 10,000 points. A com-
parison with the Table 6.2 indicates that in general the orders and the step sizes pro-
posed by the algorithm selection procedure are a little conservative. However, this is

due to the facts that:

1. The benchmarks are relatively small and simple.
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of the module of the prediction of the optimal orders and step sizes to be used for the
solution of the different groups of ODEs of the system. This is performed by com-
paring, in each of the test cases, the orders and step sizes that the procedure suggests
with the optimal ones. The optimal orders and step sizes are measured by solving the
benchmarks with each of the candidate algorithms repetitively until solutions with
acceptable accuracy and stability are obtained. Tables 6.2 and 6.3 show the proposed
and the optimal orders and step sizes. Their comparison indicates that the prediction

of the procedure is fairly accurate.
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Table 6.3: Optimal orders and step sizes of the candidate algorithms

Algorithm Linear terms fnax Group | order | step size
equal 1 6 0.001
to 50 Hz 2 12 0.01
nonlinear terms 3 12 0.1
10 times 1 7 0.001
EPSE larger than 50 Hz 2 12 0.01
nonlinear 3 12 0.01
10 times 1 7 0.001
larger than 90 Hz 2 12 0.01
nonlinear 3 12 0.01
equal 1 4 0.001
AB to 50Hz 2 4 0.001
nonlinear 3 4 0.001

6.4 Summary

This chapter is devoted to the performance analysis of the procedure which
selects algorithms to solve ODE systems that appear in dynamic simulation of space
structures. The procedure is presented in Chapters 2 and 3. Its performance is
analyzed through a series of tests defined in Figure 6.1. These tests evaluate the pro-
cedure when applied on variations of the benchmark ODE system proposed in
Chapter 5, solved by the two algorithms that are shown in Chapter 3 to be the top

candidates. The performance evaluation of the procedure is based on the verification
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The verification of the procedure.

An indication of how the procedure could be evaluated on different multipro-

cessor computer systems and for different formulations of the ODE systems.

The performance analysis presented in this chapter is mainly based on the first objec-

tive. The achievement of the other objectives is a byproduct of this analysis.

The objective of the multiprocessor implementation procedure is:

Maximization of the speed of the solution of the ODE system. According to
Section 6.1, the maximization of the solution speed, and equivalently the per-

formance of the procedure, can be measured by:

a. The degree of balance of the distribution of the computational load

among the processors.
b. The ratio of the busy to idle time periods of the processors.

Maximization of the accuracy in the prediction of the optimal number of pro-
cessors. This is guaranteed by the fact that measurements of the actual per-
formance of the procedure are taken in the module of ESTIMATION OF
THE TIME TO SOLVE THE ODE SYSTEM.

7.2 An approach for the performance analysis of the procedure

The strategy to analyze the performance of the multiprocessor implementa-

tion procedure should combine completeness with simplicity. The smallest but

sufficient set of tests, that are as simple as possible, has to be selected. The analysis

of the performance of the procedure can be based on an analysis of its sensitivity to
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7. PERFORMANCE OF THE MULTIPROCESSOR IMPLEMENTATION
PROCEDURE

This chapter is devoted to the analysis of the performance of the procedure
for the implementation of algorithms that solve systems of ODEs on multiprocessor
computers. The procedure is presented in the previous chapter. The first section
defines the objectives of the performance analysis and the criteria for optimality of
the procedure. The second section presents the approach that is followed for the per-
formance analysis. The following section defines the sufficient set of tests required
for the analysis of the performance. The results of these tests are presented and dis-

cussed in the final section.

7.1 Objectives and criteria of the performance analysis

The objectives of the performance analysis of the multiprocessor implemen-

tation procedure are:

1. The prediction of its performance under several conditions of interest. Then
characteristics of the procedure or the multiprocessor computer can be tuned
appropriately to maximize the performance for the solution of a particular

ODE system.

2. An estimation and comparison of the speed of algorithms. In particular, it is
interesting to compare the EPSE and AB algorithms, that are shown in
Chapter 3 to be most advantageous to solve ODE systems that appear in the
dynamic simulation of space structures. Such an estimation and comparison

is required by the algorithm selection procedure, shown in Figure 2.2.
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3. Multiprocessor architecture

The performance analysis of the procedure can be performed through experi-
mentation on appropriate benchmark ODE systems. A set of variations of the bench-
mark proposed in Chapter 5 are used in this chapter. The set of necessary tests

defines the variations that are required.

It is too difficult and time consuming for the scope of this dissertation to
analyze the performance of the procedure for a large variety of multiprocessor archi-
tectures. It is also difficult and time consuming to analyze the performance of the
procedure on real multiprocessor computers. Such performance analysis requires the
complete implementation of the procedure, as well as the expertise in programming
the computers. It has been decided instead, to select a multiprocessor computer with
a representative architecture and develop its computer emulated representation.
What is needed in particular, is an emulator that can provide the timing of the execu-
tion of an algorithm solving a benchmark and implemented according to the mul-
tiprocessor implementation procedure. In addition to simplicity, the approach of
emulated representation allows more flexibility as one can tune the parameters of the
particular multiprocessor architecture to tailor the requirements of the different tests.
It should be recognized that this emulation would essentially be part of the multipro-
cessor implementation procedure itself, as a tool of the ESTIMATION OF THE
TIME TO SOLVE THE ODE SYSTEM module in particular.

The multiprocessor computer CAPPS [Gluc85], developed by Paragon
Pacific, and the computer communication simulator NETWORK 1.5 [Garr85],
developed by C.A.C.L, have been selected for the performance analysis. The CAPPS

computer is a highly promising multiprocessor computer specialized for scientific
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variations of its inputs. It is sufficient to study the range of possible variation of the

values of the inputs and focus on those values that may have a significant impact on

the performance of the procedure. This subset of input values can define the

minimum set of tests required.

The performance of the procedure depends on the multiprocessor architecture

as well as on the length and the coupling of the tasks into which the computation of

the solution of the ODE system is partitioned. The reasons for the latter are:

The assignment of the tasks is expected to result in earlier completion times
of the processors if the differences between the lengths of the tasks are rela-
tively small. Small differences between the length of the tasks may also help
the FED algorithm to determine the optimal number of processors more accu-
rately, so that less improvement iterations are required. The partitioning pro-

cedure is designed to guarantee that this will always be true.

Earlier completion times are expected when the coupling between the tasks
that have been assigned to different processors is low. Again, low coupling
between the tasks may increase the accuracy of the FFD algorithm as well.
The partitioning and the sequencing of the tasks are designed to minimize the

impact of this coupling.

The length and the coupling of the tasks depend on the characteristics of the ODE

system and the algorithm. Therefore, the inputs to the procedure that may have a

significant impact on the performance of the procedure are:

1.

2.

ODE system

Algorithm
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systems, algorithms and multiprocessor architectures. Let us study each of the

inputs separately.
ODE system

Chapter 5 presented the development of a benchmark ODE system that con-
sists of 48 ODEs. According to the frequency content of the state variables, specified
by Table 5.1, the state vector can be divided into three groups, as shown in Table
7.1. Then the algorithms should be applied in a multirate scheme, meaning that for-
mulas with different step size and different order, are used for the solution of these

different groups of ODEs.

Table 7.1: Groups of ODEs of the benchmark for analysis of the multiprocessor
implementation procedure

Group | N | fmax | F | hmax
1 12 ] 50 | 50 | 0.001
2 |24 50 | 8 | ool
3 12] 50 o2 o1

The length and coupling of the tasks that correspond to a particular bench-

mark ODE system depend on the sparsity of its:
1. Matrix A(x).
2. Matrices a.,B,y,8 and & for each nonzero element of A(x).

3. Matrices F and G.
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computations, based on a message passing architecture. It is described in Appendix

B.

NETWORK 1IL.5 is a very high language interactive simulator written in

SIMSCRIPT IL5. Based on a very high level language it provides:
1. A very user friendly environment.

2. Less flexibility. However, it is sufficient for our studies because it can pro-
vide all the necessary timing information about the execution of the computa-

tion involved in the solution of an ODE system.

Appendix B includes a NETWORK I1.5 representation of CAPPS in order to demon-
strate the use of the NETWORK II.5 simulator and to provide more detailed descrip-
tion of CAPPS.

7.3 The selection of the set of tests

The minimum sufficient set of tests has to be selected. The selection of the
tests can be based on the determination of the range of variation of the inputs of the
procedure that has a significant impact on its performance. In particular, one has to

determine the range of variation of:

1. The characteristics of the ODE system and the algorithm that produce sets of

tasks with a sufficiently wide range of lengths and couplings.

2. The characteristics of the multiprocessor architecture that provide a

sufficiently wide range of speeds of execution of the tasks.

Then, one has to generate the test cases by defining combinations of different ODE
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Figure 7.1: Sparsities of the benchmarks



For the sake of simplicity, one could try to generate benchmarks, that correspond to
tasks with lengths and coupling of a variety that is sufficient for the performance
analysis, by varying as few of these sparsities as possible. In particular, the impact of
the sparsity of the matrices o, B, v, 8 and &, as well as of F and G, can be covered in
most cases by the impact of the sparsity of A, which is easier to control while
developing a benchmark. Then, a constant sparsity can be considered for the
matrices of &, B, ¥, , &, F and G, except in the case of producing tasks with very
different lengths. Such exception is necessary in case the control of the sparsity of A
cannot provide a set of tasks with the desirable differences in length. In addition, the
constant sparsity of these matrices can be considered to be such that it results in

tasks fully coupled, so that the procedure is tested under worst case conditions.

Figure 7.1 shows a variety of sparsities that can produce the minimum but
sufficient variety of sets of tasks required for the performance analysis. All possible
kinds of distribution of the sparsities of the rows of matrix A(x) are shown, assum-
ing, without loss of generality, that the rows are sorted according to their length of
processing time. The distributions of (a), (b) and (¢) correspond to all possible regu-
lar cases where no task is much longer than the rest of the tasks. The distribution (d)
corresponds to the case that one of the tasks is so much longer than the rest of the
tasks, so that it must be cut to three subtasks. Such high sparsities were selected for
the sake of simplicity so that none of the resulting tasks exceeds the bound on speed,
which is decided to be the real time speed. The large size of the sparsities is accept-
able because the performance of the procedure depends on the relative size of the
sparsities rather than on the absolute one. Therefore, the multiprocessor implementa-
tion procedure must be tested for four different benchmark ODE systems, each

defined by one of the four sparsities shown in Figure 7.1.
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algorithms with the same number of processors.

The conclusion is that the performance of the procedure should be analyzed

for a number of processors:
L. That the procedure itself would suggest.
2. Smaller than the one the procedure would suggest, say half as many.

3. That is the same for EPSE and AB algorithm, say the number that the pro-

cedure suggests for the EPSE algorithm.

The generation of the set of tests requires the combination of different values
of the inputs in the ranges discussed above. Users can select the combinations of
their interest among the above variations of the inputs. The consideration of all the
combinations would result in 65 test cases. To avoid performing these many tests, a
representative subset has to be selected. The 11 test cases, shown in Figure 7.2, are
considered to be sufficient to demonstrate the performance of the procedure. The
performance of the cases that are not considered, can be easily implied from the per-

formance of the cases of Figure 7.2.

7.4 Performance analysis of the procedure

Table 7.2 summarizes the results of the 11 tests specified in Figure 7.2.
These results are generally very encouraging as they indicate that the performance of
the procédure is excellent in all cases. They indicate that the performance of the pro-
cedure does not depend on the sparsities of the ODE system. They also indicate that

the performance of the procedure is worse for larger number of processors. This
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The algorithm

For the performance analysis of the procedure one should select algorithms
whose characteristics could result in sets of tasks with lengths and couplings of a
sufficiently wide variety. Chapters 3 shows that the EPSE and AB algorithms have
significant advantages comparing to other widely used algorithms for the dynamic
simulation of space structures. The optimal step sizes and orders of the formulas of
the EPSE and AB algorithms, shown in Table 6.3, are used for the performance

analysis.
Computer architecture

All tests are based on the architecture of the CAPPS computer. For the sake
of simplicity, the only architectural characteristic that is varied for the different tests
is the number of processors. Other characteristics that may affect the speed of the
solution of the ODE system, such as the time required to transfer data or to perform

certain arithmetic operations, are considered to be the same for all the tests.

The number of processors is not an input to the procedure. The procedure
itself suggests how many processors should be used. However, it can be considered
as an internal input. Users that are forced to use a limited number of processors,
would be interested in the performance of the procedure for a number of processors
that is significantly smaller than the procedure would suggest. It is therefore interest-
ing to evaluate the performance of the procedure for the number of processors that

the procedure itself suggests and for a relatively smaller number of processors.

In addition, the objective of comparison of the most competitive algorithms,

EPSE and AB in this case, requires the analysis of the procedure employing these
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should be expected because the distribution of the tasks is more balanced in general
when the number of tasks is relatively much larger than the number of processors.
For the same reason the performance of the procedure is worse in the case of the

EPSE algorithm because the number of processors required is relatively high.

Table 7.2: Performance of the multiprocessor implementation procedure

. imal
. .| number of || Completion Idle optima
Algorithm | Sparsity PrOCESSOrs time Balance periods ]r)l?or::lebsesro ?g
14 than 14 x
optimal real time 81% 13%
#1 26
optimal rca} Ei(me 53% 23%
. |
EPSE #2 optimal real time 49% 29% 22
#3 optimal | 1X | sa% | 21% 2
. 1x
#4 optimal || ;o0 | 52% | 24% 26
Y than 1.2 x
optimal real time 99.5% 0.1%
2
: 0.6x
#1 optimal real time 99% 0.5%
optimal 0.1x
forEPSE || realtime | %@ | 10% 20
AB
#2 opmal || 97X | 99w | 0.5% 2
#3 optimal || 96X 1 99% | 05% 2
#4 opimal || 1% 1 9% | 05% 2
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Figure 7.2: The test cases. Each path of the trees defines a test case
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8. CONCLUSION

This final chapter is devoted to a summary and a conclusion of the disserta-
tion. The first section summarizes the accomplishments of the dissertation. The
second section indicates the important contributions of the dissertation through a dis-
cussion of its strong and week points. The final section suggests possible improve-

ments and complementary studies for the future.

8.1 Summary of the dissertation

The simulation of the dynamics of modern space transportation systems, such
as space shuttles and space stations, is an important tool for the improvement of the
design of their structure and controls. There is still a great need for improvement of
both the computational speed and the cost of such simulations. The major require-

ment of such a simulation is the long transient part of the solution of a:
1. Large

2. Nonlinear

3 Highly oscillating

4, Lightly damped

system of ODEs that describes the dynamics of the space structures. The complexity
of the structures allows only the implicit modeling of the dynamics. The solution of

these ODE systems imposes such high computational requirements that:

1. An explicit model should be derived to allow simplifications. In particular, it

is suggested that semiexplicit models of the form A(x,t)x=b(x,u,t) are derived
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The results also indicate that for the particular benchmarks the AB algorithm
is faster and requires a smaller number of processors than the EPSE. This should not
however considered as a general conclusion. For systems of hundreds of ODEs, as it
is mostly the case, the inversion of the matrix A dominates the solution and the AB
algorithm is expected to be slower than the EPSE. In addition, the iterative treatment
of nonlinearities, an important slow down factor for the AB algorithm, is not con-

sidered in the experiments.

7.5 Summary

This chapter is devoted to the analysis of the performance of the procedure
for the implementation on multiprocessor computers of algorithms that solve ODE
systems. The performance analysis of the procedure is based on the analysis of its
sensitivity to variations of the characteristics of the ODE system, of the algorithm
and of the number of processors. The minimum sufficient set of 11 tests, shown in
Figure 7.2, is selected to perform the performance analysis. The results of these tests,

summarized in Table 7.2, indicate that the performance of the procedure is excellent.
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perform.

The selection of the algorithm is based on the comparison of the performance

of a wide range of algorithms, as shown in Figure 2.1. This comparison requires:
1. The selection of the minimum set of candidate algorithms.

2, The determination of the optimal order and step size of each algorithm, as
suggested by Figures 2.3 and 2.4, so that it can meet the minimum speed,

accuracy and stability requirements.

3. Evaluation of the performance of each algorithm when implemented in mul-
tiprocessor computer with the optimal order and step size, as suggested by

Figure 2.2.

The multiprocessor implementation of the algorithm, shown in Figure 4.15,

includes:

1. Selection of the number of processors, as suggested by Figure 4.13.

2. Partitioning of the entire computation into a number of tasks, as suggested by
Figure 4.6.

3. Assignment of these tasks to the processors, as suggested by Figure 4.10.

4, Scheduling of the execution of these tasks, as suggested by Figure 4.11.

5. Asymptotic improvement based on minimization of the idle time of the pro-

cessors, as suggested by Figure 4.17, and on tuning the number of processors,

as suggested by Figure 4.19.
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automatically from implicit ones with the help of symbolic manipulation pro-

grams.

2. Multiprocessor computer architectures should be used. Architectures based
on the abstract models shown in Figures 1.2 and 1.3, for shared memory or

message passing computers respectively, are suggested in particular.

In that case one requires a software system that will convert a high level language
description of the explicit mathematical model to an execution code for each proces-
sor, as shown in Figure 1.4. The objective of this dissertation is to develop a set of
design tools that facilitate the development of such a software system. Such a set of

design tools has to include procedures for:

1. Selection of the numerical algorithm to solve the ODE system.
2. Multiprocessor implementation of the selected algorithm,
3. Prediction of the performance of the multiprocessor system.

These tools must be developed according to the criteria of:

1. Minimization of the time required for the solution of the ODE system so that
the speed and the accuracy of the solution do not fall below certain lower

bounds.
2. Minimization of the cost of the solution of the ODE system. This implies:

i Minimization of the number of processors to achieve the required

speed.

ii. Simplicity of the tools so that they are easy to implement and fast to
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algorithms in a multirate implementation, suggested the optimum orders and

step sizes shown in Table 6.2.

2. The experimental solution of the benchmarks with the candidate algorithms

suggested the actual optimum orders and step sizes shown in Table 6.3.

The comparison of the Tables 6.2 and 6.3 indicates that the procedure suggested for
the selection of algorithms performs with sufficient accuracy. Based on approxima-
tions to satisfy the simplicity criterion, it is not expected to provide optimal results in

general. It is expected however, to provide a good initial prediction.

The performance of the procedure for the multiprocessor implementation of

algorithms can be evaluated by:

1. The completion time of the solution of the ODE system.

2. The degree of balance of the distribution of the computational load among
the processors.

3. The relation of the idle and busy periods of the processors.

4, The accuracy of the prediction of the optimum number of processors.

In order to demonstrate and evaluate the procedure, the application of the procedure

to a set of 11 test cases, specified in Figure 7.2 by:

1. Four synthetic benchmark ODE systems, specified by different sparsities of

the matrices as shown in Figure 7.1.

2. The multirate EPSE and AB algorithms.
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The prediction of the performance is suggested:

1. To be a part of the procedure for the multiprocessor implementation of the

algorithms, as shown by Figure 4.15.

2. That it can be performed with the help of any commercially available com-

puter system simulator, as shown in Figure 4.16.

The results of a qualitative comparison of the most widely used algorithms,
based on an analysis of the computational characteristics of the mathematical models
of the dynamics of space structures in relation to the speed, accuracy and stability
requirements for the solution of these models, are shown in Table 3.1. These results

indicate that the candidate algorithms are:
1. Explicit Power Series Expansion
2, Adams Bashforth

In addition, it is suggested that a multirate implementation of these algorithms can
improve their speed, with a tolerable loss of accuracy and stability. Figures 3.11,
3.13 and 3.14 suggest the multirate implementation of the EPSE algorithm. Figures

3.11, 3.13 and 3.12 suggest the multirate implementation of the AB algorithm.

The performance of the procedure for the selection of algorithms can be
evaluated by the accuracy of the prediction of the optimum orders and step sizes of

the algorithms to be compared. In order to demonstrate and evaluate the procedure:

1. The application of the procedure on three synthetic benchmark ODE systems,
specified by different size of nonlinearities and different highest frequency

ranges as shown in Figure 6.1, and solved by each of the candidate
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Few week aspects of the procedure should be emphasized as well. The measurement
of the accuracy of algorithms that the procedure suggests is approximate and the
measurement of the stability of the algorithms is based on the equivalent linearized
ODE systems. In addition, the loss of accuracy and stability due to the multirate
implementation of the algorithms is ignored. As a result, the proposed orders and
step sizes might not be the optimal and several trials may be required before the final
decisions are maid. Is is however expected that in most cases, the proposed orders

and step sizes would be a good starting point for these trials.

The main contribution of the procedure for the multiprocessor implementa-
tion of algorithms is the development of a methodology that provides sufficiently
optimal multiprocessor implementation of algorithms with a low computational cost.
Several of the existing general distributed processing techniques could also be
applied. However, the use of such techniques would be wasteful since these tech-
niques being general require a higher computational cost. The procedure suggested
in this dissertation constitutes a compromise between optimality and cost. It is spe-
cialized to the processing of ODE systems by taking advantage of the specific
characteristics of the computation involved and produces results of equivalent per-
formance with a significantly lower cost. The cost savings of the procedure are due

to its:

1. Low computational complexity that allows a quick generation of the mul-

tiprocessor implementation.
2. Simplicity and modularity that allow easy implementation and modification.

The generality of the procedure is another important advantage of the procedure.

Although it emphasizes the solution of ODEs that appear in the simulation of the
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3. The implementation of the algorithms on a message passing multiprocessor
computer, the CAPPS computer described in Appendix B, emulated with the
help of the commercially available computer system simulator NETWORK

IL5.

produces the results shown in Table 7.2. These results indicate an excellent perfor-

mance.

8.2 Evaluation of the dissertation

The research study of the dissertation aims to be a significant contribution to
the distributed processing of ODE systems. It is worth to emphasize the uniqueness
of this study because in the related fields, such as distributed processing or numerical
computing, there has been inadequate concentration on multiprocessor solution of
ODEs. As a result the theory and tools developed for ODEs has so far been poor.
Due to the great demand for increasing the speed of the solution of ODE systems in

numerous industries, the significance of the results of the dissertation is very high.

The main contribution of the procedure for the selection of algorithms is the
collection, completion and integration of related theories and techniques into a com-

plete methodology. The important advantages of the procedure include:

1. Simplicity and modularity so that it is easy to implement and modify.
2. Structured and quantitative nature so that precise decisions can be made.
3. Generality so that it can be applied to a wide variety of ODE systems with

different characteristics and formulations.
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again more expensive, processors or through a larger number of processors. As
another example, the experimental application of the procedure can be helpful in
selecting between shared memory and message passing multiprocessor architectures
for a particular class of applications. In addition, the methodologies involved in the
procedures can be helpful in developing distributed system software for multiproces-

sor computers, such as distributed compilers.

8.3 Suggestions for future complementary studies

In addition to possible improvements of the procedures over the above dis-
cussed week points, several complementary studies should be performed in the
future to improve the value of these procedures. Among such future studies one

should include:

1. The development of techniques for the distributed processing of computa-
tions involved in the solution of ODE systems other than the integration of
the ODEs. Such computations can be the inversion of matrices, the solution
of linear algebraic systems, or the generation of functions. The techniques for
distributed processing of these computations should be integrated with the

two procedures suggested in the dissertation,

2, The improvement of the applicability of the procedures through a more
detailed study of some peculiar situations. For example, there is a need for a
more detailed study of the treatment of discontinuities or other types of

singularities in the multiprocessor implementation of algorithms.

3. The specifications of the modifications that must be performed on the pro-

cedures to make them applicable to other applications of great interest.
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dynamics of space structures using either of the candidate algorithms implemented
on a CAPPS like architecture, it is sufficiently general to apply and perform well to a

wide variety of:

1. ODE systems with different characteristics and formulations.
2. Algorithms

3. Multiprocessor architectures.

without major modifications. The main week aspect of the procedure is the negli-
gence of the loose coupling between the computations involved in the processing of
the rows of the ODE systems. The effect of this weekness is expected to be minor in
most cases and is attempted to be compensated by the iterative improvement of the

multiprocessor implementation.

The generality of both the procedures allows their application to other
engineering applications, including various aerospace and robotics applications. The
simulation of the dynamics of a helicopter or of the arm of a robot involves charac-
teristics and computational requirements similar to space structures with the major

difference being the greater air friction that damps the oscillations faster.

The results of the multiprocessor implementation procedure can also be used
to improve the design of multiprocessor architectures to be used for such applica-
tions. For example, experimental application of the procedure can show the
significance of the performance of the interprocessor communication network rela-
tively to the performance of the processors. This can be valuable information to the
architecture designer to help him decide if he should improve the performance of a

computer through a faster, but also more expensive, network or through faster, but
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APPENDIX A

The multiprocessor computer CAPPS

The multiprocessor computer CAPPS is a loosely coupled message passing
distributed system. It was recently developed by Paragon Pacific, El Segundo Cali-
fornia, in cooperation with TRW and Northrop. Figure A.1 shows the overall archi-

tecture of the CAPPS.

The system contains a number of computational units {CUs), each of which
consists of an independent processor with its own memory and control. Each CU is
a custom-designed, high performance digital processor. Figure A.2 shows the archi-
tecture of a typical CU. This architecture allows the concurrent execution in a pipe-
lined scheme of data and instruction transfers, of arithmetic operations and of
input/output operations. The CUs communicate with each other through a network
that provides direct connections between input/output queues of the CUs. The
configuration and the operation of the network can be optimized for a particular

application.

The user controls the system through an initialization and control module
(ICM). The ICM is a micro or mini computer with its own memory and input/output
capability. The operational programs are stored on floppy disks. and are automati-
cally loaded into the ICM’s RAM when the system is powered on. The application

programs to be executed by each CU, as well as the required data, are loaded by the
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Figure A.1: The overall architecture of CAPPS

ICM into the local memories of the CUs either from floppy disks, or an asynchro-

nous port, or a peripheral bus connected to a system input/output data interphase

(SIDI). The system operates under a central controller/sequencer that houses the sys-

tem clock and logic generators for timing and control of the CUs.
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Figure A.2: The architecture of a computational unit of CAPPS

The version of CAPPS available in 1986, the B32, includes twenty 32bit CUs

with an instruction cycle of 220 nsecs. More details can be found in [Gluc85].

As explained in Chapter 7, the performance analysis of the procedure for the
multiprocessor implementation of algorithms that solve ODE systems requires the
emulation of the timing of the solution of the ODE systems by different algorithms

on CAPPS. This emulation is performed with the help of the computer system simu-
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lator NETWORK I1.5. A NETWORK IL5 description of a computer that executes a

particular computation consists of the following two parts:

1. Hardware modules that represent the architecture of the hardware devices of

the computer.

2. Software modules that represent the computation and the way in which it is

going to be executed by the hardware modules.
The program in the following pages is a NETWORK I1.5 description of the CAPPS:

1. With 4 identical and synchronized CUs of 250 nsecs instruction cycle each

and connected directly to each other with busses of infinite speed.

2, Executing any step of the solution of an ODE system by the single rate EPSE
algorithm with order 8.

The hardware modules include:

1. 4 processing elements, named P[1-4], that represent the ALU and memory

parts of the CUs.

2. 4 processing elements, named P[1-4]I0, that represent the I/O devices of the

CUs.

3. 1 processing element, named CLOCK, that represents a fictitious clock that

regulates the I/O queues of the CUs.
The software modules to be executed by these hardware modules include:

L. 9 modules, named INITIALIZATION OF CLOCK, INITIALIZATION OF
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P[1-4] and INITIALIZATION OF P[1-4]I0, that trigger the hardware

modules to start the execution of their computation.

2. 1 module, named IO CLOCK, that represents the pulse train executed by

CLOCK.

3. 32 modules, named D[0-7]JABZ ON P[1-4], that represent the computation of

the vectors z for each of the 8 derivatives from (3.14).

4. 4 modules, named DX ON P[1-4], that represent the computation of the

derivatives of x from (3.14).

5. 4 modules, named NEW X ON P[1-4], that represent the computation of the

VECIOT Xpy) from (3.16).

6. 12 modules, named BROADCAST Z FROM P[1-4], BROADCAST DX
FROM P[1-4] and BROADCAST NEW X FROM P[1-4], and executed by
P[1-4]10, that represent the interprocessor transfer of the computed elements

of the vectors z, the derivatives of x and the vector xp,;.

7. 3 modules, named END BROADCAST Z, END BROADCAST DX and
END BROADCAST NEW X, and executed by P1IO, that disable the execu-

tion of the above 12 modules.

The execution sequence and dependences of these software modules follows the
computational graph of Figure 4.1. Each software module spawns its successors by
setting or resetting the proper semaphores. The use of semaphores eliminates the
need to emulate the interconnection network and to exchange messages between the

processors or the processes.

185



This is a simplified but fairly sufficient description of CAPPS. It is presented
both to describe the operation of CAPPS and to demonstrate the NETWORK IL5

simulator. For more detailed explanation of the following program refer to [Garr85].

* CAPPS-4/EPSE-8

x*x** PROCESSING ELEMENTS - SYS.PE.SET
HARDWARE TYPE = PROCESSING
NAME = CLOCEK
BASIC CYCLE TIME =
INPUT CONTROLLER = YES
INSTRUCTION REPERTOIRE =
INSTRUCTION TYPE = PROCESSING
NAME ; DELAY
TIME ; 1 CYCLES
INSTRUCTION TYPE = SEMAPHCRE
NAME ; I0 READY
SEMAPHORE ; IO READY
SET/RESET FLAG ; SET
NAME ; 1O NOT READY
SEMAPHORE ; IO READY
SET/RESET FLAG ; RESET
NAME ; CLOCK READY
SEMAPHORE ; CLOCK READY
SET/RESET FLAG ; SET

. 220 MICROSEC

NAME = P1
BASIC CYCLE TIME =
INPUT CONTROLLER = YES
INSTRUCTION REPERTOIRE =
INSTRUCTION TYPE = PROCESSING
NAME ; DOABZ ON Pl
TIME ; 4430

.220 MICROSEC

CYCLES

NAME ; D1ABZ
TIME :
NAME : D2ZABZ
TIME ;
NAME ; D3ABZ
TIME ;
NAME ; D4ABZ
TIME ;
NAME ; DSABZ
TIME ;
NAME ; D6ABZ
TIME ;
NAME ; D7ABZ
TIME ;

ON Pl
7631
CN Pl
10832
CN Pl
14033
ON Pl
17234
ON Pl
20435
ON Pl
23636
ON P1
26837

CYCLES
CYCLES
CYCLES
CYCLES
CYCLES
CYCLES

CYCLES

NAME ; DX ON Pl
TIME ; 528 CYCLES
NAME ; SERIES EVALUATION
TIME ; 10 CYCLES
INSTRUCTICN TYPE = SEMAPHCRE

NAME ;
SEMAPHCRE
SET/RESET

NAME ;
SEMAPHORE
SET/RESET

NAME ;
SEMAPHORE
SET/RESET

NAME ;
SEMAPHORE

; Z ON
FLAG ;

FLAG ;

FLAG ;

Z ON P1 READY
Pl READY

SET

DX ON Pl READY
; DX ON Pl READY

SET

DX FROM P1 READY
; DX ON P1 READY

SET

DX ON P1 NOT READY
: DX ON Pl READY

SET/RESET FLAG ; RESET
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NAME ; NEW X ON P1 READY
SEMAPHORE ; NEW X ON Pl READY
SET/RESET FLAG ; SET
NAME ; NEW X FROM Pl READY
SEMAPHORE ; NEW X FROM Pl READY
SET/RESET FLAG ; SET
NAME ; NEW X ON Pl NOT READY
SEMAPHORE ; NEW X ON Pl READY
SET/RESET FLAG ; RESET
NAME ; NEW X FROM P2 RECEIVED
SEMAPHORE ; NEW X FRCM P2 RECEIVED
SET/RESET FLAG ; SET
NAME ; NEW X FROM P3 RECEIVED
SEMAPHORE ; NEW X FROM P3 RECEIVED
SET/RESET FLAG ; SET
NAME ; NEW X FROM P4 RECEIVED
SEMAPHORE ; NEW X FROM P4 RECEIVED
SET/RESET FLAG ; SET
NAME ; Pl FINISHED
SEMAPHORE ; Pl FINISHED
SET/RESET FLAG ; SET
NAME = P1IO
BASIC CYCLE TIME = .220 MICROSEC
INPUT CONTROLLER = YES
INSTRUCTION REPERIOIRE =
INSTRUCTION TYPE = PROCESSING
NAME ; DELAY
TIME ; 1 CYCLES
INSTRUCTION TYPE = SEMAPHORE
NAME ; 2 FROM P1 RECEIVED
SEMAPHORE ; Z FROM Pl RECEIVED
SET/RESET FLAG ; SET
NAME ; DX FRCM Pl RECEIVED
SEMAPHORE ; DX FROM P1 RECEIVED
SET/RESET FLAG ; SET
NAME ; NEW X FRCM P1 RECEIVED
SEMAPHORE ; NEW X FROM Pl RECEIVED
SET/RESET FLAG ; SET
NAME ; Z FROM P1 NOT READY
SEMAPHORE ; Z FROM Pl READY
SET/RESET FLAG ; RESET
NAME ; DX FROM Pl NOT READY
SEMAPHORE ; DX FROM Pl READY
SET/RESET FLAG ; RESET
NAME ; NEW X FROM Pl NOT READY
SEMAPHCORE ; NEW X FROM Pl READY
SET/RESET FLAG ; RESET
NAME ; Z FROM Pl NOT RECEIVED
SEMAPHORE ; Z FROM F1 RECEIVED
SET/RESET FLAG ; RESET
NAME ; DX FROM P1 NOT RECEIVED
SEMAPHORE ; DX FROM Pl RECEIVED
SET/RESET FLAG ; RESET
NAME ; NEW X FROM Pl NOT RECEIVED
SEMAPHORE ; NEW X FROM Pl RECEIVED
SET/RESET FLAG ; RESET
NAME ; Z FROM P2 NOT RECEIVED
SEMAPHORE ; 2 FROM P2 RECEIVED
SET/RESET FLAG ; RESET
NAME ; DX FRCOM P2 NQT RECEIVED
SEMAPHORE ; DX FROM P2 RECEIVED
SET/RESET FLAG ; RESET
NAME ; NEW X FROM P2 NOT RECEIVED
SEMAPHORE ; NEW X FROM P2 RECEIVED
SET/RESET FLAG ; RESET
NAME ; Z FROM P3 NCT RECEIVED
SEMAPHCORE ; Z FROM P3 RECEIVED
SET/RESET FLAG ; RESET
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NAME
SEMAPHORE
SET/RESET

NAME ; NEW X
SEMAPHORE
SET/RESET

NAME ;
SEMAPHORE
SET/RESET

NAME ;
SEMAPHCRE
SET/RESET

DX FROM P3 NOT RECEIVED

; DX FROM P3 RECEIVED
FLAG ; RESET

FROM P3 NOT RECEIVED

; BEW X FROM P3 RECEIVED
FLAG ; RESET

Z FROM P4 NOT RECEIVED

; 2 FROM P4 RECEIVED
FLAG ; RESET

DX FROM P4 NOT RECEIVED

; DX FROM P4 RECEIVED
FLAG ; RESET

NAME ; NEW X FROM P4 NOT RECEIVED

SEMAPHORE
SET/RESET

NAME = P2
BASIC CYCLE TIME =
INPUT CONTROLLER =

; NEW X FROM P4 RECEIVED
FLAG ; RESET

.220 MICROSEC
YES

INSTRUCTION REPERTOIRE =
INSTRUCTION TYPE = PROCESSING

NAME ; DOABZ
TIME ;
NAME ; DI1ABRZ
TIME ;
NAME ; DZ2ABZ
TIME ;
NAME ; D3AB2
TIME ;
NAME ; D4ABZ
TIME ;
NAME ; DSABRZ
TIME ;
NAME ; D6ABZ
TIME ;
NAME ; D7ABZ
TIME ;
NAME ; DX ON
TIME ;
NAME ;

TIME ;

ON P2
4430
CN P2
7631
ON P2
10832
ON P2
14033
ON P2
17234
ON P2
20435
ON P2
23636
ON P2
26837
p2
528

CYCLES
CYCILES
CYCLES
CYCLES
CYCLES
CYCLES
CYCLES
CYCLES

CYCLES

SERIES EVALUATION

10 CYCLES

INSTRUCTION TYPE = SEMAPHORE

NAME ;
SEMAPHORE
SET/RESET

NAME ; DX ON
SEMAPHORE
SET/RESET

NAME ;
SEMAPHORE
SET/RESET

NAME ; DX ON
SEMAPHORE
SET/RESET

NAME ; NEW X
SEMAPHORE
SET/RESET

NAME ; NEW X
SEMAPHORE
SET/RESET

NAME ; NEW X
SEMAPHORE
SET/RESET

NAME ; NEW X
SEMAPHORE
SET/RESET

NAME ; NEW X
SEMAPHCRE
SET/RESET

Z ON P2 READY

$ Z ON P2 READY
FLAG ; SET

P2 READY

; DX ON P2 READY
FLAG ; SET

DX FROM P2 READY

; DX ON P2 READY

FLAG ; SET

P2 NOT READY

; DX ON P2 READY

FLAG ; RESET

ON P2 READY

; NEW X CN P2 READY
FLAG ; SET

FROM P2 READY

; NEW X FROM P2 READY
FLAG ; SET

ON P2 NOT READY

; NEW X ON P2 READY
FLAG ; RESET

FRCM P1 RECEIVED

; NEW X FROM P1 RECEIVED
FLAG ; SET

FROM P3 RECEIVED

; NEW X FROM P3 RECEIVED
FLAG ; SET
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NAME ; NEW X FROM P4 RECEIVED
SEMAPHORE ; NEW X FROM P4 RECEIVED
SET/RESET FLAG ; SET

NAME ; P2 FINISHED
SEMAPHORE ; Pl FINISHED
SET/RESET FLAG ; SET

NAME = P1IO
BASIC CYCLE TIME = .220 MICROSEC
INPUT CONTROLLER = YES
INSTRUCTION REPERTQIRE =
INSTRUCTION TYPE = PROCESSING

NAME ; DELAY

TIME ; 1 CYCLES
INSTRUCTION TYPE = SEMAPHORE

NAME ; Z FROM P2 RECEIVED
SEMAPHORE ; Z FROM P2 RECEIVED
SET/RESET FLAG ; SET

NAME ; DX FROM P2 RECEIVED
SEMAPHORE ; DX FRCM P2 RECEIVED
SET/RESET FLAG ; SET

NAME ; NEW X FROM P2 RECEIVED
SEMAPHORE ; NEW X FROM P2 RECEIVED
SET/RESET FLAG ; SET

NAME ; Z FROM P2 NOT READY
SEMAPHORE ; Z FROM P2 READY
SET/RESET FLAG ; RESET

NAME ; DX FRCM P2 NOT READY
SEMAPHORE ; DX FROM P2 READY
SET/RESET FLAG ; RESET

NAME ; NEW X FROM P2 NOT READY
SEMAPHCORE ; NEW X FROM P2 READY
SET/RESET FLAG ; RESET

NAME ; Z FROM P2 NOT RECEIVED
SEMAPHORE ; Z FROM P2 RECEIVED
SET/RESET FLAG ; RESET

NAME ; DX FROM P2 NOT RECEIVED
SEMAPHORE ; DX FROM P2 RECEIVED
SET/RESET FLAG ; RESET

NAME ; NEW X FROM P2 NOT RECEIVED
SEMAPHORE ; NEW X FRCM P2 RECEIVED
SET/RESET FLAG ; RESET

NAME ; 2 FROM Pl NOT RECEIVED
SEMAPHORE ; Z FROM Pl RECEIVED
SET/RESET FLAG ; RESET

NAME ; DX FROM P1 NOT RECEIVED
SEMAPHORE ; DX FROM Pl RECEIVED
SET/RESET FLAG ; RESET

NAME ; NEW X FROM Pl NOT RECEIVED
SEMAPHORE ; NEW X FROM P1 RECEIVED
SET/RESET FLAG ; RESET

NAME ; Z FROM P3 NOT RECEIVED
SEMAPHCRE ; Z FROM P3 RECEIVED
SET/RESET FLAG ; RESET

NAME ; DX FROM P3 NOT RECEIVED
SEMAPHORE ; DX FROM P3 RECEIVED
SET/RESET FLAG ; RESET

NAME ; NEW X FROM P3 NOT RECEIVED
SEMAPHORE ; NEW X FROM P3 RECEIVED
SET/RESET FLAG ; RESET

NAME ; Z FROM P4 NOT RECEIVED
SEMAPHORE ; Z FROM P4 RECEIVED
SET/RESET FLAG ; RESET

NAME ; DX FROM P4 NOT RECEIVED
SEMAPHORE ; DX FROM P4 RECEIVED
SET/RESET FLAG ; RESET

NAME ; NEW X FROM P4 NOT RECEIVED
SEMAPHORE ; NEW X FROM P4 RECEIVED
SET/RESET FLAG ; RESET
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NAME = P3
BASIC CYCLE TIME = .220 MICROSEC
INPUT CONTROLLER = YES
INSTRUCTION REPERTOIRE =
INSTRUCTION TYPE = PROCESSING
NAME ; DOABZ ON P3

TIME ; 4430 CYCLES
NAME ; Dl1ARZ ON P3

TIME ; 7631 CYCLES
NAME ; D2ABZ ON P3

TIME ; 10832 CYCLES
NAME ; D3ABZ ON P3

TIME ; 14033 CYCLES
NAME ; D4ABZ ON P3

TIME ; 17234 CYCLES
NAME ; DSABZ ON P3

TIME ; 20435 CYCLES
NAME ; D6ABZ ON P3

TIME ; 23636 CYCLES
NAME ; D7ABZ ON P3

TIME ; 26837 CYCLES
NAME ; DX ON P3

TIME ; 528 CYCLES
NAME ; SERIES EVALUATION

TIME ; 10 CYCLES

INSTRUCTION TYPE = SEMAPHORE
NAME ; 2 ON P3 READY
SEMAPHORE ; Z ON P3 READY
SET/RESET FLAG ; SET
NAME ; DX ON P3 READY
SEMAPHCRE ; DX ON P3 READY
SET/RESET FLAG ; SET
NAME ; DX FROM P3 READY
SEMAPHORE ; DX ON P3 READY
SET/RESET FLAG ; SET
NAME ; DX ON P3 NOT READY
SEMAPHORE ; DX ON P3 READY
SET/RESET FLAG ; RESET
NAME ; NEW X ON P3 READY
SEMAPHCRE ; NEW X ON P3 READY
SET/RESET FLAG ; SET
NAME ; NEW X FROM P3 READY
SEMAPHORE ; NEW X FROM P3 READY
SET/RESET FLAG ; SET
NAME ; NEW X ON P3 NCT READY
SEMAPHCRE ; NEW X ON P3 READY
SET/RESET FLAG ; RESET
NAME ; NEW X FROM PZ RECEIVED
SEMAPHORE ; NEW X FROM P2 RECEIVED
SET/RESET FLAG ; SET
NAME ; NEW X FROM Pl RECEIVED
SEMAPHCRE ; NEW X FROM Pl RECEIVED
SET/RESET FLAG ; SET
NAME ; NEW X FROM P4 RECEIVED
SEMAPHORE ; NEW X FROM P4 RECEIVED
SET/RESET FLAG ; SET
NAME ; P3 FINISHED
SEMAPHORE ; P3 FINISHED
. SET/RESET FLAG ; SET
NAME = P3IQ
BASIC CYCLE TIME = .220 MICROSEC
INPUT CONTROLLER = YES
INSTRUCTION REPERTOIRE =
INSTRUCTICN TYPE = PROCESSING
NAME ; DELAY
TIME 1 CYCLES
INSTRUCTION TYPE = SEMAPHCRE
NAME ; Z FROM P3 RECEIVED
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SEMAPHORE ; Z FROM P3 RECEIVED

SET/RESET FLAG ; SET
NAME ; DX FROM P3 RECEIVED

SEMAPHORE ; DX FROM P3 RECEIVED

SET/RESET FLAG ; SET
NAME ; NEW X FROM P3 RECEIVED

SEMAPHORE ; NEW X FROM P23 RECEIVED

SET/RESET FLAG ; SET
NAME ; Z FROM P3 NOT READY

SEMAPHORE ; 2 FROM P3 READY

SET/RESET FLAG ; RESET
NAME ; DX FROM P3 NOT READY

SEMAPHORE ; DX FROM P3 READY

SET/RESET FLAG ; RESET
NAME ; NEW X FROM P3 NOT READY

SEMAPHORE ; NEW X FROM P3 READY

SET/RESET FLAG ; RESET
NAME ; Z FROM P3 NOT RECEIVED

SEMAPHORE ; Z FROM P3 RECEIVED

SET/RESET FLAG ; RESET
NAME ; DX FRCM P3 NOT RECEIVED

SEMAPHCRE ; DX FROM P3 RECEIVED

SET/RESET FLAG ; RESET

NAME ; NEW X FROM P3 NOT RECEIVED
SEMAPHORE ; NEW X FROM P3 RECEIVED

SET/RESET FLAG ; RESET
NAME ; Z FROM P2 NOT RECEIVED

SEMAPHORE ; Z FROM P2 RECEIVED

SET/RESET FLAG ; RESET
NAME ; DX FROM P2 NOT RECEIVED

SEMAPHORE ; DX FROM P2 RECEIVED

SET/RESET FLAG ; RESET

NAME ; NEW X FROM P2 NOT RECEIVED
SEMAPHORE ; NEW X FROM P2 RECEIVED

SET/RESET FLAG ; RESET
NAME ; Z FROM Pl NCT RECEIVED

SEMAPHORE ; Z FROM Pl RECEIVED

SET/RESET FLAG ; RESET
NAME ; DX FRCM Pl NOT RECEIVED

SEMAPHORE ; DX FROM Pl RECEIVED

SET/RESET FLAG ; RESET

NAME ; NEW X FROM Pl NOT RECEIVED
SEMAPHORE ; NEW X FROM Pl RECEIVED

SET/RESET FLAG ; RESET
NAME ; Z FROM F4 NCT RECEIVED

SEMAPHORE ; Z FROM P4 RECEIVED

SET/RESET FLAG ; RESET
NAME ; DX FROM P4 NOT RECEIVED

SEMAPHORE ; DX FROM P4 RECEIVED

SET/RESET FLAG ; RESET

NAME ; NEW X FRCM P4 NOT RECEIVED
SEMAPHORE ; NEW X FROM P4 RECEIVED

SET/RESET FLAG ; RESET
NAME = P4
BASIC CYCLE TIME = .220 MICROSEC
INPUT CONTROLLER = YES
INSTRUCTION REPERTOIRE =
INSTRUCTION TYPE ~ PROCESSING
NAME ; DOABZ ON P4

TIME ; 4430 CYCLES
NAME ; D1ABZ ON P4

TIME ; 7631 CYCLES
NAME ; D2ABZ ON P4

TIME ; 10832 CYCLES
NAME ; D3ABZ ON P4

TIME ; 14033 CYCLES
NAME ; D4ABZ ON P4

TIME ; 17234 CYCLES
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NAME ; DSABZ ON P4

TIME ; 20435 CYCLES
NAME ; D6ABZ ON P4

TIME ; 23636 CYCLES
NAME ; D7AB2Z ON P4

TIME ; 26837 CYCLES
NAME ; DX ON P4

TIME ; 528 CYCLES
NAME ; SERIES EVALUATICN

TIME ; 10 CYCLES

INSTRUCTION TYPE = SEMAPHORE
NAME ; Z ON P4 READY
SEMAPHORE ; Z ON P4 READY
SET/RESET FLAG ; SET
NAME ; DX ON P4 READY
SEMAPHORE ; DX ON P4 READY
SET/RESET FLAG ; SET
NAME ; DX FROM P4 READY
SEMAPHORE ; DX ON P4 READY
SET/RESET FLAG ; SET
NAME ; DX ON P4 NOT READY
SEMAPHORE ; DX ON P4 READY
SET/RESET FLAG ; RESET
NAME ; NEW X ON P4 READY
SEMAPHORE ; NEW X ON P4 READY
SET/RESET FLAG ; SET
NAME ; NEW X FROM P4 READY
SEMAPHORE ; NEW X FROM P4 READY
SET/RESET FLAG ; SET
NAME ; NEW X ON P4 NOT READY
SEMAPHORE ; NEW X ON P4 READY
SET/RESET FLAG ; RESET
NAME ; NEW X FROM P2 RECEIVED
SEMAPHORE ; NEW X FROM P2 RECEIVED
SET/RESET FLAG ; SET
NAME ; NEW X FROM P3 RECEIVED
SEMAPHORE ; NEW X FROM P3 RECEIVED
SET/RESET FLAG ; SET
NAME ; NEW X FROM Pl RECEIVED
SEMAPHORE ; NEW X FROM Pl RECEIVED
SET/RESET FLAG ; SET
NAME ; P4 FINISHED
SEMAPHORE ; P4 FINISHED
SET/RESET FLAG ; SET
NAME = P4I0
BASIC CYCLE TIME = .220 MICROSEC
INPUT CONTROLLER = YES
INSTRUCTION REPERTOIRE =
INSTRUCTION TYPE = PROCESSING
NAME ; DELAY
TIME ; 1 CYCLES
INSTRUCTION TYPE = SEMAPHORE
NAME ; Z FROM P4 RECEIVED
SEMAPHORE ; Z FRCM P4 RECEIVED
SET/RESET FLAG ; SET
NAME ; DX FROM P4 RECEIVED
SEMAPHCORE ; DX FROM P4 RECEIVED
SET/RESET FLAG ; SET
KAME ; NEW X FROM P4 RECEIVED
SEMAPHORE ; NEW X FROM P4 RECEIVED
SET/RESET FLAG ; SET
NAME ; Z FROM P4 NOT READY
SEMAPHORE ; Z FROM P4 READY
SET/RESET FLAG ; RESET
NAME ; DX FROM P4 NOT READY
SEMAPHORE ; DX FROM P4 READY
SET/RESET FLAG ; RESET
NAME ; NEW X FROM P4 NOT READY
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SEMAPHORE ; NEW X FRCM P4 READY
SET/RESET FLAG ; RESET

NAME : Z FROM P4 NOT RECEIVED
SEMAPHORE ; Z FROM P4 RECEIVED
SET/RESET FLAG ; RESET

NAME ; DX FROM P4 NOT RECEIVED
SEMAPHORE ; DX FRCM P4 RECEIVED
SET/RESET FLAG ; RESET

NAME ; NEW X FROM P4 NOT RECEIVED
SEMAPHORE ; NEW X FROM P4 RECEIVED
SET/RESET FLAG ; RESET

NAME ; Z FROM P2 NOT RECEIVED
SEMAPHORE ; Z FROM P2 RECEIVED
SET/RESET FLAG ; RESET

NAME ; DX FROM P2 NOT RECEIVED
SEMAPHORE ; DX FRCM P2 RECEIVED
SET/RESET FLAG ; RESET

NAME ; NEW X FROM P2 NOT RECEIVED
SEMAPHORE ; NEW X FROM P2 RECEIVED
SET/RESET FLAG ; RESET

NAME ; Z FROM P3 NOT RECEIVED
SEMAPHORE ; Z FROM P3 RECEIVED
SET/RESET FLAG ; RESET

NAME ; DX FROM P3 NOT RECEIVED
SEMAPHORE ; DX FROM P3 RECEIVED
SET/RESET FLAG ; RESET

NAME ; NEW X FRCM P3 NOT RECEIVED
SEMAPHORE ; NEW X FROM P3 RECEIVED
SET/RESET FLAG ; RESET

NAME ; Z FROM P1 NOT RECEIVED
SEMAPHORE ; Z FROM Pl RECEIVED
SET/RESET FLAG ; RESET

NAME ; DX FROM Pl NOT RECEIVED
SEMAPHORE ; DX FROM Pl RECEIVED
SET/RESET FLAG ; RESET

NAME ; NEW X FROM Pl NOT RECEIVED
SEMAPHORE ; NEW X FROM Pl RECEIVED
SET/RESET FLAG ; RESET

**x%k* MODULES - S5YS.MODULE.SET
SOFTWARE TYPE = MODULE
NAME = INITIALIZATION OF CLOCK
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = KO
START TIME = 0.
ALLOWED PROCESSORS =
CLOCK
REQUIRED HARDWARE STATUS =
CLOCK
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 CLOCK READY
ANDED SUCCESSORS =
CHAIN TO ; IO CLCCK
WITH ITERATIONS THEN SKIP COUNT OF ; 0
NAME = INITIALIZATION COF Pl
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
Pl
REQUIRED HARDWARE STATUS =
Pl
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 NEW X ON Pl READY
EXECUTE A TOTAL OF ; 1 NEW X FROM P1 RECEIVED
ANDED SUCCESSORS =
CHAIN TO ; DOABZ ON F1l
WITH ITERATIONS THEN SKIP COUNT QOF ; 0
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NAME = INITIALIZATION OF P2
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = Q.
ALLOWED PROCESSORS =
P2
REQUIRED HARDWARE STATUS =
P2
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 NEW X ON P2 READY
EXECUTE A TOTAL OF ; 1 NEW X FROM P2 RECEIVED
ANDED SUCCESSORS =
CHAIN TO ; DOABZ ON P2
WITH ITERATIONS THEN SKIP COUNT OF ; Q
NAME = INITIALIZATION OF P3
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSCRS =
B3
REQUIRED HARDWARE STATUS =
B3
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 NEW X ON P3 READY
EXECUTE A TOTAL OF ; 1 NEW X FROM P3 RECEIVED
ANDED SUCCESSCORS =
CHAIN TO ; DOABZ ON P3
WITH ITERATIONS THEN SKIP COUNT OF ; 0
NAME = INITIALIZATION OF P4
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTICON = NO
START TIME = G.
ALLOWED PROCESSORS =
P4
REQUIRED HARDWARE STATUS =
P4
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 NEW X ON P4 READY
EXECUTE A TOTAL OQF ; 1 NEW X FROM P4 RECEIVED
ANDED SUCCESSORS =
CHAIN TO ; DOABZ ON P4
WITH ITERATIONS THEN SKIP COUNT OF ; Q
NAME = INITIALIZATION OF P1IO
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = Q.
ALLOWED PROCESSORS =
P1lIO i
REQUIRED HARDWARE STATUS =
PlIO
INSTRUCTICN LIST =
EXECUTE A TOTAL OF ; 1 2 ON P1 NOT READY
EXECUTE A TOTAL OF ; 1 NEW X ON P1 NOT READY
ANDED SUCCESSORS =
CHAIN TO ; BROADCAST Z FROM P1

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TC ; BROADCAST NEW X FROM P1
WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = INITIALIZATION OF P2IO
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P2I0O
REQUIRED HARDWARE STATUS =
P21IO
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 2 ON P2 NOT READY
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EXECUTE A TOTAL OF ; 1 NEW X ON P2 NOT READY
ANDED SUCCESSORS =
CHAIN TO ; BROADCAST Z FROM P2

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TO ; BROADCAST NEW X FROM P2
WITH ITERATIONS THEN SKIP COUNT OF ; Q

NAME = INITIALIZATICN OF P3IO
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = KO
START TIME = 0.
ALLOWED PROCESSORS =
P3I0
REQUIRED HARDWARE STATUS =
P3IC
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 Z ON P3 NOT READY
EXECUTE A TOTAL OF ; 1 NEW X ON P32 NOT READY
ANDED SUCCESSORS =
CHARIN TO ; BROADCAST Z FROM P3

WITH ITERATICONS THEN SKIP COUNT OF ; 0
CHAIN TO ; BROADCAST NEW X FROM P3
WITH ITERATIONS THEN SKIP COUNT OF : 0

NAME = INITIALIZATION OF P4IO
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P4IO
REQUIRED HARDWARE STATUS =
P4I0
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 2 ON P4 NOT READY
EXECUTE A TOTAL OF ; 1 NEW X ON P4 NOT READY
ANDED SUCCESSORS =
CHAIN TO ; BROADCAST Z FROM P4

WITHE ITERATICNS THEN SKIP COUNT OF ; 0
CHAIN TO ; BROADCAST NEW X FROM P4
WITH ITERATICNS THEN SKIP COUNT OF ; 0

NAME = IO CLOCK
. INTERRUPTABILITY FLAG = NO

CONCURRENT EXECUTION = NO

ITERATION PERIOD = 4.00 MICROSEC

START TIME = 0.

ALLOWED PROCESSORS =
CLOCK

REQUIRED HARDWARE STATUS =
CLOCK .

ORED PREDECESSOR LIST =
INITIALIZATION OF CLOCK
I0 CLOCK

INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF

ANDED SUCCESSORS =
CHAIN TC ; I0 CLOCK
WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = DOABZ ON Pl

INTERRUPTABILITY FLAG = NO

CONCURRENT EXECUTICN = NO

START TIME =~ 0.

ALLOWED PROCESSORS =
Pl

REQUIRED HARDWARE STATUS =
Pl '

ORED PREDECESSOR LIST =
INITIALIZATION OF Fl
NEW X ON Pl

1 IO READY
1 DELAY
1 10 NOT READY

e e W
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REQUIRED SEMAPHORE STATUS =

WAIT FOR ; NEW X ON Pl READY

TC BE ; SET

WAIT FOR ; NEW X FRCM P2 RECEIVED
TC BE ; SET

WAIT FOR ; NEW X FROM P3 RECEIVED
TO BE ; SET

WAIT FOR ; NEW X FROM P4 RECEIVED
TO BE ; SET

INSTRUCTION LIST =
EXECUTE A TOTAL CF ;
EXECUTE A TOTAL CF ;
EXECUTE A TOTAL CF ;

ANDED SUCCESSCRS =

1 DOARZ ON P1
1 Z ON P1 READY
1 NEW X ON P1 NOT READY

CHAIN TO ; DlABZ ON Pl

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TQG ; DX ON Pl

WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = DOABZ ON P2
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P2

REQUIRED HARDWARE STATUS =
P2

ORED PREDECESSOR LIST =
INITIALIZATION COF P2

NEW X ON P2
REQUIRED SEMAPHORE STATUS =

WAIT FOR ; NEW X ON P2 READY

TC BE ; SET

WAIT FOR ; NEW X FROM Pl RECEIVED
TC BE ; SET

WAIT FOR ; NEW X FROM P3 RECEIVED
TC BE ; SET

WAIT FCR ; NEW X FROM P4 RECEIVED
TO BE ; SET

INSTRUCTION LIST =
EXECUTE A TOTAL OF ;
EXECUTE A TOTAL OF ;
EXECUTE A TOTAL OF ;

ANDED SUCCESSORS =
CHAIN TO ; D1ABZ ON P2

WITH ITERATIONS THEN SKIP COUNT OF ;

CHAIN TO ; DX ON P2

WITH ITERATIONS THEN SKIP COUNT OF ;

NAME = DOABZ ON P3
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P3

REQUIRED HARDWARE STATUS =
E3

ORED PREDECESSOR LIST =
INITIALIZATION OF P3

1 DOABZ CON P2
1 Z ON P2 READY
1 NEW X ON P2 NOT READY

o O

NEW X ON P3
REQUIRED SEMAPHORE STATUS =

WAIT FOR ; NEW X ON P3 READY

TO BE ; SET

WAIT FOR ; NEW X FROM P1 RECEIVED
TO BE ; SET

WAIT FOR ; NEW X FROM P2 RECEIVED
TO BE ; SET

WAIT FOR ; NEW X FROM P4 RECEIVED
TO BE ; SET

INSTRUCTION LIST =
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1 DOABZ CN P3
1 Z ON P3 READY
1 NEW X ON P3 NOT READY

EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSCRS =
CHAIN TO ; DIABZ ON P23

LR )

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TO ; DX ON P3
WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = DOABZ ON P4
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P4
REQUIRED HARDWARE STATUS =
P4
ORED PREDECESSCR LIST =
INITIALIZATION OF P4
NEW X ON P4
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; NEW X ON P4 READY
TO BE ; SET
WAIT FOR ; NEW X FROM Pl RECEIVED
TO BE ; SET
WAIT FOR ; NEW X FROM P2 RECEIVED

TO BE ; SET
WAIT FOR ; NEW X FROM P3 RECEIVED
TO BE ; SET

INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF

ANDED SUCCESSORS =
CHAIN TO ; D1ABZ ON P4

1 DOABZ CON P4
1 Z ON P4 READY
1 NEW X ON P4 NOT READY

LY T

WITH ITERATICONS THEN SKIP COUNT OF ! 0
CHAIN TO ; DX ON P4
WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = BROADCAST 2 FROM Pl
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSQORS =
P1I0O
REQUIRED HARDWARE STATUS =
P1IOQ
QORED PREDECESSOR LIST =
INITIALIZATION OF P1IO
BROADCAST DX FROM P1
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; Z ON Pl READY
TO BE ; SET
WAIT FOR ; 10 READY
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL CF ; 32 DELAY
EXECUTE A TOTAL OF ; 1 2 FROM P1 RECEIVED
EXECUTE A TOTAL OF ; 1 Z ON P1 NOT READY
ANDED SUCCESSORS =
CHAIN TO ; BROADCAST DX FROM Pl
WITH ITERATIONS THEN SKIP COUNT OF ;
CHAIN TO ; END BROADCAST 2
WITH ITERATIONS THEN SKIP COUNT OF ;
NAME = BROADCAST Z FROM P2
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P210

o

=)
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REQUIRED HARDWARE STATUS =
P2IC

ORED PREDECESSOR LIST =
INITIALIZATION OF PlIC
BROADCAST DX FROM P1

REQUIRED SEMAPHORE STATUS =
WAIT FOR ; Z ON P2 READY

TO BE ; SET
WAIT FOR ; IO READY
TO BE : SET

INSTRUCTION LIST =
EXECUTE A TOTAL OF ;
EXECUTE A TOTAL OF ;
EXECUTE A TOTAL OF ;

ANDED SUCCESSORS =

32 DELAY

1 2 FROM P2 RECEIVED
1 Z ON P2 NCT READY

CHAIN TO ; BROADCAST DX FROM P2

WITH ITERATIONS THEN SKIP COUNT OF ;

(=)

CHAIN TO ; END BROADCAST 2
WITH ITERATIONS THEN SKIP CCUNT OF ; s

NAME = BROADCAST Z FROM P3

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P3IC
REQUIRED HARDWARE STATUS =
P3I0
ORED PREDECESSOR LIST =
INITIALIZATION OF P3IOQ
BROADCAST DX FRCM P3
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; Z ON P3 READY

TO BE ; SET
WAIT FOR ; IO READY
TO BE ; SET

INSTRUCTION LIST =
EXECUTE A TOTAL OF ;
EXECUTE A TOTAL CF ;
EXECUTE A TOTAL OF ;

ANDED SUCCESSORS =

32 DELAY
1l 2 FROM P3 RECEIVED
1l 2 ON P3 NCT READY

CHAIN TO ; BROADCAST DX FROM P3
WITH ITERATIONS THEN SKIP COUNT OF ; 0

CHAIN TO ; END BROADCAST

A

WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = BROADCAST 2 FROM P4

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P410
REQUIRED HARDWARE STATUS =
P4I0
ORED PREDECESSOR LIST =
INITIALIZATION OF P4I0
BROADCAST DX FROM P4
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; Z ON P4 READY
TO BE ; SET
. WAIT FOR ; IO READY
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF ;
EXECUTE A TOTAL OF ;
EXECUTE A TOTAL OF ;
ANDED SUCCESSORS =

32 DELARY
1 2 FROM P4 RECEIVED
1 Z ON P4 NOT READY

CHAIN TOC ; BROADCAST DX FRCM P4
WITH ITERATIONS THEN SKIP CQUNT CF ; 0

CHAIN TO ; END BROADCAST

Z
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WITH ITERATICONS THEN SKIP COUNT OF ; 0

NAME = DX ON P1
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =

Pl
REQUIRED HARDWARE STATUS =
Pl
ORED PREDECESSCR LIST =
DOABZ ON Pl
D1RBZ ON Pl
D2ABZ ON Pl
D3ABZ ON Pl
D4ABZ ON Pl
DSABZ ON Pl
D6ABZ ON Pl
D7ABZ ON Pl

REQUIRED SEMAPHORE STATUS =

WAIT FOR ; Z FROM P2 RECEIVED

TO BE ; SET

WAIT FCR ; Z FROM P3 RECEIVED

TO BE ; SET

WAIT FOR ; Z FROM P4 RECEIVED

TO BE ; SET
INSTRUCTION LIST =

EXECUTE A TOTAL OF ;

EXECUTE A TOTAL OF ;

EXECUTE A TOTAL CF ;

NAME = DX ON P2

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NC
START TIME = 0.
ALLOWED PROCESSORS =

P2
REQUIRED HARDWARE STATUS =

P2
ORED PREDECESSCR LIST =

DOABZ ON P2

D1ABZ ON P2

D2ABZ ON P2

D3ABZ ON P2

D4ABRZ ON P2

DSABZ ON P2

D6ABZ ON P2

D7ABZ ON P2

REQUIRED SEMAPHORE STATUS =

1 DX ON P1
1 DX ON Pl READY
1 DX FROM Pl READY

WAIT FOR ; 2 FROM P1 RECEIVED

TC BE ; SET

WAIT FOR ; 2 FROM P3 RECEIVED

TO BE ; SET
WAIT FOR ;
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF ;
EXECUTE A TOTAL OF ;
NAME = DX ON P23
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NC
START TIME = 0.
ALLOWED PROCESSORS =
P3
REQUIRED HARDWARE STATUS =
P3
ORED PREDECESSOR LIST =
DOABZ ON P3
D1ABZ ON P3

Z FROM P4 RECEIVED

1 DX ON P2
1 DX ON P2 READY
1 DX FROM P2 READY
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D2ABZ
D3ABZ
D4ABZ
D5SABZ
D6ABZ
D7ABZ
REQUIRED
WAIT FOR ;
TO BE ; SET
WAIT FOR ;
TO BE ; SET
WAIT FOR ;
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL
EXECUTE A TOTAL
EXECUTE A TOTAL
NAME = DX ON P4
INTERRUPTABILITY FLAG NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P4
REQUIRED HARDWARE STATUS =
P4
ORED PREDECESSCR LIST =
DOABZ ON P4
D1ABZ ON P4
D2ABZ CON P4
D3ABZ ON P4
D4ABZ CON P4
D5ABZ ON P4
D6ABZ ON P4
D7ABZ ON P4
REQUIRED
WAIT FCOR ;
TO BE ; SET
WAIT FCR ;
TO BE ; SET
WAIT FCR ;
TC BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TCTAL OF
EXECUTE A TCTAL OF
NAME = BROADCAST DX FROM Pl
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P1IO
REQUIRED HARDWARE STATUS =
P1IO
ANDED PREDECESSOR LIST =
BROADCAST Z FRCM P1

ON
ON
ON
ON
ON P3

ON P3

SEMAPHORE STATUS =

P3
P3
P3
P3

Z FROM P4

CF
oF
CF

e

AL TS

REQUIRED SEMAPHORE STATUS =
DX FROM Pl READY

WAIT FCR ;
TO BE ; SET
. WAIT FOR ;
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
FXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =
BROADCAST Z FROM Pl
END BROADCAST DX
NAME = BROADCAST X FRCM P2

IO READY

e ws

SEMAPHORE STATUS =
Z FROM P1 RECEIVED

Z FROM P1 RECEIVED
Z FROM P2 RECEIVED

RECEIVED

1 DX ON P3
1 DX ON P3 READY
1 DX FROM P3 READY

Z FROM P2 RECEIVED

Z FROM P3 RECEIVED

1 DX ON P4
1 DX ON P4 READY
1 bX FROM P4 READY

32 DELAY
1 DX FROM Pl RECEIVED
1 DX FROM P1 NOT READY
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INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTICN = NO
START TIME = 0.
ALLOWED PROCESSORS =
P2I0O
REQUIRED HARDWARE STATUS =
BP2IO
ANDED PREDECESSOR LIST =
BRCADCAST Z FROM P2
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX FROM P2 READY
TO BE ; SET
WAIT FOR ; IO READY
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 32 DELAY
EXECUTE A TOTAL OF ; 1 DX FROM P2 RECEIVED
EXECUTE A TOTAL OF ; 1 DX FROM P2 NOCT READY
ANDED SUCCESSORS =
BROADCAST Z FROM P2
END BROADCAST DX
NAME = BROADCAST DX FROM P3
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P3IO
REQUIRED HARDWARE STATUS =
P3IIC
ANDED PREDECESSOR LIST =
BROADCAST Z FROM P3
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX FROM P3 READY
TC BE ; SET
WAIT FOR ; IO READY
TC BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 32 DELAY
EXECUTE A TOTAL OF ; 1 DX FROM P3 RECEIVED
EXECUTE A TOTAL OF ; 1 DX FROM P3 NOT READY
ANDED SUCCESSCRS =
BROADCAST 2 FROM P3
END BROADCAST DX
NAME = BROADCAST DX FRCM P4
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLCOWED PROCESSORS =
P4IO
REQUIRED HARDWARE STATUS =
P4TIO
ANDED PREDECESSOR LIST =
BROADCAST Z FROM P4
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX FROM P4 READY
TO BE ; SET
WAIT FOR ; IO READY
TO BE : SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 32 DELAY
EXECUTE A TOTAL CF 1 DX FROM P4 RECEIVED
EXECUTE A TOTAL CF 1 FROM ON P4 NOT READY
ANDED SUCCESSORS =
BRCADCAST Z FROM P4
END BROADCAST DX
NAME = D1ABZ ON P1
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO

wy

-
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START TIME = 0.
REQUIRED HARDWARE STATUS =
Pl
ANDED PREDECESSOR LIST =
DOABZ ON Pl
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON Pl READY
TQ BE ; SET
WAIT FOR ; DX FROM P2 RECEIVED

TO BE ; SET
WAIT FOR ; DX FROM P3 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TC BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 D1ABZ ON P1
EXECUTE A TOTAL OF ; 1 Z ON P1 READY
EXECUTE A TOTAL OF ; 1 DX ON Pl NOT READY

ANDED SUCCESSORS =
CHAIN TO ; D2ABZ ON P1

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TO ; DX ON P1
WITH ITERATICNS THEN SKIP COUNT CF ; 0

NAME = D1ABZ ON P2

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
P2
ANDED PREDECESSOR LIST =
DOABZ ON P2
REQUIRED SEMAPHCRE STATUS =
WAIT FOR ; DX ON P2 READY
TO BE ; SET
WAIT FOR ; DX FROM P1 RECEIVED
TC BE : SET
WAIT FOR ; DX FROM P3 RECEIVED
TC BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 D1ABZ ON P2
EXECUTE A TOTAL OF 1 Z ON P2 READY
EXECUTE A TOTAL OF ; 1 DX ON P2 NOT READY
ANDED SUCCESSORS =
CHAIN TO ; D2ABZ ON P2

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TO ; DX ON P2
WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = D1ABZ ON P3

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
P2
ANDED PREDECESSOR LIST =
DOABZ ON P3
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P3 READY
TO BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P2 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 DIABZ ON P3
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EXECUTE A TOTAL OF ; 1 2 ON P3 READY
EXECUTE A TOTAL OF ; 1 PX ON P3 NOT READY
ANDED SUCCESSORS =
CHAIN TO ; D2ABZ ON P3
WITH ITERATIONS THEN SKIP COUNT CF
CHAIN TO ; DX ON P3
WITH ITERATIONS THEN SKIP COUNT OF ;
NAME = D1ABZ ON P4
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTICN = NO

.
(=]

.
(=)

START TIME = 0.
REQUIRED HARDWARE STATUS =
P4

ANDED PREDECESSOR LIST =
DOABZ ON P4
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX CN P4 READY
TO BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P2 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P3 RECEIVED
TO BE ; SET
INSTRUCTICON LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =
CHAIN TO ; D2ABZ ON P4

1 DI1ABZ ON P4
1 Z ON P4 READY
1 DX ON P4 NOT READY

.

LT

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TO ; DX ON P4
WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = D2ABZ ON Pl
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO

START TIME = 0.
REQUIRED HARDWARE STATUS =
Pl

ANDED PREDECESSQR LIST =
D1ABZ ON Pl
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON Pl READY
TO BE ; SET
WAIT FOR ; DX FROM P2 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P3 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TC BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =
CHAIN TO ; D3ABZ ON Pl

1 D2ABZ CON P1
1 Z ON P1 READY
1 DX ON P1 NOT READY

e

AT

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TO ; DX ON P1
WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = D2ABZ ON P2
INTERRUPTABILITY FLAG = NC
CONCURRENT EXECUTICN = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
P2

ANDED PREDECESSOR LIST =
D1ABZ ON P2

REQUIRED SEMAPHORE STATUS =
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WAIT FOR ; DX ON P2 READY
TO BE : SET
WAIT FOR ; DX FROM Pl RECEIVED
TC BE ; SET
WAIT FOR ; DX FROM P3 RECEIVED
TC BE ; SET ‘
WAIT FOR ; DX FROM P4 RECEIVED
TC BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =
CHRIN TO ; D3ABZ ON P2
WITH ITERATIONS THEN SKIP COUNT OF ;
CHAIN TO ; DX ON P2
WITH ITERATIONS THEN SKIP COUNT OF :
NAME = DZABZ ON P3
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
P3
ANDED PREDECESSOR LIST =
D1ABZ ON B3
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P3 READY
TO BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P2 RECEIVED
TO BE ; SET
WAIT FOR ; DX FRCM P4 RECEIVED
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =
CHAIN TC ; D3ABZ ON P3
WITH ITERATIONS THEN SKIP COUNT CF ;
CHAIN TO ; DX ON P3
WITH ITERATIONS THEN SKIP COUNT OF ;
NAME = DZ2ABZ ON P4
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
P4
ANDED PREDECESSOR LIST =~
D1ABZ ON P4
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P4 READY

1 D2ARZ ON P2
1 2 ON P2 READY

e Ve

~e

1 D2ABZ ON P3
1 Z ON P3 READY

e wp N

TC BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TQC BE ; SET
WAIT FOR ; DX FROM P2 RECEIVED
TC BE ; SET
WAIT FOR ; DX FROM P3 RECEIVED
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOQTAL OF ; 1 D2ABZ ON P4
EXECUTE A TOTAL OF ; 1 Z ON P4 READY
EXECUTE A TOTAL OF ; 1 DX ON F4 NOT READY

ANDED SUCCESSORS =
CHAIN TO ; D3ABZ ON P4
WITH ITERATIONS THEN SKIP COUNT OF ;
CHAIN TO ; DX ON P4
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WITH ITERATIONS THEN SKIF COUNT OF
NAME = D3ABZ CN P1

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO

2

START TIME = 0.
REQUIRED HARDWARE STATUS =
Pl

ANDED PREDECESSOR LIST =
D2ABZ ON P1

REQUIRED SEMAPHCRE STATUS =
WAIT FOR ; DX ON Pl READY

TO BE ; SET

WAIT FOR ; DX FROM PZ RECEIVED

TO BE ; SET

WAIT FOR ; DX FROM P3 RECEIVED

TO BE ; SET

WAIT FOR ; DX FROM P4 RECEIVED

TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL CF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =
CHAIN TO ; D4ABZ ON Pl

S e

1 D3ABZ ON Pl
1 2 ON P1 READY
1 pX CN Pl NOT READY

WITH ITERATIONS THEN SKIP COUNT OF ; 0

CHAIN TO ; DX ON P1

WITH ITERATIONS THEN SKIP COUNT OF ;

NAME = D3ABZ ON P2

INTERRUPTABILITY FLAG = NO

CONCURRENT EXECUTION = NO
START TIME = 0

REQUIRED HARDWARE STATUS =

P2
ANDED PREDECESSCOR LIST =
D2ABZ ON P2

REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P2 READY

TQ BE ; SET

(=)

WAIT FOR ; DX FROM Pl RECEIVED

TC BE ; SET

WAIT FOR ; DX FROM P3 RECEIVED

TO BE ; SET

WAIT FOR ; DX FROM P4 RECEIVED

TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL CF
EXECUTE A TOTAL CF

~a

e

1 D3ABZ ON P2
1 2 ON P2 READY
1 DX ON P2 NOT READY

ANDED SUCCESSORS =
CHAIN TO ; D4ABZ ON P2

WITH ITERATIONS THEN SKIP COUNT OF

CHAIN TO ; DX ON P2

WITH ITERATIONS THEN SKIP COUNT OF
NAME = D3ABZ ON P3

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
P3
ANDED PREDECESSOR LIST =
D2ABZ ON P3
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P3 READY
TO BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P2 RECEIVED
TQ BE ; SET
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WAIT FOR ; DX FROM P4 RECEIVED

TC BE ; SET
INSTRUCTION LIST =

EXECUTE A TOTAL OF ;

EXECUTE A TOTAL OF ;

EXECUTE A TOTAL OF ;
ANDED SUCCESSORS =

CHAIN TO ; D4ABZ ON P3

1 D3ABZ ON P3
1 Z ON P3 READY
1 DX ON P3 NOT READY

WITH ITERATIONS THEN SKIP COUNT OF ; 0

CHAIN TO ; DX ON P23

WITH ITERATIONS THEN SKIP COUNT CF ; 0

NAME = D3ABZ ON P4

INTERRUPTABILITY FLAG = NO

CONCURRENT EXECUTION = NO
START TIME = 0

REQUIRED HARDWARE STATUS =

P4
ANDED PREDECESSOR LIST =
D2ABZ ON P4

REQUIRED SEMAPHORE STATUS =
WAIT FOCR ; DX ON P4 READY

TO BE ; SET

WAIT FOR ; DX FROM Pl RECEIVED

TO BE ; SET

WAIT FCR ; DX FROM P2 RECEIVED

TO BE ; SET

WAIT FOR ; DX FROM P3 RECEIVED

TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL CF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OQF
ANDED SUCCESSORS =~
CHAIN TO ; D4ABZ ON P4

~

AT IR T

1 D3ABZ ON P4
1 Z ON P4 READY
1 DX ON P4 NOT READY

WITH ITERATIONS THEN SKIP COUNT CF ; o

CHAIN TO ; DX ON P4

WITH ITERATIONS THEN SKIP COUNT OF ; Q

NAME = D4ABZ ON Pl

INTERRUPTABILITY FLAG = NO

CONCURRENT EXECUTION = NO
START TIME = 0

REQUIRED HARDWARE S&ATUS -

Pl
ANDED PREDECESSOR LIST =
D3ABZ ON P1

REQUIRED SEMAPHORE STATUS =
WAIT FCR ; DX ON Pl READY

TO BE ; SET

WAIT FOR ; DX FROM P2 RECEIVED

TO BE ; SET

WAIT FOR ; DX FROM P3 RECEIVED

TO BE ; SET

WAIT FOR ; DX FRCM P4 RECEIVED

TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =
CHAIN TO ; DS5SABZ ON Pl

L

1 D4ABZ ON P1
1 Z ON Pl READY
1 DX ON P1 NOT READY

WITH ITERATIONS THEN SKIP COUNT OF ; Q

CHAIN TO ; DX CN Pl

WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = D4ABZ ON P2

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.

REQUIRED HARDWARE STATUS =
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P2
ANDED PREDECESSOR LIST =
D3ABZ ON P2
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P2 READY
TO BE ; SET '
WAIT FOR ; DX FRCM Pl RECEIVED
TO BE ; SET
WAIT FOR ; DX FRCM P3 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF ;
EXECUTE A TOTAL OF ;
EXECUTE A TOTAL OF ;
ANDED SUCCESSORS =
CHAIN TO ; D5AB2Z2 ON P2

WITH ITERATIONS THEN SKIP COUNT OF

CHAIN TO ; DX ON P2

WITH ITERATIONS THEN SKIP COUNT OF
NAME = D4ABZ ON P3

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
P3
ANDED PREDECESSOR LIST =
D3ABZ ON P3
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P3 READY
TO BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P2 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TO BE ; SET
INSTRUCTION LIST =

1 D4ABZ ON P2
1 2 ON P2 READY
1 DX ON P2 NOT READY

; 0

H 0

EXECUTE A TOTAL CF

EXECUTE A TOTAL OF

EXECUTE A TOTAL OF
ANDED SUCCESSORS =

’

’

’

1 D4ABZ ON P3
1 Z ON P3 READY
1 DX ON P3 NOT READY

CHAIN TO ; DSABZ ON P3

WITH ITERATIONS THEN SKIP COUNT OF
CHAIN TC ; DX ON B3

WITH ITERATIONS THEN SKIP COUNT OF

NAME = D4ABZ ON P4

INTERRUPTABILITY FLAG = NO

CONCURRENT EXECUTION = NO

START TIME = 0.

REQUIRED HARDWARE STATUS =
P4

ANDED PREDECESSOR LIST =
D3ABZ ON P4

REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX CN P4 READY
TO BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TO BE ; SET

H 0

H 0

WAIT FOR ; DX FROM P2 RECEIVED

TO BE ; SET

WAIT FOR ; DX FROM P3 RECEIVED

TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OQF
EXECUTE A TOTAL OF

’
.
.

’

1 D4ABZ ON P4
1 2 ON P4 READY
1 DX ON P4 NOT READY
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ANDED SUCCESSORS =
CHAIN TO ; D5ABZ ON P4

WITH ITERATIONS THEN SKIP COUNT Or ; 0
CHAIN TO ; DX ON P4
WITH ITERATIONS THEN SKIP COUNT OF ; Q

NAME = DSABZ ON P1
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
Pl
ANDED PREDECESSOR LIST =
D4ABZ ON Pl
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON Pl READY
TO BE ; SET
WAIT FOR ; DX FROM P2 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P3 RECEIVED
TO BE ; SET
WAIT FCR ; DX FROM P4 RECEIVED
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL CF
EXECUTE A TOTAL CF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =
CHAIN TO ; DEABZ ON P1

1 DSABZ ON P1
1 Z ON P1 READY
1 DX CN P1 NOT READY

e Wy we

WITH ITERATIONS THEN SKIP CCUNT OF ; 0
CHAIN TO ; DX ON Pl
WITH ITERATIONE THEN SKIP COUNT OF 0

NAME = DSABZ ON P2
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = HO

START TIME = a.
REQUIRED HARDWARE STATUS =
B2

ANDED PREDECESSOR LIST =
D4ABZ ON P2

REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P2 READY

TO BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P3 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 DSABZ ON P2
EXECUTE A TOTAL OF ; 1 Z ON P2 READY
EXECUTE A TOTAL OF : 1 DX ON PZ NOT READY

ANDED SUCCESSORS =
CHAIN TO ; D6ABZ ON P2
WITH ITERATIONS THEN SKIP COUNT OCOF
CHAIN TO ; DX ON P2
WITH ITERATIONS THEN SKIP COUNT OF ; ¢
NAME = DSABZ ON P3
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO

L0
o

START TIME = 0.
REQUIRED HARDWARE STATUS =
P3

ANDED PREDECESSOR LIST =
D4ABZ ON P3

REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P3 READY
TO BE ; SET
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WAIT FOR ;
TO BE ; SET
WAIT FOR ;
TO BE ; SET
WAIT FOR ;
TO BE ; SET

INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF

ANDED SUCCESSORS =

DX FROM Pl RECEIVED
DX FROM P2 RECEIVED

DX FROM P4 RECEIVED

1 D3ABZ ON P3
1 Z ON P3 READY
1 DX ON P3 NOT READY

~ wa we

CHAIN TC ; D6ABZ ON P3

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TO ; DX ON P3

WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = D5ABZ ON P4

NAME

INTERRUPTABILITY FLAG = NOQ

CONCURRENT EXECUTION = NO

START TIME = 0.

REQUIRED HARDWARE STATUS =~
P4

ANDED PREDECESSOR LIST =
D4ABZ ON P4

REQUIRED SEMAPHORE STATUS =

WAIT FOR ; DX CN P4 READY

TC BE ; SET

WAIT FOR ; DX FROM P1 RECEIVED
TO BE ; SET

WAIT FOR ; DX FROM P2 RECEIVED
TO BE ; SET

WAIT FOR ; DX FROM P3 RECEIVED
TO BE ; SET

INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF

ANDED SUCCESSORS =
CHAIN TO ; D6ABZ ON P4

~e e

-~

1 D5ABZ ON P4
1 Z ON P4 READY
1 DX ON P4 NOT READY

WITH ITERATIONS THEN SKIP COUNT OF ; 0

CHAIN TO ; DX CON P4

WITH ITERATIONS THEN SKIP COUNT OF

= DEABZ CON Pl
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO

START TIME = 0.
REQUIRED HARDWARE STATUS =
Pl

ANDED PREDECESSOR LIST =
D5ABZ ON P1
RECQUIRED SEMAPHCRE STATUS =

WAIT FOR ; DX ON P1 READY

TC BE ; SET

WAIT FOR ; DX FROM P2 RECEIVED
TO BE ; SET

WAIT FOR ; DX FROM P3 RECEIVED
TQO BE ; SET

WAIT FOR ; DX FROM P4 RECEIVED
TO BE ; SET

INSTRUCTION LIST =

; 0

EXECUTE A TOTAL OF

EXECUTE A TOTAL OF

EXECUTE A TOTAL OF
ANDED SUCCESSORS =

1 DEABZ ON P1
1 Z ON P1 READY
1 DX ON Pl NOT READY

v e

CHAIN TO ; D7ABZ ON Pl

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TO ; DX ON Pl

WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = D6RBZ ON P2
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INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO

START TIME = 0.
REQUIRED HARDWARE STATUS =
P2

ANDED PREDECESSOR LIST =
DSABZ ON P2
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P2 READY
TC BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED

TC BE ; SET )
WAIT FOR ; DX FROM P3 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TC BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 D6ABZ ON P2
EXECUTE A TOTAL OF ; 1 2 ON P2 READY
EXECUTE A TOTAL OF ; 1 DX ON P2 NOT READY

ANDED SUCCESSORS =
CHAIN TO ; D7ABZ ON P2

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TO ; DX ON P2
WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = D6ABZ ON P3
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
P3
ANDED PREDECESSOR LIST =
DSABZ ON P3
REQUIRED SEMAPHORE STATUS =
WAIT FCR ; DX ON P32 READY
TO BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TO BE ; SET
WAIT FOR ; DX FRCM P2 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL CF
ANDED SUCCESSQRS =
CHAIN TO ; DT7ABZ ON P3

1 D6ABZ ON P3
1 Z ON P3 READY
1 DX ON P3 NOT READY

e we w

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TO ; DX ON P3
WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = D6ABZ ON P4
INTERRUPTABILITY FLAG = NC
CONCURRENT EXECUTION = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
P4

ANDED PREDECESSOR LIST =
D5ABZ ON P4

REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P4 READY

TO BE ; SET
WAIT FOR ; DX FRCM Pl RECEIVED
TO BE ; SET

WAIT FOR ; DX FROM P2 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P3 RECEIVED
TO BE ; SET
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INSTRUCTICN LIST =
EXECUTE A TOTAL CF
EXECUTE A TOTAL OF
EXECUTE A TOTAL CF

ANDED SUCCESSORS =

CHAIN TO ; D7ABZ ON P4

s
’
2

1 D6ABZ ON P4
1 Z ON P4 READY
1 DX ON P4 NCT READY

WITH ITERATIONS THEN SKIP COUNT OF ; 0

CHAIN TC ; DX ON P4

WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = D7ABZ ON Pl

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
Pl
ANDED PREDECESSOR LIST =
DEABZ ON Pl
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON Pl READY
TO BE ; SET
WAIT FOR ; DX FROM P2 RECEIVED
TC¢ BE ; SET
WAIT FOR ; DX FROM F3 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TC BE ; SET
INSTRUCTION LIST =

EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF

~

e e

1 D7ABZ ON Pl
1 2 ON P1 READY
1 DX ON F1 NOT READY

ANDED SUCCESSCRS =
CHAIN TO ; DS8ABZ ON Pl

WITH ITERATIONS THEN SKIP COUNT OF ;

CHAIN TO ; DX ON P1

WITH ITERATIONS THEN SKIP COUNT OF
NAME = D7ABZ ON P2

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
REQUIRED HARDWARE STATUS =
P2
ANDED PREDECESSOR LIST =
DeABZ ON P2
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P2 READY
TO BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P3 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TO BE ; BET
INSTRUCTION LIST =

r

EXECUTE A TOTAL OF
EXECUTE A TOTAL CF
EXECUTE A TOTAL CF

wy we

~»

1 D7ABZ ON P2
1 Z ON P2 READY
1 BX ON P2 NOT READY

ANDED SUCCESSORS =
CHAIN TO ; DSBABZ ON P2

WITH ITERATIONS THEN SKIP COUNT OF ;

CHAIN TO ; DX ON P2

WITH ITERATIONS THEN SKIP COUNT OF
NAME = D7ABZ ON P3

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO

START TIME = 0.
REQUIRED HARDWARE STATUS =
P3

ANDED PREDECESSOR LIST =
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D6ABZ ON P3

REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P3 READY
TO BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TO BE ; SET ’
WAIT FOR ; DX FROM P2 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P4 RECEIVED
TO BE ; SET

INSTRUCTION LIST =

EXECUTE A TOTAL OF ; 1 D7ABZ ON P3
EXECUTE A TOTAL OF ; 1 2 ON P3 READY
EXECUTE A TOTAL OF ; 1 DX ON P3 NOT READY

ANDED SUCCESSORS =
CHAIN TO ; D8ABZ ON P3

WITH ITERATIONS THEN SKIF COUNT OF ; 0
CHAIN TO ; DX ON P3
WITH ITERATIONS THEN SKIP COUNT OF 0

NAME = D7ABZ ON P4

INTERRUPTABILITY FLAG = NC
CONCURRENT EXECUTION = NO

START TIME = Q.
REQUIRED HARDWARE STATUS =
P4

ANDED PREDECESSOR LIST =
D6ABZ ON P4
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P4 READY
TO BE ; SET
WAIT FOR ; DX FROM Pl RECEIVED
TC BE ; SET
WAIT FOR ; DX FROM P2 RECEIVED
TO BE ; SET
WAIT FOR ; DX FROM P3 RECEIVED
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSCRS =
CHAIN TC ; DBABZ ON P4

1 D7ABZ ON P4
1 Z ON P4 READY
1 DX ON P4 NOT READY

wa we

WITH ITERATIONS THEN SKIP COUNT OF ; o
CHAIN TC ; DX ON P4
WITH ITERATIONS THEN SKIF COUNT CF ; Q

NAME = NEW X CN P1

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = Q.
ALLOWED PROCESSORS =
Pl
REQUIRED HARDWARE STATUS =
Pl
ANDED PREDECESSCOR LIST =
D7ABZ CON P1
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON Pl READY
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 11 SERIES EVALUATION
EXECUTE A TOTAL OF ; 1 P1 FINISHED
EXECUTE A TOTAL OF ; 1l NEW X ON Pl READY
EXECUTE A TOTAL OF : 1 NEW X FRCM P1 READY
ANDED SUCCESSORS =
CHAIN TO ; DOABZ ON Pl
WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = NEW X ON P2

INTERRUPTABILITY FLAG = NO
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CONCURRENT EXECUTION = NO

START TIME = 0.

ALLOWED PROCESSORS =
P2

REQUIRED HARDWARE STATUS =
P2 :

ANDED PREDECESSOR LIST =
D7ABZ ON P2

REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P2 READY
TO BE ; SET

INSTRUCTICON LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL CF
EXECUTE A TOTAL CF

ANDED SUCCESSORS =
CHAIN TO ; DOABZ ON P2
WITH ITERATIONS THEN SKIP COUNT OF ; 0

NAME = NEW X ON P3

INTERRUPTABILITY FLAG = NO

CONCDURRENT EXECUTION = NO

START TIME = 0.

ALLOWED PROCESSQORS =
P3

REQUIRED HARDWARE STATUS =
P3

ANDED PREDECESSOR LIST =
D7ABZ ON P3

REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P3 READY
TO BE ; SET

INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 10 SERIES EVALUATION

EXECUTE A TOTAL OF ; 1 P3 FINISHED

14 SERIES EVALUATICN
1 P2 FINISHED
1 NEW X ON P2 READY
1 NEW X FRCM P2 READY

e e

AT

EXECUTE A TOTAL OF 1 NEW X ON P2 READY
EXECUTE A TOTAL OF 1 NEW X FROM P3 READY
ANDED SUCCESSORS =
CHAIN TO ; DOABZ ON P3
WITH ITERATIONS THEN SKIP COUNT OF ; o
NAME = NEW X ON P4
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
P4
REQUIRED HARDWARE STATUS =
P4
ANDED PREDECESSOR LIST =
D7ABZ ON P4
REQUIRED SEMAPHORE STATUS =
WAIT FOR ; DX ON P4 READY
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL COF
EXECUTE A TOTAL OF 1 P4 FINISHED
EXECUTE A TOTAL OF 1 NEW X ON P3 READY
EXECUTE A TOTAL OF ; 1 NEW X FROM P3 READY
ANDED SUCCESSORS =
CHAIN TO ; DOABZ ON P4
WITH ITERATIONS THEN SKIP COUNT OF ; 0
NAME = BROADCAST NEW X FROM Pl
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
START TIME = 0.
ALLOWED PROCESSORS =
PlIC
REQUIRED HARDWARE STATUS =

13 SERIES EVALUATION

e e Ny
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P1lI0
ORED PREDECESSOR LIST

INITIALIZATION OF P1I0O

BROADCAST NEW X FROM p1
REQUIRED SEMAPHORE STATUS =

WAIT FOR ; NEW X FROM P1 READY

TO BE ; SET

WAIT FCR ; IO READY

TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =

32 DELAY
1 NEW X FROM P1 RECEIVED
1 NEW X FROM P1 NOT READY

P

CHAIN TO ; BROADCAST NEW X FROM P1

WITH ITERATIONS THEN SKIP COUNT OF : 0

CHAIN TO ; END BROADCAST NEW X

WITH ITERATIONS THEN SKIP CQUNT CF ; 0
NAME = BROADCAST NEW X FROM p2

INTERRUPTABILITY FLAG

= NO

CONCURRENT EXECUTION = KO

START TIME = 0.
ALLOWED PROCESSORS =
P2I0

REQUIRED HARDWARE STATUS =

P2I0O
ORED PREDECESSOR LIST

INITIALIZATION OF P1IO

BROADCAST NEW X FROM P2
REQUIRED SEMAPHORE STATUS =

WAIT FOR ; NEW X FROM P2 READY

TO BE ; SET

WAIT FOR ; IO READY

TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =

32 DELAY
1 NEW X FROM P2 RECEIVED
1 NEW X FROM P2 NOT READY

4 me wa

CHAIN TO ; BROADCAST NEW X FROM p2

WITH ITERATIONS THEN SKIP COUNT OF Q
CHAIN TO ; END BROADCAST NEW X
WITH ITERATIONS THEN SKIP COUNT OF : 0

NAME = BROADCAST NEW X FROM P3

INTERRUPTABILITY FLAG

= NO

CONCURRENT EXECUTION = NO

START TIME = 0.
ALLOWED PROCESSORS =
P3I0O

REQUIRED HARDWARE STATUS =

B3IO
ORED PREDECESSOR LIST

INITIALIZATION OF P3I0

BROADCAST NEW X FROM D3
REQUIRED SEMAPHORE STATUS =

WAIT FOR ; NEW X FROM P3 READY

TO BE ; SET

WAIT FOR ; IO READY

TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =
CHAIN TO ; RROADCAS

H 32 DELAY
H 1 NEW X FROM P3 RECEIVED
; 1 NEW X FROM P3 NOT READY

T NEW X FROM P3

WITH ITERATIONS THEN SKIP COUNT OF ; 0
CHAIN TO : END BROADCAST NEW X
WITH ITERATIONS THEN SKIP COUNT OF ; 0
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NAME = BROADCAST NEW X FROM P4

INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO

START TIME = 0.
ALLOWED PROCESSORS =
P4I0

REQUIRED HARDWARE STATUS =

P4I0

ORED PREDECESSOR LIST =
INITIALIZATION OF P4IC
BROADCAST NEW X FROM P4

REQUIRED SEMAPHORE STATUS =
NEW X FROM P4 READY

WAIT FCR ;
TO BE ; SET
WAIT FOR ;
TO BE ; SET
INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
ANDED SUCCESSORS =
CHAIN TG

CHAIN TO ;

IO READY

BROADCAST
WITH ITERATIONS THEN
END BRCADCAST NEW X

’
2
¢

32 DELAY
1 NEW X FROM P4 RECEIVED
1 NEW X FROM P4 NCT READY

NEW X FROM P4
SKIP COUNT OF

; 0

WITH ITERATICNS THEN SKIP COUNT OF ; 0

NAME
INTERRUPTABILITY FLAG

= END BROADCAST NEW X

= NO

CONCURRENT EXECUTION = NO

START TIME = 0.
ALLOWED PROCESSORS =
P1IO

REQUIRED HARDWARE STATUS =

PlIO

ANDED PREDECESSOR LIST =

BROADCAST NEW X
BROADCAST NEW X
BROADCAST NEW X
BROADCAST NEW X
INSTRUCTICN LIST =
EXECUTE A TOTAL
EXECUTE A TOTAL
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
NAME = END BROADCAST DX
INTERRUPTABILITY FLAG

oF
oF

FROM P1
FROM P2
FROM P3
FROM P4

LTI T T

= NC

CONCURRENT EXECUTICN = NO

START TIME = 0.
ALLOWED PROCESSORS =
P1IO

REQUIRED HARDWARE STATUS =

P1IO

ANDED PREDECESSOR LIST =
BROADCAST DX FROM P1
BROADCAST DX FROM P2
BROADCAST DX FROM P3
BROADCAST DX FROM P4

INSTRUCTION LIST =
EXECUTE A TOTAL OF
EXECUTE A TOTAL OQF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF

NAME = END BROADCAST 2

INTERRUPTABILITY FLAG

LTI VIR 1Y

= NO

CONCURRENT EXECUTION = NO

START TIME = 0.
ALLOWED PROCESSORS =
P1IO

REQUIRED HARDWARE STATUS =

Pl NOT RECEIVED
P2 NOT RECEIVED
B3 NOT RECEIVED
P4 NOT RECEIVED

NEW X FRCM
NEW X FROM
NEW X FROM
NEW X FROM

[

NOT RECEIVED
NOT RECEIVED
NCT RECEIVED
NOT RECEIVED

DX FRCM P1
DX FROM P2
DX FRCM P3
DX FROM P4

e
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PlIO
ANDED PREDECESSOR LIST =
BROADCAST Z FROM Pl
BROADCAST Z FROM P2
BROADCAST Z FROM P23
INSTRUCTION LIST =
EXECUTE A TOTAL CF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF
EXECUTE A TOTAL OF

2 FROM P1 NOT RECEIVED
2 FROM P2 NOT RECEIVED
Z
2

.

FROM P3 NOT RECEIVED
FROM P4 NOT RECEIVED

.
e

-
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APPENDIX B

The benchmark ODE systems

As explained in Chapter 5, the performance analysis of the procedures for the
selection of algorithms that solve ODE systems and the multiprocessor implementa-
tion of these algorithms requires the experimental application of these procedures on

a set of benchmark ODE systems.

Chapter 6 suggests that the following three benchmarks are required for the

analysis of the algorithm selection procedure:

benchmark #1

This ODE system is characterized by:

1. 50% sparsity for the matrix A distributed linearly over its rows from 42% to
58%.

2. 90% sparsity for the matrices ¢, f3,v,6 and 8 of each nonzero element of A.

3. Linear terms as large as the nonlinear terms in the nonzero elements of A.

4, 50 Hz highest frequency.

A{l,1)=1.263+4.085*x8*cosx10

A(l,3)=2.839-0.916*x6-1.211*x1*x9+2,082%x1*x11-2.248*x9*
x5

A(1,7)1=3.421-2.195%*x2-3.39*x4*x4+0.121*x4*x10-1.124*x10*
x2*cosx1+4.634*x10*x2*%cosx7+0.159*x10*x10%cosx2+
0.355*x10*x10*cosx4-2.437*x10*x10*cosx10+4.2*x10*
x12%cosx6+0.951*x10*x12*cosx9
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A(l,8)=3.318+40.003*x3%x9-3.12*x8+*x5+1.617*x8*x8+3.048*
xX3*x9*cogx1~4.993*x3*x9*%cosx2+1.141*x4*x11*cosxT+
2.838*xT*x9*cosx6+2.779*x7*x12*cosx8

A(2,6)=0.619~0.207*x3-1.030%x9-1.275*x3*x1+1.674*x3*x4q-
0.147*x6*x5-1.132*x6*x8

A(2,7)=3.129+42.676*x3+2.64%x4+1.,192*x1*x10-4.122*x]1*cosx8

A(2,8)=3,192-4.771*x8-1.867*x1*x1-2.621%x6*%x4+2.013*%x6*
x11+1.313*x5*%cosx2~-0.086*x5%cosx7+2.089*x8*cosx6~
3.5B5*xB8*x6*cosx343.133*x8*x6*cosx9

A(3,3)=1.582+42,729*x1-2.173*x2*cosx11-4.044*x2*cosx12~-
0.48*x6*x3*cosx3-4.934*x6*x10%cosx6

A{3,4)=1.814-4.849%x3-1.527*x11+1.799*x3%x2-1 218%x2%*
cosxll

A(3,7)=0.843+4.323*x2+0.474*x6+2.74*x1*x7+4.852*%x3*x6~
2.375*x2*cosx11

A(3,9)=2.287+4.289%x11*x2*%cosx10-2.089*x11*x2*cosx12

A(3,10)=2.2-4.438*x2+3.007*x10+2.222*x1*x1+3.044*x1*x7-

2.932*x3*cosx10+4.033*x3*%cosx12

A(3,12)=2.659-3.492*x3+4.241*x10-2.138*x5%x4-2.174*x]10*

x9+2.785*x2*cosx4-4.509*x2*cosx7-4.579*x2*cosxl0-
4.193*x6*cosxl0

A(4,1)=4.578-0.954*x3*x2%coax11+3.576*x3*x5%cosx8-2.38%
X3*x1l*cosx7-4.374*x3*x11l*%cosx9~3.627*x3*x11*
cosxl2-4.411*%x3*x12*cosx]-2.132*x3*x12*c0os8x5

A(4,3)=2.648+3.067*x7

A(4,5)=3.304+41.131*x6+2.5%x]11*x1l*cosx3-1.935%x11*x5%
cosx2-1.621*x11*x5%cosx5-0.4*x11*x5*%cosx7-1.026%*
X11*x5*coaxl2

B(4,7)=2.928+4.542*x9*%cosx5~2.742*x9*%cosx T+

A{4,9)=4.724-0.105*x5-3,296*x10+0.547*x5*x8*cosx6+2.642*
x5*x8*cosx8-2.451*x8*x11*cosx8

A(d4,11)=2.261~2.644*x1*x4+2.765%x9*%x6

A(5,4)=1.375-2.249*x8-3.538*x94+0.949*x2*coax6+4.454*x1*
X1*cosx9-3.794*x1*x]1*cosx1]1+3.172*X1*x10*%cosxT+
1.694*x2*%x6*cosxl+4.72*x2*xb6*cosx3+4.334*x6*x4¥*
cosxl10+1.782*x6*x{*cosx12

A(S5,5)=2,191+3.091*x10+2.008*x10*x2+0.292*x6%cosx9-4.489%*
x1*x6*cosx11-1.898*x1*x6*%cosxl2

A(5,7)=4.905-0.552*x11-1.422*x5*x4+3,355%x5*x11+1.073%x9*
xl2*cosx9

A(5,8)=4.896-3.706*x11-2.876*x1*x4*cosx2+0.457*x1*x4*
cosx10+1.999*x1*x12*cosxll

A(5,10)=3.137+3.621*x10-1.608*x7*x6~-4.298*xT*xT+0.106%x4*

cosxl+l.216*x9*%cosx4-1.484*x9*cosx10+3.01*x5*x4*
cosx3+2.382*x5*x4*cosx”7

A(5,11)=2.974-3.9484%x2-3,162%x6-1.439*x11+4.533*x3%x4~

1.551*x3*x543.723*x3*x8

A({5,12)=1,.484+4.21*x6+4.542*x1*x2-3.625*x1*xT+2.92*x12*

cosxl+0.979*x12*cosx8

A(6,1)=2.38+3.096*x2-2.901*x11~2.654*x]1*cosx3-0.067*x11l*
coaxl1l1-4.153*x12*cosx12

A(6,2)=1.316+4.106*x1-4.263*%x2-4.01*x6-4.795*x8

A(6,5)=4.844-2.198*x5+3.613*x4*x11+0.059*x5*x1+1.062*%x5*
X8-2.354*x9%*%co8x8-3.839*x10%cosx5+3.284*x10*cosx10

A(6,6)=3.381-2.999*%x3+42,.207*x]*cosx2+4.064*x]*cosx7-3.002%*
X1*cosx8+0.933*x9*cosx8+1.388*x%*cosx10

A{6,7)=0.333-4,.8*x6*cosx9+0.502*x6%cosx1l

A(6,8)=0.501+4.523*x12*x11+0.599*x5*x5*%co3x9+3.597*x5*x5*
cosx1l-3.203*x5%x9%%cosx7+3.016*x11*x5*%cogxl2-
1.839*x11*x12*cosx2-2.023*x11*x12*cosx3+0.428*x11~*
x12*cosx7

A(6,9)=1.206-2.839%x4*%x3-4.841*xT*x4d*cosx10+1.587*x7*x4*
cosxl2

A(6,10)=2.408-1.853*%x2+1.314%x3-4.659*x1*x8+4+2.769*x2*

cosx3+2.24*x1*x3*cosxll

A(6,12)=0.187+2.545*x6-2.015%x10+4+2.325*x4*x3*cosx9+3,3*

X4*x3*cosxl2

A(7,1)=2.028+3.847*x11*x4-3.68*x11*x10-0.788*x5*x4*
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coaxl-3.327*x5*x12*cosxl+1l.794*x53*x12*%cosx8
A(7,4)=4.218-0.794*x1*cosx1l+4.689%*x1l*cosx10-1,105*x2*
cosx3-2.536%x2*cosx7+0.054*x11*cosx6+0,.937*x3*x5*
coax2+2.916*x3*xT*cosx1+1.275*x3*x7*cosx11-3.145*
xT*x3*cosx3~1,.256*x8*x12%cosx9+1.624*x10*x7*cosxll
A(7,5)=3.285+1.057*x4-1.699*%x1*x4-4.7*x9*x8-0.421*x1*x1*
cosx4d
A(7,9)=0.746+0.766%x4-0.531*%x6+2,335*x9*x2+1.129*xB*x6*
cosx7-1.026*x8*x6*cosx10
A(8,1)=1.363+4.514*x2
A(8,4)=4.856-3.234*x7-1.157*x4*x2+4.886*x12*%cosx6-1.143~*
xl2*cosx12
A(8,5)=0.658+0.013*x3*x2~-2.112*x3*x5-4.419*x3*x8
A(8,6)=4.340-1.775*x9+3.247*x2*cosx1+2.354*x5%cosx4+
4.087*x5*cosx5+1.625*x1*x6*cosx2
B(8,7)=4.765-0.669*x5*x5+1.316*x5*x8-2.196*xT*cosx3~
1.237*xT*cosx6
A(8,9)=0.402-4.816*%x5%cosx2+1.338*%x5%cosx4-1.341*x5*%cosx5
A(8,11)=3.267+1.663%x11-2.614*x11*x8+2,996*%x11*x11-0.77*
xT*xd*cosx9-4.095*xT7*x12*cosx4d+0.86+xT*x12*
cosxl2+1.083*x11*x9*cosx4
A{8,12)=4.425-0.316*x6*x6*cosx]1l
A{9,1)=2.029+2.545%x7*coax2-4.479*x7*cosx10-0.242%x9*
coax8+0.432*x9%%cosx1l
A(9,2)=4.034+4.501*x10+2.915*x3*x3+2.749*%x3%*x6-0.336%x3*
x10-0.432*x5*x1
A(9,3)=1.757-1.699*x5+3.31*x1*x11+2.536*x5*x6+2.815*x5%
x11+4.39*%x6*xT+4.155*x4*cosx1+2.393*x4*cosxb+
1.036*x4*coaxB~-4,526*x10*%cosx5+3.44*x10*%cosx1l~
0.145*x5%x6*casx2
A{9,6)=0.08+4.025*x2-3.608%x6-0.468*x10*x2+3.442*x12*x9+
0,885%x1*cosx3-1.239*x9*cosx5
A(9,7)=4.585-1,023%x3+0,946*x5%x3%cosx3-2.261*x5*x3*
cosxB8+0.719*x5*x5%cosx6-2.713*x5*x5%coax11-0.451*
%x5*x8*cosx6-0.209*x5*x8%coax9
BA{(9,8)=3.831-4.429*%x3+1.901*x2*x2~-3.242*x2*xB+3.685*xT*
cosxl
A(9,10)=4.307
A(10,2)=4.87+3.939*x4~1.104*x6+4.442*x11+1,052*x2*x3+
4.111*%x2%x4-2,.406*x2*x5+0.686*x5*x6*cosx1~-0.423*
x5*xb6*cosxT-4.826*x5*x8*cosx1-3.67T*x5*x8%cosx2
A(10,3)=4.19+1.751*x1-4.157*x9-3.008%x1*x6~1.028*%x5*
cosx5-0.985*x12*x1*coaxd+4.156*x12*x2*cosxB+
3.692*x12%x2%cosx11-1.439*x12*x2*cosx12-2.557*
x12*x3*cosx12-4.437*x12*x12*coax11l+
A(10,5)=0.542-2.478*x2+0.548*x10-2,257*x11*cosx7-2.629%
X3*x8*cosxl?Z
A(10,6)=3,622+2,.493*x2+0.879*x9-3.779*x2*x4+0.39*x2*x10+
1.97*x12*x11-3,.886*x2*cosx7-2.411*x2*%cosxll-
0.273*x2*cosx12+4.315*x10*x10%cosx5-1.897*x12*
xd4*cosx3+1.792*x12*x4*cosx7-4.947*x12*x10*cosx3~
3.579*x12*x10*%cosx9+4.866*x12*x10*cosx10
A(10,7)=4.745
A{(10,9)=3.227-0.558*x8-4.465*x11+3.403*x6*cosx3+2.376*
x10*cosx7+2.66*x4*xB8*cosx12+
A(10,11)=2.385+4.147*x5~3,895*x12-0.134*x1*cosx5-2.872%
X1l*cosx10-0.677*x1*cosx12+2.169*x5%cosxé
A{10,12)=3.085-2.021*x8+2.2*x1*x8*cosx7-0,552*x1*x8*
cosxll
A(l1,2)=2.624-0.673*x2-1.818*x4+4.06*x4*cosxB-2.807*x9~*
cosx7-4.203*x9%cosx10-0,142*x3*x10*%cosx12
A(11,6)=2.228+1,606*x1+2.043*x2-0.168*x7+4.572*x10+4.892~*
%x12-3.988*x6%cosx2+2.243*x9*cosx10+2.193*x12%x5*
cosx4+3.616*x12*x5*cosx6
A(11,7)=3,355+2.741*x1-0.824*x4+4.642*x3*x6+4.292*%x5*x2+
0.843*%%x5*x4+3,607*x9*cosx9-0.964*x3*x8*cosx10
A{11,8)=1.349-4.058*x3*%cosxB+1.153*x6*cosx12-1.872*x5*x7T*
cosx2-1.633*x5%x10*%cosx6-0.684*x6*x6%cosx7-4.561*

219



x6*x]ll*cosx2
A(11l,10)=3.22640.921*x12-4.052*x4*x6+0.808%x4*x9-1,33%
XKT*x2+42 .151*xT*x5+3.804*x7*x7+0.019*%x7*x9+4.167*
X12*x7-0.619*x7*cosx2+0.334*xT*cosx5-0.629*x7*
cosxl0 )
A(11,11)=4.41-2.705%x8~3.117*x3*%x9+3.5*x2%x12%cosx6+
3.246*%x2*%x12*%cosx10-1.846*x8*x7*cosx10
A(12,2)=4.422-3.577*xT*cosx11+2.234*x8*cosx9
A(l2,3)=3.517-0.841*%x8*x4-3.077*x2*cosx4-4.508*x2*cosx6+
1.462*x4*cosx2
A{l2,5)=1.346+2.867*x9*x4+1.693*x2*%co3sx1-3.208*x2*cosx5+
2.337*x2*co8x9-3.904*x12*%cosxd+4.61*x12*cosx5+
2.71*x12*%cosx6+0.666*x12%cosx12+0.662%xThkx5%*
cosx5-1.368*x7*x9*cosx3
A(12,6)=1.791-2.802*x8-2.813*x9-0.125*x12-2.267*x4*x1+
0.679*x8*x11+0.791*x11*x6+0.803*x11*x7-1.142*
x11*x12-4.194*xX6*Cco8x10+0.135*x7*cosx2-0.144%*
x7T*cosxll+4.272%x2*x2*coax5+4.624*x5*x11*coax2
A(l2,7)=4.568+1.297*x1+0.671*x3*x1-4.577*x12*x1*cosx10+
2.514*x12*x1l*coexll+2.697*x12*x8%cosxl0
A(l2,8)=4.669+0.968*x8+0.205*x12+0.257*xd*cosx11+2.57*
x7*coaxl1-3.353*xT*coax5-2.467*xT*coax8+1.17*x7T*
cosxl2-0.151*x10*%cosx2-3,329*x10*cosx8+
A(l2,9)=2.24+43.48*xT*x540,323*x3*x2%cosx1+0.101*x3*x2*
co8x3-3,04*x3*x2*%cosx12-1.584*x6*x2*cosxl1+0.777*
x6*x5*cosx5
A(l2,11)=4.035-4.478*x6*x9-3.478*x6*x11-4.504*x8*cosx8+
0.048*x3*x8*cosxT+1.374*x3*x8%cosxB8-0.896*x3%
X12*coax3+3.52%x3*%x12%cosx9+3.469*x10*x2*cosx4
b{l)=-0,023*x1+1.547*x2~0.066*x3+36.229*x4+40.015*x5+
0.007* x6-166.955*x7+188.965*x8+0.009*x9+0.007*x10+
0.009*x11+0.007*x1242.116*%u5+2,116*u6
b(2)=0.001*x1+0.002*x2+0.002*x3+0.004*x4-18,928*x5-0,009*
x6-161.826*x7+123,.607*x8+0.005*x9+0.007*x10+0.005*
x11+0.007*x124+1.437*u541,738%yu6
b{3)=0.006*x1+0.004*x2-23.187*x3+37.589*x4+0.009*x5+
0.01*x6-0.005*x7+425.772*x8~-375.205*x9+287.278*x10-
1171.315*x11-0,089*x12+1.97*%uS+1.97*ué
b(4)=-0.104*x1+5,762*x2-0.045*x3+33.578*x4-0.058*x5+
102.109*x6~-0.048*x7+147.311*x8-0.105*x9+593.476%*
x10-0.041*x11+4+714.566*x12+5.529%u5+3.904*us
b{5)=0.005*x1+0.006*x2-16.,482*x3-0.026*%x4~-0.042+*x5+
69.82*x6-246.683*x7+246.509*x8-381.95*x9-0.,066*
x10-364.839*x11+1172.63*x12+5.248*u5+4.137%u6
b({6)=-3.645*x]+1,.774*x2+0.014*x3+0.015*x4~120.115*x5+
148.685*x6-25.664*x7+27,.031*%x8-292.15*x9+151.982*
x10-19.813*x11+0.006*x12+7.65*u5+7.192%ué
b{7)=-0.047T*x1+2.56*x2-68.094*x3-0.135*x4-0.078*x5+
102.087*x6+0,009*x7+0.005*x8-0.015%x9+93.825*x10+
0.004*x1140.003*x12+4.611%u5+2.986*ué
b(8)=-0.013*x1+0.842*%x2-60.589*x3-0,11*x4-129.602*x5+
20.513*x6-0.11*x7+238.06*x8+0.009*x9+21.64*x10~
1389,.987*x1141026.681*x12+45.482*u5+7.217*ué
b(9)=-5.098%x1+2.431*x2-0.027*x3+17.977*x4+7.392*x5+
0.022*x6-189.176*x74228.412*x8-541.227*x8-0.1%*
x1040.01#*x11+0.012*x12+2.864*u5+2.747*u6
b(l0)=-6.061*x1-0.116%*x2-0.102*x3+55.843*x4-133.242*x5+
29.038*x6-0.102*x74+238.524*x8-0,062*x9+384.886*x10-
973.501*%x11+657.053*x12+6.135*%u5+7.851*%ué
b(11)=-3.321*x1-0.063*x24+0.006*x3+0.013*%x4-73.864*x5-
0.051*x6-58.53*x7+190.545*x8-403.952*x9-0.075*x10-
0.103*x114+1392,338*x12+3.196*uS5+4.372*u6
b{l2)=-5.482*x1-0.105*x2-0.106*x3+58.498*x4-66.77*x5+
38.131*x6-233.454*x7+240.282*x8-0.039*x9+281.648~*
x10-0.086*x11+1279.236*x12+6.162*%uS5+6.617*ub
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benchmark #2

This ODE system is characterized by:

1. 50% sparsity for the matrix A distributed linearly over its rows from 42% to
58%.

2. 90% sparsity for the matrices o, (3,v,8 and 6 of each nonzero element of A.

3. Linear terms ten times larger than the nonlinear terms in the nonzero ¢le-
ments of A.

4. 50 Hz highest frequency.

A{l,1)=2.526+4.085*x8*cosx10
A(1,3)=5.679-1.831*x6-1.211*x1*x9+2.082*x1*x11-2.248%x9*
x5
A{l,7)=6.842-4.39%x2-3.39%xd*x4+0.121*x4*x10-1.124*x10%*
x2*cosx1+4.634*x10*x2%cosxT+0.159*x10*x10*%cogx2+
0.355*x10*x10*cosx4-2.437*x10*x10*%cosx10+4.2*x10*
x12*cosx6+0.951*x10*x12*cosx9
BA(1,8)=6.637+0.003*%x3*x9-3.12*x8*x5+1.617*x8*xB+3.048*x3*
x9*cosx1-4.993*x3*x9%cosx2+1.141*x4*x11l*cosxT+
2.838*x7*x9%cosx6+2.779*xT*x12*cosx8
A(2,6)=1.239-0.415*x3-2.06*x9~1.275*x3*x1+1.674*x3*x4-
0.147*x6*x5-1.132%x6*x8
A(2,7)y=6.257+5.352*x3+5.281*x4+1.192*x1*x10-4.122*x1*
cosxB
A(2,8)=6.383-9.543%x8-1.867*x1*x1-2.621*x6*x4+2.013*x6*
x11+1.313*x5%coax2-0,086*x5%cosx7+2.089*x8%cosx6~
3.585*%*x8*x6*cosx3+3.133*x8*x6*cosx9
A{3,3)=3.164+5.457*x1~-2.173*x2%cosx1]-4.044*x2*%cosx]12~
0.48*x6*x3*coax3-4.934*x6*x10%cosx6
A(3,4)=3.627-9.697*x3-3.055*%x11+1.799*x3*x2-1.218*x2*
cosxll
A{3,7)=1.686+8.646%x2+0,948*x6+2.T4*x1*x7+4.852*x3*x6-
2.375*x2*cosxll
A(3,9)=4.574+4,289*x11*x2%cosx10-2.089*x11*x2*cosxl2
A{3,10)=4.4-8.877*x2+6.014*x10+2.222%x1*x1+3.044*x1*
x7-2.932*x3%cosx10+4.033*x3*cosx12
A(3,12)=5.319-6.984*x3+8.482*x10-2.138*x5*x4-2,174*x10%*
x9+42.785*x2%cosx4-4.509*x2*cosx7-4.579*x2*cosx10-
4,193*x6*cosx10
A(4,1)=9.156-0.954*x3*x2*cosx11+3.576*x3*x5*coax8-2.38%
x3*x1l*coax7-4.374*x3%*xll*cosx9-3,627*x3*x1l~*
cosxl12-4.411*x3*x12*cosx1~2.132*x3*x12*coax5
A(4,3)=5.295+6.135*x7
A{4,5)=6.608+2.262*%x6+2.5*x11*x1*cosx3-1.935*x11*x5*
cosx2-1.621*x11*x5*cosx5-0.4*x11*x5*cosx7-1.026%*
x11*x5*coaxl2
A(4,7)=5.856+4.542*x9%cosx5-2.742*x9*cosx’
A(4,9)=9.447-0.21*%5-6.593*x10+0.547*x5*x8*%cogx6+2.642*
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x5*x8%cosxB8-2.451*xB*x]11*cosx8
A(4,11}=4.522-2.644%x1*x4+2.765*x9*x6
A(5,4)=2.75-4.498*x8-7.076*x5+0.949*x2*coax6+4.454*x1~*
X1l*cosx9-3.794*x1*x1*cosx11+3.172*x1*x10*cosxT+
1.694*x2*x6*cosx]1+4.72*x2*X6*cosx3+4.334*x6%xq*
cosxl10+1,782*x6*x4d*cosxl2
A(5,5)=4.382+6.182*x10+2.008*x10*x2+0.292*x6*coex9-4.489*
x1*x6%cosx11-1.898*x1*x6*coaxl?2
A(5,7)=9.809-1.104*x11-1.422*x5*x4+3.355*x5*x11+1.073*x9*
x12*cosx9
A(5,8)y=9,791-7.412*x11-2.876*x1*xd*coax2+0.457*xl1*x4*
cosx10+1.999*x1*x12*cosxll
A{5,10)=6.273+7.242*x10-1.608*x7*x6-4.298*x7*x7+0.106*
x4*cosxl+],.216*x8*cosx4-1.484*x9*cosx10+3.01~*
x5*x4*cosx3+2.382*x5*x4*cosx"T
A(5,11)=5.949-7.896*%x2-6.324*x6~-2.878*x11+4.533*x3%x4-
1.551*x3*x5+3.723*x3%*x8
A(5,12)=2.968+8.42*x6+4.542*x1*x2-3.625*x]1*x7+2.92*
Xx12*cosx1+0.979*x12*cosx8
A(6,1)=4.76+6.193*x2~-5.803*x11-2.654*x1*cosx3-0.067*x11*
cosxll-4.153*x12*cosx12
A(6,2)=2.632+8.213*x1-8.525*x2~-8.02*x6-9.59*x8
A(6,5)=9.687-4.396*x5+3.613*x4*x11+0.099*x5%x1+1.062*x5*
x8-2.354*x9*%cosx8-3.839*x10%cosx5+3.284*x10*cosx10
A(6,6)=6,.763-5.997*x3+2.207*x1*cosx2+4.064*x1l*cosx7~
3.002*x1*coexB+0.933*x03*cosx8+1.388*x9%9*cosx10
A(6,7)=0.665-4.8*x6%cosx9+0.502*x6*cosx1l
A(6,8)=1.002+44,523*x12*x11+0.599*x5*x5%coax9+3.597*x5*x5*
conxll-3.203*x5%x%%cosx7+3.016*x11*x5%coaxl2-
1.839*x11*x12%coax2-2.023*x11*x12*%cosx3+0.428*x]11*
xl2*coax7
A(6,9)=2.412-2.839*%x4*x3-4.841*x7T*x4%cosx10+1.58T*xT*x4*
cosxl2
A(6,10)=4.817-3.705*x2+2.628*X3-4.659*x1*xB8+2.769%x2%*
cosx3+2.24*x1*x3*cosx1l
A(6,12)=0.374+5.09*%26-4.029*x10+2,325*x4*xX3%cosx9+3.3*
x4*x3*cosxl?2
A(7,1)=4.056+3.847*x11*x4-3.68*x11*x10-0.788*x5*x4*cosxl~
3.327*x5*x12*cosx1+1.794*x5*x12*%cosx8
A(7,4)=8.435-0,794*x1*cosxl+4.689*x1*cosx10-1.105*x2*
cos8x3-2,.536*x2%cosx7+0.054*x11*cosx6+0.937*x3*
x5*cosx2+2.916*x3*x7*cosxl+l.275*x3*xT*cosxll-
3.145*xT*x3%cosx3-1.256*x8*x12*cosx9+1.624*x10*
x7*cosxll
A(7,5)=6.5742.114%*x4-1_.699*x1*x4—-4.7*x9*xB8-0.421*x1*
Xxl*cosgx4
A{7,9)=1.492+1.532*x4-1.061*x6+2.335*x9*x2+1.129%xB*x6*
cosx7-1.026*x8*x6*cosxl0
A(8,1)=2.72749.028*x2
A{8,4)=9.713-6.469*x7-1.157*x4*x2+4.886*x12*%cosx6-1.143*
xl2*cosxl12
A(8,5)=1.316+0.013*x3%x2-2,112*x3*x5-4,419*x3*x8
A(8,6)=8.68-3.551*x9+3.247*x2*%cosx1+2.354*x5%cosxd+
4.087*x5*%cosx5+1.625*x1*x6*cosx2
A(8,7)=9.53-0.669*x5*x5+1.316*x5*x8-2.196*x7*cosx3~
1.237*x7*cosx6
A(8,9)=0.805-4.816*x5%cosx2+).338*x5*%cosx4-1.341*x5*%cosx5
A(8,11)=6.534+3.326*x11-2.614*x11*x8+2,996*x11*x11-0.77*
xT*x4d*coax9-4.095*x7*x12*%cosx4+0,.86*xTHxl2+*
cosx12+1.083*x11*x9*%cosx4
A(8,12)=8.85-0.316*x6*x6*cosxll
A(9,1)=4.059+2.545*xT*cosx2-4.479*x7*cosx10~0.242*x9%*
cosx8+0.432*x9*cosxll
A{9,2)=8.069+9.001*x20+2.,915%x3*x3+2, 749*x3*x6-0.336%x3*
®x10-0.432*x5*x1
A(9,3)=3.514-3,.398*x5+3.31*x1*x11+42.536*x5*x6+2.815*x5%*
x11+4.39*x6*x7+4.155*xd*cosxl+2,393*x4*cosxb+
1.036*x4*cosxB-4.526*x10*cosx5+3.44*x10*%cosx11-
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0.145*x5*x6*cosx2
A(9,6)=0.16+8.05*x2-7.216*x6~0.469*x10*x2+3.442*x12%*
x9+0.885*x1*%cosx3-1.239*x9%cosx5
A(9,7)=9.169-2.046%x340.946*x5*x3*cosx3-2,261*x5*x3*
cosx8+0,719*x5*x5*coax6~2.713*x53*x5*%cosx11-
0.451*x5*x8*%cogx6-0.209*x5*x8*cosx9
A(9,8)=7.662-8.858%x3+1.901*x2*x2-3.242*x2*x8+3.685*x7*
cosxl
A(9,10)=8.614
A(10,2)=9.74+7.878%x4-2.208*x6+8.6883%x11+1.052*x2*x3+
4.111*x2*%x4-2.406*x2*x5+0.686*x5%x6%coax1-0.423*
x5*x6*coax7-4.826*x5*x8*cosx1l-3.67*x5*x8*%cosx2
A(lD,3)=8,.38+3.502*x1-8.314*%x9-3,008*x1*x6-1,028*x5*
cosx5-0.985%x12*x1*cosx4+4.156*x12*x2*cosx8+
3.692*%x12*x2*cosx11-1.439*x12*x2*cosx12-2.557*
x12*x3*cogxl2-4.437*x12*x12*cosx1l
A(10,5)=1.085-4.956*x2+1.096*x10-2,257*xll*cosx7-2.629*
x3*xB*cosxl2
A(l0,6)=7.245+4.987+x2+1.759*x9-3.,779*x2*x4+0.39*x2*x10+
1.97*x12*x11-3.886*x2*cosx7-2.411*x2*%cosxll~-
0.273*x2*cosx12+4.315*x10*x10*coex5-1.897*x12*x4*
cosx3+1.792*x12*xd*cosx7-4.947*x12*x10*cosx3~
3.579*%x12*x10*%cosx9+4.866*x12*x10*%cosx10
A{10,7)=9.49
A(10,9)=6.453-1.116*x8-8.929%x11+3.403*x6*cosx3+2.376%
x10*cosx7+2.66*x4*xB*cosxl2
A{10,11)y=4.77+8.293*x5-7.791*x12-0.134*x]1*cosx5-2.872*
x1l*cosxl10-0.677*x1l*cosx12+2.169*x5%cosx6
A{10,12)=6.169-4.043*x8+2,2*x1*xB*cosx7-0.552*x1*x8*
cosxll
A(11,2)=5.247-1.345*x2-3.635*x4+4.06*x4*coexB8-2,807*x5%
cogx7-4.203*%x9*%cosx10~-0,142*x3*%x10*cosx12
A{11,6)=4.456+3.211*x1+4.086*x2-0.336*x7+9.143*x10+9.784*
x12-3.988%x6*cosx2+2.243*x9*%cosx]10+2.193*x12*x5*
cosx4+3.61l6*x12*x5*cosx6
A(11,7)=6.709+5.482*x1-1.648*x4+4.642*x3*x6+4.292*x5*x2+
0.843*x5*x4+3.607*x%*cosx9-0.964*x3*x8*cosx10
A(ll,8)=2.698-4.058*x3*cosx8+1.153*x6*cosx12~-1.872*x5*x7*
cosx2-1.633*x5*x10*coax6-0.684*x6*x6%cosx7-4.561*
x6*x1l*cosx2
A(11,10)=6,452+1.842*%x12-4,052*x4*x6+0,808*x4*x9-1.33*
XT*x2+42.151*xT*x5+3.804*xT*x7+0.019*x7*x9+4.167*
x12*x7-0.619*x7*cosx2+0,334*x7*cosx5-0.629*x7*
cosxl0
A(ll,11)=8.82-5.411*x8-3.117*x3*x943.5*x2*x12*%cosx6+
3.246*x2*%x12*%cosx10-1.846*x8*xT*cosxl0
A(12,2)=8.843-3.577*x7*cosx1l1+2.234*x8*cosx9
A(12,3)=7.033-0.841*x8%x4-3.077*x2*cosx4-4.508*x2*cosx6+
1.462*x4*cosx2
A(l12,5)=2.692+2.867*x9%x4+1.693*x2*cosx1-3.208*x2*cosx5+
2.337*x2%cosx9-3.904*x12*cosx4+4.61*x12*%cosx5+
2.71*x12%co9x6+0.666*x12*cosx12+0.662*xT*x5*
cosx5-1.368*xT*x9*cosx3
A(l2,6)=3.583-5.604*x8-5.625*x9~0,249%x12-2.267*x4*x1+
0.679*x%x8*%x11+0.791*x11%*x6+0,803*x11*x7-1.142*x11*
x12-4.194*x6*coax104+0.135*x7*coax2-0.144+x7*
cosx11+4.272%x2*x2%co8x5+4.624*x5%x11*cosx2
Af12,7)=9.137+2.594*x1+0.671*x3*x1-4.577*x12*x1*cosx10+
2.514*x12%x1*cosx11+2.6%7*x12*x8*%cosx10
A(12,8)=9.339+1.936*x8+0.41*x1240.257*x4*%*cosxl1l+2.57*
x7*cosxl=-3.353*x7*cosx5-2.467*x7*cosx8+1.17*x7*
cosx12-0.151*x10*cosx2-3.329*x10*cosx8
A{12,9)=4.481+3.48%x7*x5+0.323%x3*x2*cosx1l+0.101*x3%x2*
cosx3-3.04*x3*x2*%cosx12-1.584*x6*x2*cosx1+0.777*
Xx6*x5*cosx5
A(12,11)=8.07-4.478*x6%x9-3.478*x6*x11-4.504*xB*cosx8+
0.048*x3*x8%cosx7+1.374*x3*x8*%cosx8-0.896%*x3*
x12%co8x3I+3.52%x3*xi2%coax9+3,469*x10*x2*cosx4d
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b{(l)=-0.047*x1+3.135*x2-0.132*x3+72.46*x4+0.029*%x5+
0.013*x6-333.85*x7+378.058*x8+0.018*x9+0.013*x10+
0.018*x11+0.013*x12+4.235%u5+4.235%ué
b(2)=0.003*x1+0.004*x2+0.,006*x3+0.009*x4-38.119*x5-0.017*
x6-324.237*x7+280.848*x8+0.011*x9+0.014*x10+0.011*
x11+0.014*x12+ '
3.015%u5+3.621*%us
b(3)=0.011*x1+0.008*%x2-44.073*x3+63.003*x4+0.016*x5+
0.019*x6-0.002*x7+33.099*x8-738.155*x9+574.585*x10-
1969.674*x11-0.149*x12+3.507*u5+3.507*ué
b(4)=-0.208*x1+11.512*x2-0.089*x3+67.157*x4-0.117*x5+
204.214*x6-0.096*x7+294.478*x8-0.21#*x9+1187.103~*
x10-0.082*x11+1424.913*x12+11.056*u5+7.806*ub
b(5)=0.01#*%x1+0.011%*%x2-33.902*x3~-0.053*x4-0.083*x5+
138.01*x6-492.75*xT+492,905*x8-785.363*x9-0.133~*
x10-768.064*x11+2347.739*x12+10.4B6*%u5+8,283*%ué
b(6)=-7,301*x1+4.,086*x2+0.028*x3+0.029%x4-223.454*x5+
297.475*%x6~50.850*x7+43.753*x8-636.412*x9+303.489*
®10-41.416*x11+40.011*x12+15.076*%u5+13.892*ué
bB(7)=-0.095*%x1+5.115*x2-121.082*x3-0.241*x4-0.157*x5+
204.243*x6+0.018*%x7+0.01*x8-0.03*x9+187.717*x10+
0.008*x11+0.005%*x12+8.583%u5+5.733*u6
b(B)=-0.026*%x1+1.684*x2-121.28*x3-0.,22*x4-265,854*x5+
41.088%x6-0,22*x7+477.596*x8+0.013*x9+72,21*x10-
2780.2*x11+2053.291%x12+11.103*u5+14.678%ué
b(9)=-10,201*x1+4.881*x2-0.06*x3+39.047*x4+19.227+*x5+
Q.047*x6-374.751*x7+457.142*x8-1082.454*x9-0.2*
x10+0.02*x11+0.024*%x12+5.696*u5+5.391*ué
b{1l0)=-12.078%x1-0.233*x2-0.204*x3+111.998*x4-234.857*x5+
58.125*x6-0.203*x7+477.046%x8-0.127*x9+790.567*x1C~
1947.684*x11+1469.275*x12+11.954*ub+14.764*ué
b(ll)=-6.819*x1-0.129*x2+0.012*x3+0.026%*x4-141,644*x5-
0.096%x6-126.426*x7+382.813*x8-809,258*x9-0.151*
x10-0.206%x11+2784.478*x12+6.354*u5+8.609%ub
b(12)=-11.024%x1-0.211*x2-0.183*x3+102.704*x4-123,619~*
x5+ 80.381*x6-467.873*x7+480.377*xB8-0.078+x9+563.2*
x10-0.172*x11+2546.93*x12+12.074%u5+12.761*%ué

benchmark #3

This ODE system is characterized by:

1. 50% sparsity for the matrix A distributed linearly over its rows from 42% to
58%.

2, 90% sparsity for the matrices ¢, [3,Y,0 and 0 of each nonzero element of A.

3. Linear terms ten times larger than the nonlinear terms in the nonzero ele-
ments of A,

4, 90 Hz highest frequency.
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Afl,1)=2.526+4.085*x8*cosx10
Af1,3)=5.679-1.831%x6-1.211%x1*x9+2.082*x1*x11-2.248%x9*
x5
A(l,7)=6.842-4.39*x2-3.39*x4*x4+0.121*x4*x10-1.124*x10*
X2*cosxl+4.634*x10*x2%cosx7+0.159*x10*x10*cosx2+
0.355*x10*x10%coaxd-2.437*x10*x10*cosx10+4.2*x10*
x12*cosx6+0.951*x10*x12%cosx9
A(l,8)=6.637+0.003*%x3*x9-3.12*x8*x5+1.617*x8*xB+3,048*x3*
Xx9*%cosxl-4.993*x3*x9*cosx2+1.141*x4*x11*cosxT+
2.838*x7*x9%9*cosx6+2.,779*xT*x12%coax8
A(2,6)=1.239-0.415*x3-2.06*x9-1.275*x3*x1+1.674*x3*x4~
0.147%x6*x5-1.132*x6*x8
A(2,7)=6.257+5,352*x3+5.281%xd+1.192*x1*x10-4.122%x1*
cosx8
A(2,8Y=6.383-9.543*%xB-1,867*x1*x1-2.621*x6*x4+2,013*%x6*
x11+1.313*x5%cosx2-0.086*x5%coax7+2.089*xB*cosx6~
3.585+x8*x6%coax3+3.133*x8*x6*cos8x9
A{3,3)=3.164+5.457*x1-2.173*x2*cosx1l1-4.044*x2*coaxl2~
0.48*x6*x3*cosx3~4.934*x6*x10%cosx6
A(3,4)=3.627-9.697*x3-3.055*x11+1.,799*x3%x2-1.218%x2%*
cosxll
BA(3,7)=1.686+8.646*x2+0.948*x6+2,74*x1*x7+4.852*x3+*x6~
2.375*x2*cosx11
A(3,9)=4.574+4.289%x11*x2*%cosx10-2.089*x11*x2*cosxl2
A(3,10)=4.4-8.877*x2+6.01L4*x10+2.222%x1*x1+3.044*x1*
x7-2.932*x3*cosx10+4.033*x3%cosxl2
A(3,12)=5,319-6.984*x3+8.482*x10-2,138*x5*x4-2.174*x10*
x94+2.785*x2%cosx4-4.508*x2%cosx7-4.579*x2*cosx10-
4.193*x6*cosx10
A(4,1)=9.156-0.954*x3*x2*coax11+3,.576*x3*x5*%coax8-2,38*
x3*x1l*cosx7-4.374*x3*x11*cosx8~3,.627T*x3*x1l*
cosx12-4.411*x3*x12*%cosx1-2.132*%x3*x12*cosx5
A(4,3)=5.295+6.135*x7
A(4,5)=6.60842.262*x6+2.5*x11*x1*cosx3-1.935*x11*x5*
cosx2-1.621*x11*x5*cosx5~0.4*x11*x5%cosx7-1.026*
x11*x5*cosxl2
A(4,7)=5.856+4.542*x9*%coax5-2.742%x9%cosx7
BA(4,9)=9.447-0.21*x5-6.593*x10+0.547*x5*x8*%coax6+2.642*
x5*x8*cosxB8-2.451*x8*x11*cosx8
A(4,11)=4.522-2.644*x]1*x4+2.765*x9*x6
A(5,4)=2.75-4.498*x8-7.076*x5+0,949*x2*%cosx6+4.454*x1*
x1l*cosx9-3.794*x1*x1*cosx11+3.172*x1*x10*cosx7+
1.694*x2*x6%coaxl+4.72*x2*%x6*cosx3+4.334*x6%x4*
cosxl0+1.782*x6*xd4*cosx12
A(5,5)=4.382+6.182*x10+2.008*x10*x2+0,292*x6*cosx9-4.489*
xl*x6*cosxll-1.898*x1*x6*cosxl2
A(5,7)=9.809-1.104%x11-1.422*x5*x4+3.355*x5%x11+1.073*x9%*
xl2*cosx9
A(5,8)=9.791-7.412*x11-2.876*x1*xX4*cosx2+0.45T*x1*xq*
cosx10+1.999*x1*x12*cosxll
A(5,10)=6.273+7.242*x10-1.608*x7*x6-4.298*xT*x7+0.106*
xd*cosxl+1.216%x9*coaxd~-1.484*x9*cosx10+3.01~*
X5*x4*cosx3+2.382*x5*xd4*cosxT
A{5,11)=5.949-7.896*x2-6.324*x6-2.878*%x11+4.533*x3*x4-
1.551*x3*x5+3.723*x3*x8
A(5,12)=2.968+8.42%x6+4.542*x1*x2~3.625*x1*x7+2.92%
x12*%cosx1+0,.979*x12*cosx8
A(6,1)=4.76+6.193*%x2-5.803*x11-2.654*x1*cosx3-0.067*x11*
cosxll1-4.153*x12*%cosxl2
A{6,2)=2.632+8.213*x1-8.525*x2-8,02*x6-9.39*x8
A(6,5)=9.687-4.396*x5+3.613%x4*x11+0.059*x5*x1+1.062%x5%
x8-2.354*x9*cosx8-3.839*x10*cosx5+3.284*x10*cosx10
A(6,6)=6.763-5.997*x3+2.207*x1l*cosx2+4.064*x1*cosx7-
3.002%x]1*cosxB8+0.933*x9%cosxB8+1.388*x9*%cosx10
A(6,7)1=0,665-4.8*x6*cosx9+0.502*x6*cosxll
A{6,8)=1.002+4.523*x12*x11+0.599*x5*x5%coax8+3.597*x5*x5*
cosxl11-3.203*x5*x9%cosx7+3.016*x11*x5*%cosx12-
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1.839%x11*x12%cosx2-2.023%x11*x]12%cosx3+0.428%x11*
x1l2*cosx7
A(6,9)=2,412-2.839*%*x4*x3-4.841*X7*X4*cogx10+1.587*xT7*x4*
cosxl2
A(6,10)=4.817-3.705*x2+2.628*%x3-4.659*x1*x84+2.760*x2*
cosx3+2.24*x1*x3*cosxll
A(6,12)=0.37445.09*%x6-4.029%*x10+2,.325*%x4*x3*%cosx9+3.3*
x4d*x3*cosxl2
A(T7,1)=4.056+3.847*x11%x4-3.68*x11*x10-0,788*x5*xd*cogx]l-
3.327*x5*x12%cosx1+1.794*x5*x12*co3x8
A(7,4)=8.435-0.7%4*x1*cosxl+4.689*x1*cosxl0~-1.105%x2*
co8xX3-2,536*x2%coax7+0.054*x1l*cosx64+0.937*x3*
x5*cosx2+2.916*x3*xT*cosx1+1.275*x3*xT*cosxll-
3.145*x7*x3*%coax3-1.256*xB*x12%coax8+1.624*x10*
xT*cosxll
A{7,5)=6.57+2.114*x4=-1.699*x1*x4-4,7*x9*x8-0.421*x1+*
xl*cosx4d
A(7,9)=1.492+1.532*x4-1.061*x6+2.335*x9*x2+1.129*x8*x6*
cosxT7-1.026*x8*x6*cosxl0
A(8,1)=2.727+9.028*x2
A(8,4)=9.713-6.469*xT7-1.157T*x4*x2+4.886*x12%coaxb-1.143*
x1l2*cosxl2
A(8,5)=1.316+0.013*%x3*x2-2.112*x3*x5-4,419*x3*x8
A(8,6)=8.68-3.551*x9+3.247*x2%cosxl+2.354*x5%cosxd+
4.087*x5*cosx5+1.625*x1*xX6*cosx2
A(8,7)=9.53~0.669*x5*x5+1.316*x5*x8-2.196*x7*cosx3-
1.237*x7T*cosx6
A(8,9)=0.805-4.8l6*x5%cosx2+1.338*x5*%cosx4~1.341*x5%coax5
A(8,11)=6.534+3.326*x11-2.614*x11*x8+2,996*x11*x11-0.77*
x7*x4*co3x9-4.095*x7*x12*cosxd+0.86*xT*xl12*
cosxl2+1.083*x11*x9%*cosx4d
A(8,12)=8.85-0.316*x6*xb6*cosxll
A(9,1)=4.059+2.545*xT*cosx2-4.479*xT*cosx10-0.242*x9*
co9x8+0.432*x9*%cosxll
A(9,2)=B.069+9.001*x10+2.915%x3%x3+2,.749*x3*x6-0,336%x3*
x10-0.432*x5%x1
A(9,3)=3,514-3.398*x5+3.31*x1*x11+2.536*x5%x6+2.815%x5%
x11+4.39*%x6*x7+4.155*x4*coaxl+2.393*xd*cosxh+
1.036*x4*cosx8-4.526*x10*cosx5+3.44*x10*cosxl1l-
0.145*x5*x6*cosx2
A(9,6)=0.164+8.05*x2-7.216*x6-0,469*x10*x2+3.442*%x12%*
X9+0.885*x]1*cosx3-1.239*x9*coax5
A(9,7)=9.169-2.046*x3+0.946*x5*x3*cosx3-2.261*%x5*x3*
coax8+0.719*x5*x5%coax6-2.713*x5*%x5%cogxll-
0.451*x5*x8*cosx6-0,209*x5*x8*cosx9
A(9,8)=T7.662-8.858*x3+1.,.901*x2%x2~-3 242*x2*x8+3.685*%x7*
cosxl
A(9,10)=8.614
A(l1lC,2}=9.74+7.878*x4-2.208*x6+8.883*x11+1.052*x2*x3+
4,111 *x2*%x4-2,406*x2*x5+0.686*x5*x6*%cosx1-0.423%
X5*x6*cosx7-4.826*%x5*x8B*cogx1-3.67*x5*x8*cosx2
A{l0,3)=8.38+3.502*x1-8.314*x9-3.008*x1*x6-1.028*x5%*
cosx5-0.985*x12*x1*cosx4+4.156*x12*x2*cosx8+
3.692%x]12*%x2%cosx11-1.439*x12*x2*cosx12-2,.557*
X12*x3*cosx12-4.437*x12*x12*cosxl1l
A(10,5)=1.085-4.956*x2+1.096*x10-2.257*x11*cosx7=2.629*
Xx3*x8%cosxl2
A(10,6)=7,245+4.987*x2+1.759*x9-3.779*x2*x4+0.39*x2*x10+
1.97%*x12*x11-3.886*%x2*cosx7-2.411*x2*cosxll-
0.273*x2*cosx12+4.315*x10*x10%coax5-1.897*x12%x4*
co8x3+1.,.792*x12*x4*coaxT-4.947*x12*x10*cosx3-
3.579*x12*%x10*%cosx9+4.866*x12*x10%cosx10
A(l10,7)=9.49
A(lD0,9)=6.453-1.116*x8-8.929*x11+3.403*x6*cosx3+2.376%*
x10*cosx7+2.66*x4*x8%cosxl2
A(10,11)=4.77+8.293*x5-7,791*x12-0.134*xl*coex5-2.872*
X1l*cosx10-0.677*x1l*coaxl2+2.169*x5*cosx6
A(l0,12)=6.169-4.043*x8+2.2*x1*x8*cosx7-0.552+*x1*x8*
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cosaxll
A(l11,2)=5.247-1.345*%x2-3.635*x4+4.06*x4*cosxB-2.807*x9*
cosx7-4,203*x9*%cosx10-0.142*x3*x]10*%*cosx12
A(l1,6)=4.4564+3.211*x1+4.086*x2-0.336*x7+9.143*x10+9,784*
x12-3.988*x6*CcosSX2+2.243*x9%cosx10+2.193*x12*x5*
cosx4+3,616*x12*x5%cosx6
A(l1l,7)=6.709+5.482*x1-1.648*x4+4.642*x3*x6+4.292*x5*x2+
0.843*x5*x4+3.607*x9%*Ccosx9-0,964*x3*x8*%cosx10
A{l1,8)=2.698-4.058*x3*coax8+1.153*x6%cosx12-1.8T72%x5¥%xT*
cosx2-1.633*x5*x]10%cogx6-0.684*x6*x6*cosx7-4.561*
x6*x1l*cosx2
A{11,10)=6.452+1.842*x12-4.052*x4*x6+0.808*x4*x9-1.33*
%x7%x2+2.151*x7*x5+3.804*x7*x7+0.019*x7*x9+4.167*
x12*x7-0.619*x7*cosx2+0.334*xT*coax5-0.629%x7*
cosxl0
A(11,11)=8.82~5.411*x8~3,117*x3*x9+3.5%x2*x12*cosx6+
3.246*x2*x12*%cosx10-1.846*x8*x7*cosx1(
A{12,2)=8.843-3.577*x7*cosx11+2.234*x8%cosax9
A(12,3y=7.033-0.841*x8*x4-3.077*x2*cosx4~-4.508*x2%cosx6+
1.462*x4*cosx2
A(12,5)=m2.692+2.867*x9*x4+1.693*x2*cosx1-3.208*x2*cosx5+
2.337*x2*%cos8x9-3.904*x12*%cosx4+4.61*x12*cosx5+
2.71*x12*%cosx6+0.666*x12*%cosx12+0.662%xT*x5*
cosx5-1.368*xT*x9*cosx3
A{(l2,6)=3,583-5.604*x8-5.625*x9-0.249*x12-2.267*x4*xl+
0.679%x8*%x11+0,791*x11*x6+0.803%x11*x7-1.142*x11*
%x12-4.134*x6*cosx10+0.135*x7*cosx2-0.144*x7*
cosxll1+4.272*x2*x2*cosx5+4.624*x5*x1]1*cosx2
A(12,7)=9.137+2.594*x1+0.671*x3*x1-4.577*x12*x]1*cosx10+
2.514*x12*x1*cosx11+2.697*%x12*x8*cosx10
A(12,8)=9.339+1.936*x8+0.41*x12+0.257*x4*cosx11+2.57*
xT*cosxl1-3.353*x7*cosx5-2.467*xT*cosx8+1.17+*x7*
cosx12-0.151*x10*cosx2~3,329*x10*%cosx8
A(12,9)=4.481+3_48*x7*x5+0.323*x3*x2*%cosx1+0.101*x3%x2*
cosx3-3.04*x3*x2*cosx12-1.584*x6*x2*cosx1+0.777*
xX6*x5*coaxd
A(l2,11)=8.07-4,478*x6*x9-3,478*x6*x11-4.504*x8*cosxB+
0.048*x3*x8*cosx7+1.374*x3*x8%cosxB8-0.896*x3*
x12*cosx3+43.52*x3*x12*cosx9+3.469*x10*x2*cosx4
b(l}=-0.048*x1+3.176*x2-0,132*x3+72.098*x4+0.028*x5+
0.013*x6-333.773*x7+343.75*x8+0,017*x9+0.013*x10+
0.017*x11+4+0.013*x12
b(2y=0.003*x14+0.004*x2+0.006*x3+0.009*x4-38.904*x5-0.018*
X6-322.971*x7+314.353*x8+0.013*x9+0.014*x10+05.013*
x11+40.014*x12+41.23%*%ué
b(3})=0.008*x1+0.008*x2-45.656*x3+39.674*x4+0.014*x5+
0.017*x6-0.029*x7+83.24*x8-553.007*x9+574.648*x10-
3083.104%x11~0.13*x12
b(4)=-0,207*x1+11.499*%x2-0.088*x3+466.543*x4-0.118%x5+
205.341*x6-0.096*x7+294.334*x8-0.21*x9+1186.356*
x10-0.082*x11+2557.248*x12+6.536*ub
b(5)=0.01*x1+0.011#*x2-34.532*x3~-0.054*x4-0.084*x5+
137.395%x6-492,373*x7+492.827*x8-788.275*x9~0.133*
x10-1527.211*x11+43477.64*x12+4.372*ub
b(6)=-3.735*x1+5.914*x2+40.031*x3+0.023*x4-212.68*x5+
299, 77*x6-50.587*x7+40.313*x8-605.325*%x9+303.029~*
x10~-119.958*x11+0.009%x22+9.547*u5+6.763*ub
b(7)=-0.095*x1+5.112*%x2-105.977*x3-0.211*%x4-0.159%x5+
206.424*x6+0.018*x7+0.008%x8-0.031*x9+191.784*x10+
0.009*%x11+0.004*x12+6.57*ub
b(8)=-0.061*x1+3.454*x2~122.026*x3-0.221*x4-279.123*x5+
41.145%x6-0.22*%x7+479.038*x8+0.011*x5+81.851*x10-
5004.469%x11+3694.767*x12+1.316*u5+8.885%ub
b{9)=-10.225*x1+4.901*x2-0.068*x3+42.792*x4-12.193*x5+
0.022*x6-385.34*x7+460.631*x8-1082.454*x9-0.199~*
x10+0.02*x11+0.025*x1240.38%*%us6
b({l0}==12.298%x1-0.237*x2-0.191*x3+104.927*x4-227.578*x5+
33.913*x6-0.204*x7+477.046*x8-0.125%x9+797.359*x10-

227



3488,785*x11+2885.762*x12+1.085*%u5+7.245*%ué
b(ll)=—6.587*%*x1-0.125*x2+0.011*x3+0.026*%x4-143.945%x5-
0.09B8*x6-133,.891*x7+337.185*x8-810.76*x9-0.151*
x10-0.207*x11+4987.344*x12+4.583*%ué6
b(12)=-11.084*x1-0,213*x2-0.155%x3+88,414#*x4~116.766*x5+
84.497%x6~469.615*x7+459.031*x8-0.079%x9+563.005*
x10-0,173*x11+4563.684*x12+2.692%u5+3.716%ué

Chapter 7 suggests that the following four benchmarks are required for the

analysis of the multiprocessor implementation procedure:
benchmark #1

This ODE system is characterized by:

L. 95% sparsity for the matrix A distributed linearly over its rows from 92% to
98%.

2, 99% sparsity for the matrices o, 3,7,8 and 0 of each nonzero element of A.

3. Linear terms as large as the nonlinear terms in the nonzero elements of A.

4. 50 Hz highest frequency.

A(l,39)=1.235+1.532*x48

A(2,2)=3.152

A(4,39)=0.171+4.66*x17

A(5,20)=3,406+4.246*x36

A{5,36)=0.611

A{5,44)=3,70840.621*%x14*x10-2.499*x41*x5*cosx37

A(6,30)=1.75-4.032*x36

A(7,31)=0.556

A(8,15)=0.035

A(8,36)=2.909+0.236*x35

A(9,27)=3.451-2.108*x7-3,349*x34

A(9,31)=1.733

A{10,19)=4.43

A(10,33)=3.012-0.877*x19-0.477*x27+2.098*%x36*x27+0.963*
x14*x30*cosx3-1.355*x14*x30*%cosx42

A(l0,44)=2.141+2.627*x27*x30-0.265*x45*x8

A(ll1,4)=2.024-4.834*%x26%cosx22

A(ll,22)=4.759

A(ll,36)=0.719+1.571*x9

A(l2,16)=0.845

A(12,43)=1.039-0.824*x9*x2

A(l3,20)=3.722+2.87*x40*x39%%cosx27-0.921%x40*x39*cosx48

A(l3,35)=0.743

A(l4,13)=3.017

A(l6,43)=1.891
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A(17,5)=0.931

A(l7,14)=4.356-0.723*x32+4.646*x12*x29

A(l7,21)=2.812-3.,276*x26+4.908*x44

A({18,24)=1.693+3.233*x19+1.906*x15*%x7-0.585*x15*x16

A(18,39)=3,.254

A{19,17)=0.992-0.346*x32+4.125*x26*x23-1.179*x26%x32

A{(l19,34)=1,736+3.853*x7

A(19,40)=4.617-3.887*x26+2.108*x25*¢cogx37

A{20,1)=3.648

A{20,15)=2.863-3.033*x42*x14

A(20,42)=2.698-0,467*x39-2.941*x16*x27

A(20,43)=3,183

A(21,4)=0.484

A(21,38)=3.971+4.862*%x2-2,7T7*x7+2.,.352*x33

A(22,5)=3.109

A(22,13)=3.205+2.063*x29

A(23,5)=0.072+3.105*x7*cosx42

A{23,38)=1.976

A(23,42)=3.95-0.75*x37

A{25,36)=3.745-0.939*%x21+2.378*x27-2.687*x12*x9-0.895*
x12*x34

A(26,4)=4,984-2.4*x3-1.904*x17

A{26,10)=1.4386

A{26,36)=3,181+2.841*x7+4.938*x29*x25

A(27,6)=0.138-0.61*x13-0.132*x28+3.768*x30+1.,429*x48

A(28,1)=1.102-1.794*x25+2.724*x26+2.406*x46*cosx8

A(28,8)=3.277+1.005*x30*x43

A(28,11)=4.408

A(28,18)=2,.259

A(28,35)=2.307+0.546*x47*x48

A(28,38)=4,365

A(28,48)=2.909-1.828*x30+3.637*x22*x38

A(29,4)=4.814+3.86*x37

A(29,17y=0.259

A(29,34)=3,126+3.758*x47

A(29,46)=1,938

A(29,47y=4_.3-3.039*x7-4.69*x19%cosx1l3

A(30,2)=4,5240.33%x2+3.824*x17-3.881*x48*coax9

A{30,47)=],.696

A(31,2)=2.588

A(31,6)=4,76+1.758*x2*cosx33

A(31,7)=2.238+1.229*x48*x27

A(31,28)=3.467

A(31,36)=1.,832-0.078*x20+3.199*x19*cosx22

A(32,2)y=0.432

A(32,3)y=1.447

A{32,4)=1.706-1.245*x13

A{33,40)=0,223-2.438*x12+3.477*x26*Ccosx29-1.035*x26*
cosx3?

A(34,3)=1.673+0.353*x28*x2%%cosx26

A{34,15)=3.567+2.849*x7

A(34,47)=3.329

A(35,28)=2.33-3.529*x7*cosx38

A(35,29)=2.101+1.878%x37*x44+4.075*x40%x39+0.771*%x47*
cosxd?2

A(35,48)=1.271

A(36,1)=3.695-3.595%x25~-2.522*x37

A(36,5)=1.673-0.954*x2*x9%*cosx8

A(36,20)=0.811-3.323*x19

A{36,26)=3,101

A(36,36)=4.217-2.037*x38*x14

A(36,44)+3.321+4.356*x14

A(37,12)=4.472+1.389*x35*x11

A(37,42)=2.047

A(37,45)=4.676-4.546*x12

A(38,18)=0.255

A(38,32)=0.531

A(39,7)=2.43
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A(39,16)=1,651
A(39,32)=0.49
A{40,6)=2.682
A{40,13)=2.829
A{40,23)=4.063-2.729*x8
A(40,29)=4.753
A(41,35)=1.475-1.682*x11
A{41,38)=1.928-1,049*x8%x%3
A{42,29)=4.283
A(42,42)=1.945
A(42,46)=2.267-0.412*x29-2,633*x12*cosx10
A(43,31)=2.194+3.991*x26
A(43,33)=3.207-3.827*x18
A(d44,13)=3,749-4.864*x40*cosx30
A(44,22)=3,552-2.275*x26-3.151*x7*cosx18-4.166*xT*cosx26+
4.714*xT*cosx39
A(44,30)=4.572+2.147*x8-4.986*x7*x33-0.663*x10*x38+0.525*
xd*cosxl?7
A{44,38)=0.001-0.108*x3*x19
A(45,2)=4.611
A(45,10)=0,171-4.246*x34-1.313*x46
A{(45,20)=1.183-4.937*x26
A{45,21)=3.39942.468*x4*x3*%cosxT+1.89T*xd*x3*cosx47-
0.352%x4*x23*coex30-1.367*xd*x23*coax34~2.493*
x4*x27*cosx28
A(45,28)=3.465
A(45,37)=2.857
A(45,44)=0.205+0.564*x28+2.998*x32*x37
A(46,6)y=2.274-4.104*x11-0.805*x37
A(46,17)=1.032
A(46,21)=0.55¢6
A{46,24)=4.,165+1.69*x24
A(46,36)=0.954+0.065*x9-0,429*x48*cosx21
A{47,14)=0.94+1.67*x45+3.897*x3*cosx3i8
A (47,20)=3.982
A(47,29)=2.81
A(48,17)=3.17
A(48,34)=3.816+2.848*x1
A{48,48)=3.44¢6
b{1)=0.001*x27+0.002*x33+155.092*x40+0.001*x45
b(2)=0.006*x8+0.003*x14+0,315%ul13+0.315*ul4
b{4)=21.515*x40
b(5)=0.003*x8+40.007*x14+0.011*x26+0.001*x30+0.011*x32+
0.004*x38+0.001*x42+0.001*x48+0,.681*ul3+0,681*ul4
b(6)=0.002*x18+0.003*x24+0.003*x36+0.002%x42+0.002*x48+
0.175%ul3+0.175%ul4
b{7)=0.001*x25+27.938*x32+0.001*x37+0.001*x43
b(8)=1.093*x16+0.003*x24+0.006*x30+0.006*x42+0.006*x48+
0.017*ul3+0.017*ul4
b(9)=0.003*x15+0.002*x16+0.007*x21+0.003*x25465.014*x28+
87.078%x32+40.007*x3340.003*x37+0.003*x39+0.003*x43+
0.003*x45+0.345*ul13+0.345%ul4
b(10)=0.004*x7+0.009*x13+13.910*x20+0.003*x21+0.009*x25+
0.002*x26+0.006*x27+0.004*x31+0.004*x32+151.368%
x34+40.002*x38+0.006*x39+0.006*x45+ul3+0.886*ul4
b(1l1)=0.009*x10+0.012*x16+0,.010*x28+0.001*x30+0.005*%x34+
0.001*x42+40.001*x48+1.154*ul13+1.154*ul4d
L(12)=0.002*x10+0.002*x22+0.001*x25+0.002*x31+0.001+x37+
326.416*x44+0.423*ul3+0.423*ul4
b(13)=0,004*x8+0.007*x14+0.007*x26+0,001*x29+0.004*x32+
37.333*x36+0.001%x41+40.001*x47+0,744*%11340.744*uld
b{14)=0.003*x1+0.006*x7+94.756*x14+0.006*x19+0,003%x25+
3.017*%ul341.508*uld
b{16)=0.002*x25+0.004*x31+0.002*x37+594.201*x44
b(17)=0.004*x2+1.164*x6+0.009*x8+0.003*x9+0.002*x11+
0.006%x15+0.009*x20+8.828*x22+0.004+*x264+0.006*x27+
0.003*x33+2.833%113+45,011*ul4
b(18}=0.002*x124+0.003*x18+0.003*x27+0.003*x30+0.007*x33+
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0.002*x36+408.861*x40+0.003*x45+0.3359*ul3+0.339*%ul4
b(19}=0.002%x11+31.150%*x18+0.002%x22+0.002*x23+0.008%x28+
0.00B*x46+0.496*ul3+0.496*ul4
b(20)=4.560*x2+0.003*x3+0.007*x7+0.006*x5+0.004*x13+
89,938*x16+40.006*x21+0.003*x25+0.003*x27+0.003*x30+
0.006*x31+0.005*x36+0.003*x374+999.919*x44+0.003*
x48+1.796*ul3+1.796%uld
b(21)=0.004*x26+0.008*x32+0.004*x44+0.048*ul3+0.048*ul4d
b(22)=0.003%*x1+3.887*x6+0.006*x7+0.006*x11+100.685*x14+
0.003*x17+0.006*x19+0.003%x2543.516*ul3+1.914*ul4d
b(23)=0.090*x6+0.002*x26+0.004*x30+0.004*x32+0.008*x36+
0.002*%44+0.004*x48+0.007*ul3+0.007*uld
b(25)=0.004*x24+0.007*x30+0.007*x42+0.007*x48
B(26)=0.008*x16+0.,001*x22+0.003*%x24+0.006*x30+0.006*x42+
0.006*x48+0.786*%ul3+0.786*ul4
B(27)=0.014*ul3+0.014*ul4
b (28} =1.384*x2+0.009*x5+0,002*x6+55.368*x12+0.001*x13+
0.007*x1440.003*x20+0.007*x23+0.005*x24+0,004*x26+
0.005*%x29+0.005*x30+0.009*x32+115.939*x36+0.005~*
x41+0.,003*x42+0.004*x44+2.777*ul3+2.777*%uld
b(29)=0.010*x10+0.005%x16+9.380*x18+0.003*x22+0.008*x28+
0.005*%x29+0.009*x35+0.008*x40+0.004*x41+1350.,946*
%x48+0.631*ul3+0.631*ul4
b(30)=0.009*x8+0.005*x14+0.002%x29+0,003*x35+0.002*x41+
532.833*x48+0.452*ul3+0.452*ul4
b(31)=28.109*%x8+4+0,010*x12+0.004*x134+0.003*x14+0.003*x16+
0.005*x18+0.002*x19+0.007*x22+0.002*%x24+0.004*x30+
0.007*x34+40.003*x40+0.004*x42+0.003*x46+0.004*x48+
1.529*ul3+1.529*ul4
b(32)=1.766*x4+0.003*x9+0.003*x10+0.001*x15+0.002*x16+
0.359*ul3+0.359*ul4
b{34)=2.091*x440.010*x9+112.049*x16+0.007*x21+0.004*x27+
0.003*%x29+0.007*x35+0.003*%x41+1045.660*x48+1.951%*
ul3+1.951*ul4
b(35)=0.002*x16+4+0.002%x17+0.005*x22+0.004*x23+39.585*x30+
0.005%x34+0.004*x35+0.003*x36+0.002*x40+0.002*x41+
0.001*x4240.002*x46+0.443*1l13+0.443*%uld
b(36)=4.618*x2+2.092*x6+0.007*x7+0.003*x11+0.004*x13+
0.005*x14+0.002*x17+0.004*x24+0.008*x30+0.014*x32+
0.006%x38+0.,008*x42+0,008%x48+1.009%1313+1.009%uld
b(37)=0.009%x6+0.009*x18+0.004*x24+0.,005*%x27+0.002*x30+
0.009*%x33+0.004*x36+0.005*x39+1468.843*x46+0.002*
x48+0,894*313+0.894*ul4
b(38)=0.001*x26+0.001*x38+0.001*x44+40.128%ul3+0.128*ul4d
b(39)=0.005*x1+0.002*x4+30.520*x8+0.003*x10+40.0065%x13+
0.002*x19+0.003*x22+0.002*x28+1.312*ul3+1.312*%ul4
L{40)=0.003*x1+0.006*%x7+0.004*x11+0.005*x12+88,.862*x14+
0.013*x17+0.003*x18+0.006*x19+412,759*x24+0.003*x25+
89.546%x30+0.014*x35+0.005*x41+0.005%x47+4.385*ul3+
2.971*ul4
b{41)=0.001*x23+0,002*x26+0.003*x25+0.004*%x32+74.153*x36+
0.003*x41+0.002%x44+0.003*x47
b(42)=0.004%*x17+0.009*x234+0.002*x28+80.692*x30+0.005*x34+
0.009*x35+0.004*x36+0.002*x40+0.004*x47+0.002*x48+
0.428*ul3+0.428%ul4
B(43)=0.002*%x19+0.003*x21+0.004*x25+0.006*x27+110.266*
x32+161.192*x34+0.004*x3740.006*x35+0.004*x43+
0.006*x45
b(44)=0,004*x14+0.007*x74+0.004*x10+117.756%*x14+40.007*x16
0.005*x18+0.007%x19+0.009*x24+0.004*x25+0.007*x28+
0.004*x34+0.009*%x36+0.005*x42+0.005%x48+4.517*ul3+
3.042*ul4
b(45)=0.010%x8+0.007*x14+0.007*x15+0.004*x16+10.680%x22+
0.003*x25+0.003*x26+0.006*x31+0.,002*x32+0.003*x33+
0.007*x34+359.009*x38+0.003*x40+0.003*x46+1.758%
ul3+1.758*ul4
b(46)=0.002*x11+0.009*x12+0.001*x15+32.438%x18+1.746%x22+
0.001*x27+0.001*x29+0.010*x30+0.002*x42+0.002*x48+

231



1.688%u13+1.688%ul4d
b(47)=0.006*x8+0.003*x17+0.006*x23+0.009*x26+4+52.948*x30+
0.004*%x32+0.006*x35+0.003*x41+40.003*x47+1.548*ul3+
2.018%uld
b(48)=0.003*x5+0.006*x11+99.562*x18+0.004*x22+0.006*x23+
0.008*x28+0.003*x29+0.003*x304+0.007*x36+0.008*x40+
0.003*x42+0.008*x46+1.585*ul3+1.585%ul4

benchmark #2
This ODE system is characterized by:

1. 95% sparsity for the matrix A distributed exponentially over its rows from

92% to 98%.
2. 99% sparsity for the matrices a,[3,v,8 and 8 of each nonzero element of A.
3. Linear terms as large as the nonlinear terms in the nonzero elements of A.

4, 50 Hz highest frequency.

A(l,39)=1.235+1.532%x48

A(2,2)=3.152

A(4,39)=0,171+4.660*x17

A(5,20)=3.406+4.246*x36

A(5,36)=0.811

A(5,44)=3,708+0.621*x14*x10-2.459*x41*x5*cosx37

A(6,30)=1.750-4.032*x36

A(7,10)=3.489

A(8,15)=0.035

A(8,36)=2.909+0,236*x35

A(9,27)=3.451-2.108*%x7-3.349*%x34

A(9,31)=1,733

A(10,19)=4.430

A(10,28)=1.298+2.706*x3-0,877*x21-0,477*x29+2.098*x38%*
x27+0.963%x16*x30*%cosx3-1.355*x16*x30*cosx42

A(l0,41)=2.141+2.627*x27*x30-0.265%x45*x8

A(ll,1})=2.024-4.834*x26*cosx22

A(ll,19)=4.759

A(l11,33)=0.719+1.571*x9

A(l2,13)=0.845

A(12,40)=1.039~-0.824*x9*x2

A(13,17)=3.722+2.870*x40*x39%*cosx27-0.921*x40*x39*cosx48

A(13,32)=0.743

A{l4,6)=1,293-2.635*x2

A{14,19)=0.713

A{l14,21)=4.782

A(15,8)=4,356-0.723*%x32+4.646*x12*x29

A(15,15)=2.812-3,276*%x26+4.9%08*x44

A(l16,1)=2.957+3.233*x36+1.906*x32*x7-0.585*x32*x16

A(le,5)=0.066

A(l6,9)=1.428+43.215*x34*cosx45

A{(l6,33)=1.736+3.853*x7

A{l16,39)=4.617-3.887*x26+2.108*x25*%cosx37
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A(l6,48)=3.648

A(l17,14)=2.863-3.033*x42*x14

A{l7,41)=2.698-0.467*x39-2.941*x16%*x27

RA{17,42)=3.183

A(18,3)=0.484

A(18,21)=3.405+2.297*x14+4.862*x15-2.770*x20+2.352*x46

A(18,34)=0.892-1.441*x13

A(l18,35)=2.325+2.063*x48

A(l8,48)=1.539

A(l9,33)=1.976

A(19,37)y=3.950-0.750*x37

A(21,31)=3.745-0.939*x21+2.378*x27-2.687*x12*x9~-0.895%
x12*x34

A({21,47)=4.984-2.400*x3-1.904*x17

A(22,5)=1.436

A(22,31)=3.181+2.841*x7+4,938*x290*x25

A(23,1)=0.138-0.610*x13-0.132*x28+3.768*x30+1.429*x48

A(23,5)=0.548-3.254*x37+3.895%x13%x4+2.406*x38*%cosx8

A(23,29)=2.252-2.380*x5+1.257*x45

A(24,11)=2.648+2.799*x32*cosx4dl

A(24,21)=3.498

A(24,25)=2.307+0.546*x47*x48

A(24,28B)=4.365

A(24,38)=2.909~-1.828*x30+3.637*x22*x38

A(24,42)=4,814+3.860%x%x37

A(24,47)y=2.988

A(25,2)=0.528

A(25,5)=0.347

A(25,16)=4.610-2.118%%x11+4.668*%x33%cosx18

A(25,17y=1.130~0.697*x32-3.221*x38

A(25,22)=0.279

A(26,5)=4.285

A(26,9)=0,422+2.178%x42

A(26,16)=3.01241.229*x30*x27

A(26,19)=3.4¢7

A(26,27)=1.832-0.078*x20+3.,199*x19*cosx22

A(26,41)=0.432

A(26,42)=1.,447

A({26,43)=1.706-1.245*x13

A(28,31)=0.223-2.438*x12+43.477*x26*cosx29-1.035*x26*
cosx37

A(28,42)=1.673+0.353*x28%x2%9%*cosx26

A(29,6)=3.567+2,849*x7

A(29,38})=3.329

A{30,1)=3.169-3.529*x25*%cosx38

A(30,7)=0.974+1,.878*x2%coaxd4+4.075*x5%coax39

A(30,10)y=0.372

A(30,21)=0.217-2.522*x13

A(31,6)=2.65540,373*x6+2.685*x42+x9-0.954*x42*x15

A(31,11)=0.811-3.323*x19

A(31,17)=3.101

A{31,27)=4,217-2.037*x38*x14

A(31,35)=3,321+4.356*x14

A(32,3)=4.472+1.389*x35%x11

A(32,23)=2.018

A(32,36)=4.676-4.546*x12

A(33,9)=0.255

A(33,23)=0.531

A(33,46)=2.430

A(34,7)=1.651

A(34,23)=0.490

A(34,27)=2.700

A(34,39)=4.774

A(35,26)=1.118-2.729*x44

A({35,35)=4.831

A(37,26)=1.475-1.682*x11

A{37,29)=1.928-1.049*x8*x3

A{37,30)=0.765
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A(37,32)=3.025
A(38,37)=2.267-0.412*x29-2.633*x12*%cosx10
A(39,1)=1.818+3.,991*x47
A(39,20)=4.936-3,827*x22
A(39,22)=0.426+4.595*x28
A(39,23)=0.147-2.275+x15-3.151*x44*x18-4.166*x44*x26+
4.714*x44*x39
A(39,30)=4.5284+0.941*x48-2,516*x30*x2-3.903*x30*x18+
0.525*x42*x17
A(39,33)=2.304-0.911*x17
A(39,39)=4.611
A(39,47y=0,171-4.246*x34-1.313*x46
A(40,9)=1.183-4.937*x26
A{40,10)=3.399+2.468*x4*x3*coaxT+1.897*x4*x3*coaxq{7~-
0.352*x4*x23*%cosx30-1.367*xd*x23*coax34-2.493*
x4*x27*coax28
A(40,17)=3.465
B(40,26)y=2.857
A(40,33)=0,.205+0.564*x28+2.99B*x32*x37
A{40,43)=2,274-4.104*x11-0.805*x37
A(41,6)=1.032
A(41,10)=0.556
A(41,13)=4.165+1.690*x24
A(41,25)=0.954+0.065*x9-0.429*x48*cosx21
A(42,3)=0.940+1.670*%x45+43.897*x3*cosx38
A({42,9)=3.982
A({42,18)=2.810
A(43,6)=3.170
A{43,23)=3,816+2.848*x1
A(43,37)=3.446
A{44,10)=3.818-4.173*x13+4,299*x41%cosx4?
A(44,21)=4.557-2.634*x46
A(d44,42)=4.933
A(44,43)=3.062-2.008+*x2~3,488*x46%c0osx36
A(45,15)=4.766
A(45,19)=3.761
A(45,26)=2.722-3.654*x36*cosx8+4.959*x36*%coax39
A(45,37)=0.098-1.086*x21*x46
A(46,9)=4.974-4,918*x27
A(46,11)=4.694+0.601*x25*cosx26
A(46,13)=4.444
A(46,30)=1.043+0.370%*x28*x8
A{d6,32)=2.648-0.318*x5*%cosx2~-4.551*x5%cosx9+4.039*%x16*
x19%cosx19+2.604*x16*x1%*cosx42
A{46,40)=2.547+0.267*x42*x20*cosx35
A(46,45)=2.936-2,995*x46+1.641*x48-2.191*x31*x3-1.899*
x35*cosx38
A(47,8)=3.410
A{47,13)=3,.7844+4.218*x28*x32*%cosxS
A(47,15)=0.331
A(48,34)=1.756
A(48,43)=1.395-4.612*x5*coax7
b(l)=0.001*x27+0.002*x33+155.092*x40+0,001+*x45
b({2)=0.006*x8+0.003*x14+0.315*ul3+0.315*ul4
b{4)=21.515*x40
b{5)=0.003*x8+0.007*x144+0.011*x26+0.001*x30+0.011*x32+
0.004*x38+0.001*x424+0.001*x48+ 0.681*ul3+0.681*ul4
b{6)=0.002*x18+0.003*x24+0.003*x36+0.002*x42+0.002*x48+
0.175*ul3+0.175%ul4
b{7)=0.007*x4+0.007*x16+0,003*x22+0,698*ul3+0.698*ul4d
b{8)=1.093*x16+0.003%*x24+0.006*x30+0.006*x42+0.006*x48+
0.017*ul3+0.017*%ul4
b(9)=0.003*x154+0.002*x19+0.007*x214+0.003*x25+65.014*x28+
87.078*x32+0,007*x33+0.003*x37+0,003*x39+0.003*x43+
0.003*x45+0.345*%ul3+0.345%ul4
B(10)=0.004*x7+0.009*x13+0.001*x16+13.910*x20+0.003%x22+
0.009*x25+0.002%x29+0.004*x321+0.003*x34+0.004*x35+
0.001*x404269.094*x42+0.001*x46+0.002*x47+1.016*
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ul3+1.016*ul4d
b(ll)}=2.530*x2+0.009%x7+0.012%x13+14.943*x20+0.010*x25+
0.001*x27+0.005*x31+36.161*x34+0.001*x39+0.001*x45+
1.154*ul13+1.154*ul4
b{12)=0,002*x7+26.548*x14+0.002*x15+0.001*x28+0.002*x34+
0.001*x46 '
p{13}=0.004*x5+0,007*x11+116.910*x18+0.007*x23+0.001*x26+
0.004*x29+0.001*x38+0.001*x44+1.861*ul3+1.861*%ul4
b{14)=0.005*x3+0.003*x12+0.001*x1340.010*x15+0.001*x18+
2.239%x20+15.014%x22+0.001*x25+0.010*x27+0.005*
x33+1.228%*1l13+1.228%ul4
b(15)=0.009*%%240.003*x3+0.006*x9+0.009%x14+88.310*x16+
0.004*x2040.006*x21+0.003*x27+2.277*ul3+2.277*uld
b(16)=3.696*x2+0.003*x3+0.083*x6+0.006*x7+17.930*x10+
0.003*x1340.003*x15+0.003*x21+0.008*x27+0.004*x30+
87.243*x34+0.007*x36+580.119*x40+0.004*x42+0.008%
x45+0.588*ul3+0.588%ul4
b{(17)=0.003*x2+4+0.006*x8+0.006*x20+0.003*x26+0.003*x29+
0.003*x30+0.005*x35+0.006*x36+338.915*x42+0.003*
%x47+0.003*x48+1.432*ul3+2.863*%uld
b(18)}=0.605*x4+0.004*x94+0.007*x15+10.692*x22+0.002*x23+
0.007*x27+0.002*x28+0.005*x29+0.002*x30+116.809%*
x36+0.002*x40+0.005*x41+0,002*x42+0.002*x46+0.729%
ul3+0,729*uld
b{19}=0,002*x21+0.004*x25+0.004*x27+0.008*x31+99.296*x34+
496.356*x38+0,004*x39+0.004*x43+0.004*x45
B(21)=0.004*%x19+0.007*x25+0.005*x25+188.211*x32+0.010*
%35+0.007*x37+0.005%x41+0,007*x43+1565.722*x48
b{22)=1.796*x6+0.003*x11+0.001*x17+0.003*x19+0.006*x25+
159,862*x32+0.006*x37+0.006*x43+0.144*ul3+0.144%ul4
b(23)=0.172*x2+0,685*x6+0.001*x11+0.003*x17+0.005*x23+
42.426*%3040.005*%x35+0.002*%x41+0.002*x47+0.294*ul3+
0.294*%ul4
b(24)=0.005*x5+0.003*x9+33,258*x12+0.002%x13+0.007*x15+
0.004*%x16+0.005*x17+0.005*x19+10.993*x22+0.003*x23+
43.461%x26+0.003*x29+0,005*x30+0.005*x31+0.006*x32+
0.003*x33+0.009*x34+0,006*x35+0.010*x36+0.004* x40+
0.002*x43+0.003*x44+0.004*x46+938.620*x48+1.896%*
ul3+1.896%ul4
b({25)=0,005%x4+0.434*x6+0.001*x8+40,009*x10+0.003*x11+
35.508*x18+0,002%x22+0.002*x23+0.005*x28+0.001*x25+
3.014*u1343.014*uld
b(26)=5.356*x6+0.003*x7+5,305*x10+0.009*x11+0.007*x13+
0.004*x17+10.887*x20+0.004*x21+0.009*x25+34.523*
*2840.001*x30+0.007*x31+0.004*x33+0.003*x36+0.002*
x37+0.002*%x39+54.224*%%42+536.020*x44+0.002*x45+
0.001*x48+1,608*%ul3+1.608*ul4
b(28)=0.002*x30+11.194*x32+0.003*x36+0.002*x48
b(29)=0.007*x12+0.004*x18+0.003*x26+0.007*x32+0.003*x44+
0.357*ul3+0.357*%ul4
b(30)=3.962*x2+12.230*x8+0.005*%x1340.681*x22+0,629%ul3+
0.629*ul4
b(31}=10.196*x12+0.004*x15+97.407*x18+0.008*x21+0.010%*
x23+79.445*%x28+0.010*%*x29+0.008*x33+166.330*x36+
0.004*x3940.007*x41+40.004*x45+0.007*x47+2.400%ul3+2.400*%ul4
b({32)=5.591*x4+0.009*x5+0.002*x11+0.004*x15+0.004*x17+
6.341*x24+0.004*x29+0.009*x30+0.008*x42+0.009*x48+
0.851*ul3+0.851*uly
£(33)=3.204*x10+0.001*x17+1,.667*x24+0.002*x28+0.001*x29+
0.005%x34+0.002+%x40+0.157*ul3+0.157*%uld
b{34)=0.003%x1+20.740%x8+0.003*x13+0.,003*x15+0.002*x19+
0.005%x21+1.540%x24+50.876%x28+0.015%x33+599.877*
x4040.007*x45+0.698*ul3+0.698%ul4
b(35y=0.001*x14+0.002*%x20+0.005*x23+0.010#*x29+0.002*x32+
242 .785%x36+40,001*x3840.010*x41+0.001*x44+0.010*
x4740.112*ul3+0.112*%uld
b(37)=0.001*x14+0.002*x17+0.006*x20+0.004*x23+0.002*x24+
36.311*%x%30+0.004%x35+0.002*x36+0.008%x38+0.002*x41+
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0.008*%x44+0.002*x47+0.417*ul3+0.417*ul4d
b(38)=0.002*x25+0.005*x31+284.822*x38+0.002*x43
b(38)=2,272*x2+0.004*x7+0.005*x8+0.002*x13+4+0.010*x14+
0.005*x18+0.471%x24+0.010*x26+0.009*x27+0,005*x32+
115.785*x34+0.008*x36+579,398*x40+0.005*x42+0.009%
x45+53.612*x48+1.736*ul3+1.736%uld
b(40)=0.002*x3+0.007*x44+0.,003*x5+14.774*x10+0.007*x11+
0.003*x14+4+0.002*x15+0.007*x16+108.842*x18+0.006*
x20+0.001*x21+0.003*x22+0.007*x23+0.003*x29+0.005%*
x31+0.006%x32+4+10.317*x34+0.002*x37+0.003*x38+
714.470*x44+2.935%ul13+2.935*%ul4
b(41)=0.004*x1+4+0.001*x44+0.008*x7+0.002*x124+130.826*x14+
0.001*x16+0.001*x18+0.010*x19+17.971*x26+0.002*x31+
4.475*%ul13+2.392*ul4d
b{42}=1.175*x440.003*x6+50.018*x1040.006*x12+0.009%x15+
0.004*x21+0.006*x24+0.003*x30+2.296*ul3+2.296%ul4
b{43)=0.004*x11+0.006*x12+0.008*%x17+0.003*x18+11.981*x24+
0.003*x25+0.008*x29+40,007*x31+0,004*x354433.076~*
x38+0,003*x43+1.080*11341.080*ul4
D(44)=0.008*x4+0.009*x15+0.008*x16+14.312*x22+0,003*x25+
0.009*x274+0.005*x3040.006*x31+0.,005*x33+0.010*x36+
0.003*x37+962.050*x44+0.005*x48+1.675*ul3+1.675%ul4
b(45)=0.005%x3+0.004*x7+0.010*x9+0.008*x13+0.003*x14+
149,.710*x16+11.816*x20+0.010*%x21+0.005*x27+0.004*
x31+0.005%x32+12.322*x38+0.003*x44+3,408*ul3+3.408*
ul4
b{46)=0.004*x1+0.010*x3+0.009%x5+0.009*x7+62.478*x10+
58.960*x12+139.582*x14+0.010*x15+0.009*x17+0.001~*
x18+0.009*%x19+0.003*x20+0.005*x21+0.005*x23+0.002*
x24+0.004%x254+0.005*x26+0.003*x27+0.003*%28+0.006*
X3340.005%x34+0.002*x36+0,005*x38+0.001*x42+0.005*
x444+922.171*x46+0.001*x48+6.482*ul3+4.260*ul4
b{47)=0.004*x140.007*x2+118.862*x14+410.386*x16+0.008*x19+
0.003*x204+0.004*x25+4.631*1113+2.739*%uld
b(48)=0.002*x22+0.001*x25+0.004*x28+0.003*x31+0.001*x37+
0.004*%x40+438.354+*x44+0.004*x46

benchmark #3

This ODE system is characterized by:

L. 95% sparsity for the matrix A distributed inverse exponentially over its rows
from 92% to 98%.

2. 99% sparsity for the matrices o, 3,v,8 and 0 of each nonzero element of A.

3. Linear terms as large as the nonlinear terms in the nonzero elements of A.

4, 50 Hz highest frequency.

A{l,39)=1.235+1.532*x48
A(2,2)=3.152
A(5,4)=4.253+4.660%x4
A{6,10)=2.014
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A(6,43)=2.068+1,749*x4*cosx1+0.621*x18*cosx10

A(7,19)=0.209-1.498*x19+3.208*x21-2.938*x8%cosx38

A(7,39)=2.125-2.019*x20

A(10,14)=4.808

A(10,32)=4.532+0.125%x47*x37

A(10,35)=2.637-4.085*x42*co3sx30

A(11l,39)=0.470+3.862*x37

A({13,44)=0.397-1.517*x33*x21*cosx11+2.098*x33*x42*%cosx27

A{l3,48)=3.121+3.020*x47*x30+0.963*x47*x31-2,776*x25*x30*
cosx38-0.265*x25*x30*%cosx44

A(14,35)=2.336

A(14,36)=3.225-4.834*x42*x22

A(14,43)=4.667

A(l4,48)=3.851+2.991*x12

A(le,7)=2.954-0.824*x47*cosx2

A(18,22)}=3,722+2.870*x40*x39%cosx27-0.921*x40*x39*cosx48

A{l8,37N=0.743

A{l9,15}=3.017

A{21,45)=1.891

A(22,7)=0.931

A(22,16)=4.356-0.T723*x32+4.646*x12*x29

A(23,3)=1.167+4.908*x19-1.139*x40

A(23,15)=1.627+4.839*x30*x47-0.585%x34*x11

A(23,16)=0.066

A(23,20)=1.428+3.215*x34*cosx45

A(24,5)=2,887

BA(24,13)=2.444~-3.887*x18+2.108*x17*coax37

A{24,14)=3.648

A(24,28)=2.863-3.033*x42*x14

A(25,7)=2.698-0.467*x39-2.941*x16*x27

A(25,8})=3.183

A{25,47)=1.134

A{26,3)=3.971+4.862*x2-2.770*x7+2.352*x33

A{26,18)=3.109

A(26,26)=3.205+2.063*x29

A(27,18)=0.072+3,105*x7*cosx42

A(28,3)=1,976

A(28,7)=3,950-0.750*x37

A(30,1)=3.745-0.939*x21+2.378*x27-2.687*x12*x9-0.895*x12*

x34

A(30,17)=4,984~2.400*%x3-1.904*x17

A(31,19)=3.696

A(31,35)=3.135+4.676*x23

A(31,36)=3.455-0.132*x16+3.768*x18+1.429*x36+4,686*x46

A(31,44)=2.625-3.747*x18%*x27+3.895*x18*x29

A(32,4)=2.252-2,380*x5+1.257*x45

A{32,45)=0.835+2.799*x21*cosx4l

A(33,22)=0.556

A(33,29)=4.941+2.084*x26+0.546*x15%cosx48

A{33,34)=2.955

A{34,10)=2.909-1.828*x30+3.637*x22%x38

A(34,14)=4.8144+3.860%x37

A(34,27)=0,299

A(34,44)y=3,126+3.758*x47

A(35,22)=0.347

A(35,33)=4.610-2.118*x11+4.668*x33*cosx18

A(35,34)=1.130-0.697*x32-3.221*x38

A(35,39)=0,279%

A(36,22)=4.285

A(37,16)=3.619+2.178*x4+3.885*x34

A(37,22)=2.497+1.229*x38*x27

A(37,33)=3,467

A(37,41)=1.832-0.078*x204+3.199*x19*cosx22

A(38,7)=0.432

A(38,8)=1.447

A(38,9)=1.706-1.245*x13

A(39,45)=0.223-2.438*x12+3.477*x26*c0o8x29-1.035*x26*
cosx37
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A(40,8)=1.673+0.353*x28*x29*cosx26

A(40,20)=3.567+2.849*x7

A(41,4)=3.32%

A(41,33)=2_330-3.529*x7*cogx38

A(41,34)=2.101+1.878*x37*x44+4.075*x40*x39+0.771*x47*

cosxd2 :

A(42,5)=1.271

A(42,6)=3,695-3.505+x25-2.522*%x37

A(42,10)=1.673-0,954*x2*x9%cosx8

A(42,25)=0.811-3,323*x19

A(42,31)=3.101

A(42,41)y=4.217-2.037*x38*x14

A{43,1)=3.321+4.356*x14

A{43,17)=4.472+1.389*x35*x]11]

A(43,37)y=2.018

A{d44,2)=4.676-4.546*x12

A(44,23)=0.255

A(44,37)=0.531

A(45,12)=2.430

A(45,21)=1.65]

A(45,37}=0.490

A{45,41}y=2.700

A{46,5)=4.774

A(d46,40)=1.118-2.729*x44

A{47,1)=4.831

A(48,40)=1.475-1.682%x11

A(48,43)=1.928-1.049*x8%x3

A(48,44)=0.765

A(48,46)=3.025

b(l)=0.001*x27+0,002*x334+155.092*x40+0.001*x45

b(2}=0.006*x8+0.003*x14+0,315%ul1340.315%ul4

b(5}=0.009*x10+0.004*x16+0.425*113+0.425%ul4

b(6)=0.004*x4+0.004*x16+0.002*x22+0.002*x25+0.004*x31+
0.002*x37+649.630*x44+0.403*ul13+0.403*%uld

b(7)=0.658*x20+0.002*x27+0.004*x33+266.985*x40+0.002*x45+
0.042%313+0.042%ul4

b{l0)=0.005*x2+0.010*x8+0.014*x20+0.003*x23+0.014*x26+
0.005%x294132.541*x36+0.009*x38+0.005*%x41+0.009*
x44+0.005*x47+2.404*ul13+4.808*ul4

b{l1)=59.103*x40

b(l3)=0.003*x30+0.006*%x36+0.003%x42

b{l4}=0.002*x23+0.003*x24+0.005*x25+0.005*x29+0.010*x30+
0.009*x31+117.318*x36+0.005*x37+0.005*x41+0.010%*
x42+1466.134%x44

b(l6)=0.006*x1+37.106*x8+0.006*x13+0.003*x194+0.591*ul3+
0.591*ul4

b(18)=0.004*x10+0.007*x16+0,.007*x28+0.001*x31+0.004*x34+
93.341*x384+0.744*%ul3+0.744*uld

b(l9)=0,003*x3+0.,006*x%+94.756*x16+0.006*x21+0,003*x27+
1.508*ul3+1.508*ul4

b(21)=0.002*x27+0.004*x33+0.002*x395+594.201*x46

b(22)=0.002*x1+0.004*x4+11.699*x84+0.009*x10+0.002*x13+
0.009*x22+0.004*x28+2.364*ul3+2.364*ul4

b(23)=1,459*x4+0.,001*x8+0.006*x9+0.003*x14+51.104*x16+
0.003*x214+0.003*x26+0.002*x2740.001*x324+1.249*ul3+
1.249*ul4

b(24)=0.002*x1+0.004*x2+3,609*x6+0.005*x7+0.007*x8+0.006%*
x11+76.674*x14+0.003*x16+0.003*x17+0.005*x153+0.007*
x2040.006*x2240.002*x25+0.004*x26+0.006*x34+0.003*
x40+0.003*x46+4.843*ul3+5,445*ul4

b(25)=0.005*x1+0.006*%x2+33.804*x8+0.005*x13+0.006*x14+
0.003*x19+0.003*x20+0.001*%x29+0.002*x3540.001*x41+
356.200*x48+1.176*1l13+1.176*ul4

b(26)=4.964*x4+0.003*x6+0.008*x9+0.006*x12+40.003*x14+
0.004*x15+0.006*x20+0,006*x244+0.003*x30+0.006*x32+
0.003*x38+0.003*x44+42.272*ul3+2.272*ul4

b(27)=0.036*ul3+0.036%ul4g

b({28)=0,008*x1+2.470*x4+49.612*x8+0.004*x9+0.008*x13+
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0.002*x15+0.004*x19+4+0.988%313+0.988*ul4
b(30)=4.681*x2+0.005*x5+0.007*x7+0.010*x11+0.004*x13+
156.547*x18+0.010*%x23+0.005*x29+2.866*ul3+2.866*uld
B(31)=0.004*x7+0.,.007*x13+11.606*x20+0.003*x23+0.003*x24+
0.007*x25+0.003*x26+0.006*x29+0.007*x30+0.004%x31+
0.005%x32+157.475*x36+0.003*x38+0.,006*x41+0.007%*
Xx42+0.006*x47+0.007*x48+0,.739*ul3+0.739*%ul4d
b(32)=0.005*x10+0.002*x16+0.002%x33+262.271*x46+0.225~*
ul3d+0.225*1l4
b{(33)=0.001*x164+0.005*x17+0.010*x23+0.007*x28+93.092*x30+
0.010%*x35+0.006*x40+0.005*x41+0.006*x46+0.005*x47+
0.605*113+0.605*%ul4
b(34)=0.005*x2+0.006*x44+0.010*x8+0.006*x16+0,010*x20+
0.003*x22+0.,.008*x26+5.626*x28+0.006*x32+0.003*x38+
3.019%*%ul3+5.425*%ul4
b(35)=0.009*x27+0.003*x28+231.683*x34+0.002*x39+35.027*
x40+40.009*x45+4+0.002*x46+0,069*%u134+0.069*%uld
b(36)=0.004*x10+0.009*x16+0.009*x28+0.004*x34+0.857*ul3+
0.857*%ul4
b(37)=0.004*x4+0.010*x10+0.007*x27+0,009*x28+0.002*x29+
174.270*%x34+0.004*x35+0.007*x39+230.257*x42+0.007*
x45+4+0.002%*x47+2.309*ul3+2.309*%ul4
b({38)=0,003*x2+0.003*x3+5.,387*x8+21.431*x1040.003*x14+
0.003*x15+0.001*x20+0.002*x21+0.717*ul3+0.717*ul4
b(39})=69.967*x46
b({40)=0.003*x2+0.010*x14+0.007*x26+0.,004*x32+1.048*ul3+
1.048%ul4
b(41}=0.007*x10+0.003*x16+0.002*x21+0.002*x224+0.005*x27+
0.004*x28+117.067*x34+0.,005%x39+0. 004*x40+0 005*
x45+0.004#%x46+0.333*ul1340,333*ul4
b{42)=0.003*x4+1.496*x6+0.003*x11+0.007*x12+0. 003*x16+
0.001*x%1740.004#*x18+0.005*x19+0,002*x22+15.286*%x26+
0.004*%29+155.860*x32+0.008*x35+0.007*x37+529.890*
x42+0.007T*x434+0.004*x474+0.912+ul3+0.912*ul4
b(43)=4.152*x240.004*x5+0.007*x7+0.006*x11+0.003*x13+
140.480*x18+0.009*x23+0.002*x25+0.004*x2940.004*
x31+253.590*x38+0.002*x43+2.568*%ul3+2.568*uld
b(44)=0.009*x8+0.005*x14+0.801*x2440.001*x31+66.698*x38+
0.519*ul3+0.519%u14
b{45)=0.005*x%6+0.002*x9+0.003*x15+0.005*x18+5.185*x22+
0.002*x24+0,003*x27+40.003*%x26+0.002*x33+4+0.005*x35+
61.632*x36+339.333*x42+0.003*x47+0.816*ul3+0.816*
uld
b(46)=5.967*x6+0.010*x1140.005*x17+0.001*x28+0.002*x34+
0.001*x46+40.477%ul3+0.477*ul4
D{47)=6.038%x2+0,010*x7+0.005*x13+0.483*ul3+0.483%ul4
b(48)=0.002*x25+0.005*x28+0.004*x31+0.002*x32+0.008*x34+
0.002*x37+605.766%x44

benchmark #4
This ODE system is characterized by:

1. 95% sparsity for the matrix A distributed linearly over its rows from 92% to

08% with the last row being long with 0% sparsity.

2. 999 sparsity for the matrices o,[3,7,8 and 8 of each nonzero element of A,

with 90% sparsity for the elements of the last row.
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3. Linear terms as large as the nonlinear terms in the nonzero elements of A.

4. 50 Hz highest frequency.

A(l,39)=1.235+1.532+x48

A({2,2)=3.152

A(5,4)=4.253+4.660*x4

A(6,10)=2.014

A(6,43)=2.068+1.749*x4*cosx1+0.621*x18*cosx10

A(7,19)=0.209-1,498*x19+3.208*x21-2.938*x8*%cosx38

A(7,39)=2.125-2.019*x20

A(l0,14)=4.808

A(10,32)=4.532+0.125*x47*x37

A{10,35)=2.637-4.085%x42*cosx30

A({11,39)=0.470+3.862*x37

A{13,44)=0.397-1.517*x33*x21*cosx11+2.098*%x33*x42%cosx27

A(13,48)=3.121+3.020*x47*x30+0.963*x47*x31-2.776*x25%*x30*
cosx38-0.265%x25%x30*cosx44

A(l14,35)=2.336

A(ld,36)=3,225-4.834*x42*x22

A(14,43)=4.667

A(l14,48)=3.851+42.991*x12

A(16,7)=2.554-0.824*x47*cosx2

A(18,22)=3.722+2.870%*x40%*x39%cosx27-0.921*x40*x39*%cosx48

A{(18,42)=0.678

A(19,15)=3.017

A(21,45)=1.891

A{(22,7}=0.931

A(22,16)=4,356-0.723*x32+4.,646*x12*x29

A{23,3)=1.167+4.908*x19-1.139*x40

A(24,26)=1.693+3.233*x19+1.906*x15*x7-0.585*x15*x16

A(24,41)=3.254

A(25,19)=0.992-0.346*x32+4.125*x26*x23-1.179*x26%x32

A(25,45)=2.887

A(26,25)=4.539+2.795*x42+2.108*x45%cosx37

A(27,6)=3.648

A(27,37)y=1.850-3.033*x25*x14

A{28,40)=1.626-0.459*x26

A(28,42)=0.445-1.709*x17

A(29,38)=1.134

A{29,42)=3.971+4.862*x2-2.770*x7+2,352%x33

A(30,9)=3.109

A(30,17)=3,205+2.063*x29

A(31,9)=0.07243.105*x7*cosx42

A(31,42)=1.976

A{31,46}=3.950-0,750*x37

A{33,40)=3.745-0.939*x21+2.378*x27-2,687*x12*x9-0.895*
x12*x34

A{34,8)=4.984-2.400%x3-1.904%x17

A{35,10)=3.696

A(35,26)=3.135+4.676*x23

A(35,27)=3.455-0.132*x16+3.768*x18+1.429*x36+4.686%x46

A(37,7)=1.102-1.794*x25+2,724*x26+2.406*x46*cosx8

A(37,14)=3.277+1.005*x30*x43

A(37,17)=4.408

A(37,24)=2.259

A(38,22)=4.941+2.084*x26+0.546*x15%cosx48

A(38,27)=2.955

A(39,3)=2.909-1.828*x30+3,637*x22+x38

A(39,24)=4.503+3.860*x20

A(39,43)=1.608

A(39,47y=4.058+3.758*x37

A(40,15y=0.347
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A(40,26)=4.610-2.118*x11+4.668*x33*cosx18
A(40,27)=1.130-0.697*x32-3.221*x38
A{40,32}=0.279
A{43,11)=0.026+2.596*x35
A{43,12)=2.728+3.885*x31
A{43,48)=0.249+1.229*x8*x27
A{44,9)=4.562
A{44,11}=3.670+3,199*x48*x22
A(44,12)=3.484
A{45,48)=4.,470+42.253*x27
A(46,9)=3.220
A(46,27)=1.5688+2.143*x27-0.251*x34
A(47,19)=3,133-2.011*x17~-4.068*x43
A(48,1)=2.834-1.5609*x11*x30~3,323*x11*x42
A(48,2)=4.336-3.529%x35%coax38+2.689*x35*cosx40+0,925*
X2%*x22*%coasx44
A(48,3)=1.828-1.663*x13+2.577*x28-3.701*x42+4.199*x48+
4.075*x6*x39-0.913%x21*x9+0.247*x21*x38+0.771*
X29*x%x22+1.967*x29*x46+4.808*x45*%cosxd2-4,605*x48*
X44*cos8x22-2.073*x48*x44*cosx35-1.237T*x48*x44*
cosx39
A(48,4)=1.844+0.223*x]1~-3.645*x15+1.275*x46-0.217*x10*x27-
2.726%x10%x40-0.682*x13*x12+3.721*x13*x28-4.882*
X13*x48+1.831*x12*x10*%cosx30+1.070*x12*x10*
cosx42+1.046*x21*x]ll*cosx7-2.323*x21*x11*coax4dl+
2.685*%*x21*x35%c0oax9+4.904*x21*x35%coax12~0.954*
x21*x35%cosx13+1.830*x21*x35%cosx15+1.011*x21*
x35*%coexd40-2.256*x39*%x30%coax13+1.590*x39%x42*
cosx3
A(48,5)=3.217+2.544*x18+4.114*x35*x8-3.008*x35*x25+0.436%*
X35%x31-3.045*x48%co3x6+2.418*x48*cosx13-4.679*
x48*cosx24
A(48,6)=2.184+2.0610%x11+3.660*x25+3.001*x40-2.037*x42*
x14-4.494*x42*x34+3.334*x36%cosxT-2.794*x36*
cosxB8+2.461*x36*cosx10-2,678*x36*cosx31-3,743*
xX36%cosx44-3,730*%x23*x1*coax25+1.680*x23*x23*
coax16+]1.738*%x23*%x23%cosx40+0.683*x23*x25*%ccax31-
4.472*%x44*x36*cosx29-1.158*x44*x36*cosx40
A(48,7)=0.626-2.640*x24-3.200*x40+2.272*x48-2.108*x10*
x36-4,452*x10%*x38+4.116*x10*%x43+3,275*x19*x6+
4.850*%x38%*x20+3,741*x38*%x34
B(48,8)=1.52740.491*%x35*c0oax38+4+0.763*x35%cosx46-2.656%*
x8*¥x43*coaxl+0.760*x8*x43*cosx4+2.212*x22*x23*
cosx10-3.818*x22*x23*c08x19~2.009*x22*x23*cogx37
A(48,9)=1.284+4.330+*x2+3.108*x33+1.051*x46
A{48,10)=1.436+0,.715*x31+0.030*x32+4.257*x46+1,745*%x44*
X36-2.339*x4B*cosx20-4.257*x48*co8x26-2.619%x48*
cosx32-2.049*x16*x47*cosx4
A{48,11)=4.470-3.789+*x12+2.,724*x45*x19
A(48,12)=1.560-0.216*x29-2,164*x37-4.175*x43+0.782*x32*
coax22+3.260%*x18*%x35%cosx24+1.722*x31*x5*%cosx12~
4.376*x31*x%*cosx3+4,820*x31*x9*%coax38+4.002%*

x31*x43*cosx26
A{48,13)=2.126-2.729*x41+1.102*x6*cosx26—-2.,028*x20*x30*
cosx46
A(48,14)=3.913-1.796*x5-3.512*x37*cosx13+3.053*x1*x]l*
cosx20

A{48,15)=2.285-1.641*x3~4.460*x35-3.006*x23*x19-1.049*
x23#%*x20-3.619*x31*x43~-0.752*x13*%cosx17-4.283*x8*x1]1*cosx48
A(48,16)=1.824+2.995*x5+4,175*x20+0.023*x30*%cosx34+0.227*
x48*cosx2+0.512*x48*cos3x43
A(48,17)=0.847+1.381*x33-0.412*x48+0.818*x3*cosx28-2.633*
X3*co8x36+3.037*x3*coaxd7+0.154*x15*x38*cosx23+
4.677*%x28*x35%cosx4+4.447*x28*x35*cosx47-4.658*
x47*x2*%cosx20~3.868*x47*x47*cosxl4
A{48,18)=3.328+4.293*x27*x7+1.092*x2T*x48-4.864*x17*x17*
cosx13-1.282*x17*x21*cosx34
A{48,19)=3,434-2.275*x9+0.173*x34-3.151*x35*x18-3.078*

241



x35*x23-4.166*x35*x24+4.?14*x35*x37—4.2?8*x34*
xlO*cosx14+l.360*x34*x10*cosx16+2.168*x34*x10*
cosx46—2.516*x34*x39*cosx2—2.591*x34*x39*cosx15—
3.903*x34*x39*c05x16—3.408*x34*x39*cosx42+1.095*
x34*x41*cosx9—3.453*x34*x4l*cosx20—4.805*x34*
x41*cosx37—4.181*x34*x41*cosx48+0.525*x34*x43*
cosxlil -
A(48,20)-0.506+1.786*x21+4.719*x38-0.109*x25*x19—4.477*
x29*cosx4—0.538*x29*cosx7—0.739*x4*x31*cosx1+
3.475*x4*x31*cosx14-2.425*x45*x43*cosx9+1.222*
x4S*x43*cosx22—l.287*x45*x43*cosx48
A(48,21)-2.153+1.947*x6-2.683*x4*x8~2.582*x4*x21+3.808*
x16*x14+3.284*x16*x3*cosx14
A(48,22)=0.557—2.979*x21+2.658*x29—0.465*x11*x26+2.767*
xll*x27+2.468*x11*x32—3.168*x11*x40+1.798*x33*
x3+0.966*x33*x20+4.719*x34*x7—4.990*x34*x14+
O.821*x34*x17+3.700*x34*x33—0.352*x34*x40—1.367*
x34*x44-2.493*x48*x23+3.465*x41*cosx31+4.281*x2*
x13*cosx3+1.652*x47*x27*c03x2—2.409*x47*x27*
cosxl5
A(48,23)-0.644+3.793*x22*x15+2.998*x22*x35+3.364*x26*x3+
1.182*x26*x40—0.939*x29*x31+1.129*x6*cosx5—
3.490*x6*cosx19—2.343*x1*x48*cosx43
A(48,24)-3.057+0.638*x6+1.450*x47
A(48,25)=2,187-3.014%x33
A(48,26)=2.065+4.681*x13—0.278*x10*x19—2.672*x21*x5—
3.254*x44*x1+3.046*x44*x38+1.121*x46*x10-0.817*
X46*x41-0.429*x5*%cosx21
A(48,27)=2.180—1.218*x26+1.495*x22*x39—2.117*x22*x42—
3.986*x25*x8*cosx19+3.627*x25*x8*cosx21
A(48,28)-1.613*3.816*x25*x40*cosx30+4.679*x25*x40*cosx31-
0.657*x25*x40%cosxd7
A(48,31)-0.792—2.319*x25—2.634*x30—2.488*x7*x5*cosx18-
3.813*x30*x37*cosx9+0.750*x30*x37*cosx21+3.062*
x30*x37*cosx3l—0.645*x30*x37*cosx33—4.020*x30*
x42*cosx33
A(48,32)=0.990+4.939*x5+0.289*x36*x5—3.488*x36*x39+1.684*
x13*x15*cosx48—4.891*x13*x18*cosx18-2.353*x13*
x40*cosx26
A(48,33)-4.666+4.762*x43—2.722*x30*cosx34-0.922*x30*
cosx45—3.193*x1*x27*casx22-3.654*x1*x27*coax28+
2.661*x1*x27*cosx44+3.073*xl*x36*coax2-4.150*x1*
x41*cosx31+2.860*x1*x41*cosx39
A(48,34)=0.150—4.611*x2+1.508*x34-1.906*x29*x9—3.533*x36*
x3-1.059*x30*cosx27+2.516*x30*cosx28—3.286*x30*
cosx31-l.064*x42*cosx44+4.927*x19*x42*cosx4+
1.839*x19*x42*cosx7—4.694*x19*x42*c03x10-1.077*
x19*x42*cosx37+4.931*x19*x42*cosx46
A(48,35)=1.632+3.381*x41+1.217*x46—1.774*x13*x11+0.309*
x13*x36-1.464*x9*x22*cosx36
A(48,36)=4.624+3.B33*x17—0.071*x34-1.875*x28*x14+2.954*
le*cosx4+3.361*x23*cosx1+3.380*x23*cosx16-
3.812*x23*cosx17+0.370*x23*cosx23+3.893*x23*
cosx3é
A(48,37)-2.060—0.050*x15*x32+4.972*x15*x45-1.742*x29*x44+
4.039*x42*x19-0.327*x42*x30+2.604*x42*x40+0.827*
x47*cosx14+1.240*x47*cosx44+3.465*x48*x4*cosx34—
4.265*x48*x17*cosx2-3.924*x48*x17*cc5x4+2.606*
x48*x17*cosx30+3.196*x48*x17*cosx48+0.257*x48*
x47*cosx3—3.645*x48*x47*cosx6—3.659*x48*x47*
cosxlb
A(48,38)-2.510+3.562*x47+3.?19*x44*x5+0.061*x44*x37—
2.191*x44*x38+0.611*x39*cosx15+0.962*x39*cosx18—
3.959*x21*x10*cosx6+1.638*x21*x10*cosx18—1.899*
X21*x10*cosx34
A(48,39)-4.843—3.400*x1*x47+4.086*x5*c05x32—0.593*x15*
cosx22+3.842*x15*cosx23—2.589*x15*cosx27
A(48,40}=1.581~2.046*x24+0.559*x31—0.632*x41+0.120*x47-
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0.774*x1*x24—4.IOB*xlS*xIO-O.656*x15*x33
A(48,41)-4.727+3.157*x41+2.499*x10*x9—1.395*x19*cosx35

x12+1.556*x16*xl*cosx38—4.801*x16*x39*cosx6—

0.054*x36*x8*cosx9+2.201*x36*x8*cosx21
A(48,43)=1.428—4.556*x9+3.426*x20*x3+4.538*x20*x27+2.365*

x26*x17+3.373*x26*x20—2.519*x26*x28—l.939*x23*

xlO*x44*cosx32-1.693*x10*x44*cosx34

3.299*x5*x48*cosx35
A(48,45)-1.603—4.305*x44+2.780*x24*x37+1.277*x39*x6-
1.906*x39*x44+1.624*x5*cosx1—3.299*x5*cosx12—
0.242*x5*cosx32+4.847*x5*c05x48
A(48,46)=O.106+3.290*x1+1.653*x17+2.786*x21-2.949*x47—
4.764*x45*x18-3.429*x45*x20
A(48,47)-3.G23+0.419*x11—4.5?0*x3*x12—0.764*x8*x8+0.772*
x8*x14+3.120*x37*x39-2.171*x5*cosx6+2.083*x5*
cosx29-3.421*x6*x6*cosx15+4.723*x6*x23*cosx44~
2.174*x16*x27*cosx38
A(48,48)=2.519+2.759*x7+1.962*x14+1.477*x3*cosx10+0.650*
x46*cosx37+3.706*x6*x48*cosx11+2.0ll*xG*xQS*
cosx28+3.249*x34*xl4*cosx13—2.464*x34*x14*
cosx19+3.755*x34*x14*cosx43+2.520*x34*x16*
cosx20-0.088*x34*x16*cosx36—2.307*x35*x20*
cosx23+0.438*x35*x20*cosx35
b(1)=0.0Dl*x27+0.002*x33+155.092*x40+0.001*x45
b(2)=0.006*x8+0.003*x14+0.315*u13+0.315*u14
b(5)=0.009*x10+0.004*x16+0.425*u13+0.425*u14
b(6)=0.004*x4+0.004*x16+0.002*x22+0.002*x25+0.004*x31+
0.002*x37+649.630*x44+0.403*u13+0.403*u14
b(?)=O.658*x20+0.002*x27+0.004*x33+266.985*x40+0.002*x45+
0.042%ul3+0.042+u14
b(lO)=0.005*x2+0.010*x8+0.014*x20+0.003*x23+0.014*x26+
0.005*x29+132.541*x36+0.009*x38+0.005*x41+0.009*
x44+0.005*x47+2.404*u13+4.808*u14
b(11)=59.103*x40
b(13)=0.003*x30+0.006*x36+0.003*x42
b(l4)=0.002*x23+0.003*x24+0.005*x25+0.005*x29+0.010*x30+
0.009*x31+117.318*x36+0.005*x37+0.005*x41+0.010*
X42+1466.134%x44
b(16)=0.006*x1+37.106*x8+0.006*x13+0.003*x19+0.591*u13+
0.591*u14
b(18)=0.004*x10+0.007*x16+0.007*x28+0.004*x34+0.001*x36+
0.744*ul3+0.744%314
b(19)=0.003*x3+0.006*x9+94.756*x16+0.006*x21+0.003*x27+
1.508*ul3+1.508* 14
b(21)=0.002*x27+0.004*x33+0.002*x39+594.201*x46
b(22)-0.002*x1+0.004*x4+11.699*x8+0.009*x10+0.002*x13+
0.009*x22+0.004*x23+2.364*u13+2.364*u14
b(23)=1.459*x4+0.002*x9+0.001*x15+0.117*u13+0.117*u14
b(24)#0.002*x14+0.003*x20+0.003*x29+0.003*x32+0.007*x35+
0.002*x38+408.861*x42+0.002*x44+0.003*x4?+0.169*
ul3+0.169*ul4g
b(25)-0.002*x13+3.114*x20+0.002*x25+0.003*x27+0.005*x33+
0.003*x39+906.989*x46+0.198*u13+0.198*u14
b(26)=0.005*x13+0.009*x19+85.506*x26+0.009*x31+0.005*x37+
0.005*x43+0.454*u13+0.454*u14
b(27)=0.007*x12+0.004*x18+0.002*x25+0.004*x31+232.502*
x38+0.002*x43+0.365*u13+0.365*u14
b(28)=0.002*x28+0.003*x34+0.002*x46
b(29)=0.001*x26+0.004*x30+0.002*x32+0.008*x36+0.001*x44+
G.004*x48
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b{30)}=0.006*x3+0.003*x5+39.052*x10+0.006*%x11+0.006*x15+
100.685*x18+0.003*x21+40.006*x23+0.003*x29+2.225*
ul3+2.225*114
b{31)=0.9807*x10+0.004*x28+0,002*x30+0.008*x34+0.004*x36+
0.004*x40+0.002*x48+0.014*ul3+0.014*ul4
b({33)=0.004*x28+0.007*x34+0.004*x46
b(34)=0.010*%x2+0.010*x14+0,005*x20+0.937*%ul3+0.997*uld
b(35)=0.007*x4+0.003%x1440.003*x15+0.007*x16+0.006*%x20+
0.007*x21+0.004*x22+65.084*x28+0.006*x32+0.007*x33+
0.003*x38+0.003*x39+0.003+x44+0.003*x45+1.398*%ul3+
1.398*%ul4g
b{37}=0.002*%1+0.003*x2+0.004*x5+13.849*x8+0,009*x11+
0.002%x124+138.457*x18+0.001*x19+0.007*x20+0.003~*
%x26+0.004*x29+0.005*x30+0.,002*x36+4.515%ul3+6,.153*
uid
b{38)=0.005*x10+0.003*x15+0.010*x16+55.687+x28+0,006*x33+
0.005*x34+0.003%x39+0.003*x45+1.284*113+1.284*ul4
b(39)=3.637*x4+0.006*x9+0.005*x12+0.003*x15+0,009*x18+
0.002*x25+0.004*x29+0.009*x30+0.003*x31+0.008*x35+
0.005*x36+0.002*x37+0.004*x41+4505.053*x44+1274.906*
x48+1.191*ul3+1.191*uld
b(40)=0.005*x14+10,902*x16+0.009*x20+0.003*x21+21.298*
%28+0.002*x32+0.002*x3340.005*x38+0.001*x39+0,005*
Xx44+0.001#%x45+4+0.748*ul3+0.748*ul4
b({43}=0.005*x6+0.259*x12+0.005*x18+0.003*x24+0.551*ul3+
0.551*ul4
b(44)=0.009*x3+0.007*x5+0.007*x6+57.301*x10+46.011*x12+
0.009*x15+0.007*x17+0.007*x18+0.005*x21+0.004*x23+
0.003*x24+2.343*ul13+2.343*ul4
b{45}=0.004*x30+0.009*x36+0.004*x42
b(46)=0.006%x3+40.439*%x10+0.008%x15+0, 006*x21+29 816*x28+
0.003*%*x33+4+0.002%x39+0.002*x45+0.803*ul3+0.803*ul4
b(47)=0.003*x7+0.006*x13+9.836*x20+0.006*x25+0.003%x31+
0.627*ul3+0.627*uld
b(48)=3.442*x2+2.240*%x4+3.978*%x647.825*x8+16.098B*x10+
56.124*%x12+66.700%x14+71.749*x16+26.547*x18+10.786%*
x20+6.755*x22+41.958*%24+41.158*x26+41.028*x28+
7.965%*x30+39.791%x32+234,.50%*x34+81.926*x36+
258,.740*x38+608.553*x40+594.032*x42+448.581*x44+
503.548%x46+949.586*x48414.976*%ul3+15.869*uld
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APPENDIX C

Implementation of the procedures

The following FORTRAN 77 program shows a possible implementation of
the generation and solution of benchmark ODE systems. It is used in Chapter 6 for

the performance analysis of the algorithm selection procedure. It includes:

1. The main program that defines the physical characteristics of the dynamic
structure and calls the appropriate subroutines that are required by each of

the 4 tests specified in Figure 6.1.

2. The subroutine BENCHMARK that shows a possible implementation of the
procedure that generates the benchmarks shown in the previous section, as

presented in Chapter 5.

3. The subroutine AB that shows a possible implementation of the Adams Bash-
forth algorithm.
4. The subroutine EPSE that shows a possible implementation of the Explicit

Power Series Expansion algorithm.

5. Several subroutines from the linear algebra package LINPACK [Dong79]

used for the inversion of the matrices A and F.
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CCCCCCCCCCCCCCCCCCeCCCCCCeCCCCOCCCOCCCCCCOCCOCOECECCCOCCCCoCCoecocCcccrece
=]

THIS PROGRAM GENERATES A BENCHMARK ODE SYSTEM AND

c

c

SQOLVES IT WITH THE AR OR EPSE ALGORITHM <
<

c

CCCCCCCCCCCCCCCCCCOCCCCCCOOCCECCECCCCCCCCCCoeCeCCeeeCeCCCC oo cee

000000

parameter (inbd=6, in=12)

complex cb{inbd, inbd)

real cuf{inbd, inbd)

real sr(in),se(in)

real xo({in},uo(in)

real alfa{in,in,in),beta{in,in,in,in},gama{in,in, in, in)
real deltaf{in,in,in,in,in),xi{in,in,in),eta{in, in}

real af({in,in),agf{in, in)

integer zz(in,in,in},df

write (6,14}

14 format('**************** THE PHYSICAL MODEL ***************',
nbd=6
df=2
write{6,1} nbd,df

1 format(/,’*** Number of bodies = ’,il,’” DOF = ',6il}
read (5,2} ((ckb(i,j},j=1,nkd},i=1,nbd)
2 format(£7.4,2x,£7.3)
write (6, 3)
3 format{/,’*** The coupling of the bodies’)

write (5,62} ({cb{i, j},j=1,nbd),i=1, nbd)

62 format (6(£7.4,'+3’,£7.3})
ilb=3
write(6,6) ib

6 format(/,’*** The excitation applies on the ’,il,"th body’)

uo (df* (ib—-1) +1)=1.
ue (df* {(ib-1) +2)=1.
read (5,512} ((cu(i, j},j=1,nbd),i=1,nbd)

512 format{6(£3.1,1x))
write(6,73)

73 format (/,"*** The coupling between bodies and inputs )}
write(5,72) ({cu{i,]).,Ii=1l,nbd},i=1,nhd)

72 format (6(£3.1,1x})

[

write(6,13)
13 format (/,’ ***** THE BENCHMARK ODE SYSTEM A(x)dx/dt=b(x,u} ****x*’)

n=npbd*df

c

c Sparsities

a
srmin=,42
sIrmax=.58
do 99 i=1,n
ar (i) =srmin+ (float {n)-float (i} ) * (srmax-srmin)/(float (n}-1.}
se(l})=.90

99 continue

c

c Size of linear and nonlinear terms

c
£l=10.
fn=5,
call ben{n,nbd,df,ib, cb, cu,uc,x0, sr,se,fl,fn,alfa, beta,gama,delta

* eta,xi,zz,af,aq)

c

¢ Algorithm

¢ al=1 ~--> EPSE

c al=2 ---> AB
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al=1
if (al.eg.l} go teo 200

na=2

nb=6

nc=4

moa=3

mob=3

moc=3

ha=0.001

hb=0.01

he=0.1

len=10000

write (6,100) na,nb,ne¢,moa,mob,moc,ha,hb,he,cb(l,1)

100 format{/,’'na=',i2,’ nb=’,i2," nc=',1i2,’ moa=',1i2,’' mob=',1i2,’ moc

*=’,i2,' ha=',f6.4,’ hb=',£f6.4," hc=",£6.4," s=',£6.3)}

call ab(n,na,nb,nc,moa,mob, moc,ha,hb, he,len,xc,uc,alfa,beta,gama,
*delta, eta,xi, zz,af, aqg)

go to 300

200 na=2
nbh=4
nc=6
moa==8
mcb=16
moc=16
ha=0.001
hb=0.01
he=0.1
len=10000
write (6,100} na,nb,nc,moa,mob,moc,ha,hb, he,cb({l,1)
100 format(/,'na=',1i2,’ nb=', i2,’ nc=',1i2,’ moa=',i2," mob=',1i2,’ moc
=7,i2,’” ha=’,f6.4," hb=',£6.4," hc=',£f6.4," s=',£6.3)}
call epse(n,df,na,nb,n¢,moa,mob,moc, ha,hb, he,len, x0,u0,alfa, beta,
*gama,delta,eta,xi,zz,af,aqg)
c
300 stop
end
¢
CCCCCCCCaCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCeECECeCCCCCCCCCCCCCCCCCeCCCCCaee

c c
c This subroutine provides a BENCHMARK ODE system in the form c
c . c
c A (x)x=AFx+AGu=b {x,u} c
C c
CCCCCCCCCCOCCCCCCCCClCeCCCeeCCCCCCCCCCCCCCCCCCCCCetaCCeteCCCCCcooegecec
C

subroutine ben(n,nbd,df,ib, ¢b, ¢cu,uo, xo, sr,se, fl,fn,alfa,beta, gama,

*delta,eta,xi,zz,af,aqg)

c

parameter (inbd=6,in=12)
[=}

complex cb(inbd, inbd)

real cu(inbd, inbd}

real sr{in),se(in)

real xo({in},uo(in}

real alfa{in, in,in),beta{in,in,in,in},gama(in,in,in,in)

real delta({in,in,in,in,in),xi{in,in,in} ,eta(in, in}

real a(in,in}

real f(in,in},f£f{in,in),g(in,in),gu{in)

real af{in,in),aqg (in, in}

integer zz{in,in,in),df,ip(in}

real g(in)
c
c¢ Matrix F
fa!

do 1500 i=1,nbd

247



do 1501 j=1,nbd
cr=real (cb (i, }))
ci=aimag(cb(i, j)}
ii=df*j
Jj=df=*]
£(ii, 3} =er
f(ii-1,7))=ci
£{ii, jj-1) =-ci
£(ii-1,3j-1)=cx
1501 continue
1500 continue
do 8000 i=1,n
do 8001 j=1,n
f£(1i,3)=£{4i,3)
8001 continue
8000 continue
(a4
¢ Matrix G
<
1i=0
do 1511 k=1,nbd
do 1513 1=1,nbd
ii=(k-1)*df
j3=(1-1) *df
do 1510 i=ii+l,ii+df
do 1512 j=33j+1, jj+df
gl{i,j)=cu(k, )
if (i.eqg.3j) g(i,j)=L.0
1512 continue
1510 continue
1513 centinue
1511 <continue
<
¢ Equilibrium point
c
call matmul {g,uoc,gu,n,n, 1}
do 513 i=1,n
xo {i)=-guf{i}
513 continue

c

c Inversicn of F using LINPACK

ol
call sgeco{(ff,n,n,ip, cond, q)
call sgesl({ff,n,n,ip,xo0,0)}

c
write (6, 292)

292 format{/, *** The nonlinear matrix A(x)")

mm=1
iseed=l

c
do 11 i=~1l,n
do 10 j=1,n

[=
iseed=irandom{iseead)
z=float (iseed) /float (2147483648}
if(z.le.ar(i}) geo to 10
write(6,900) i,]j

900 format{"A(’,i2,',',i2,'} =",8§)
(=

isead=irandem{lzeed)

z=float {iseed) /float (2147483648)
iseed=irandom(iseed)

z=float (iseed) /float (2147483648)
eta (i, j)=£fl*z
a(i,jy=a{i,j)+etali, )

de 30 kl=1,n
iseed=irandom({isead)
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z=float (iseed) /float (2147483648)
if (z.lt.se(i)} go to 30
iseed=irandom(iseed}
z=float (iseed) /float (2147483648}
t=z
iseed=irandom(iseed)
z=float (iseed) /flocat (2147483648}
s=fl*z
if (t.ge.0.5) go te 21
if (£.1t.0.49} go to 20
xi(i,i,kly=s
zz (i,7.,kl}=mm
af{i,jy=a{i,dy+xi(i,j,.kl)*disc(zz{i,j, kl},xo(kl})
mm=mm+1
go to 30
20 alfa(i,j,kl)=-s
go to B1l1
21 alfa(i,j.kl)=s
811 a{i,j)=a(i,3)+alfa(i, j,kl)*xo(kl)
30 continue

do 40 kl=1,n
iseed=irandom{iseed)
z=float (izeed) /float (2147483648)
if {(z.le.se(i)) go to 40
do 41 1ll=1,n
iseed=irandom(iseed)
z=float (iseed) /float (2147483648)
if (z.le.se(i)) go to 41
iseed=irandom{iseed)
z=float (iseed) /float (2147483648}
t=2z
iseed=irandom(iseed)
z=float (iseed) /fleoat (2147483648}
s=fn*z
if {t.ge.0.5} go to 23
beta(i,j.k1,1l)=-s
go to B13
23 beta(i,j,kl,11l)=s
813 af{i,3j)=a({i,j)+beta(i,j,kl,11) *xo(kl}*x0(1ll)
41 continue
40 continue

do 50 kl=1l,n
iseed=irandom(iseed)
z=float {iseed) /f1loat (2147483648)
if (z.le.se(i)) go te 50
do 51 1ll=l,n
iseed=irandom(iseed)
z=float (iseed) /float (2147483648)
if (z.le.se(i)) go to 51
iseed=irandom{iseed)
z=float {iseed) /float (2147483648}
L=z
iseed=irandom{isead}
zmfloat (iseed) /float (2147483648)
s=fn*z
if (£.gt.0.5) go to 25
24 gama(i,j, kl,11l}=-s8
go to- 815
25 gama(i,j;klull)'s
815 a(i,j)=a(i,j)+gama{i,j, k1,11l)*xo(kl)*cosin(xo(ll)}
51 continue
50 continue

do 60 kl=1,n

iseed=irandom(iseed)
z=float (iseed) /float (2147483648)
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if (z.le.se(i}) go to 60
do 61 li=1,n
iseed=irandom(iseed)
z=float (iseed) /float (2147483648)
if (z.le.se(i})) go to 61
do 62 ml=1,n
iseed=irandom({iseed)
z=float (iseed) /float (2147483648)
if {(z.le.se(i)) go to 62
iseed=irandom({iseed)
z=float (1seed) /float (2147483648)
t=z
igseed=irandom{iseed)
z=float (iseed) /float (2147483648)
s=fn*z
if {(t.gt.0.5) go to 27
delta(i,j, k1,11, ml)=-s
go to 817
27 delta{i,j,kil,11,ml)=s
817 af{i,j)=a(i,j)+delta(i,j, kl,11,ml)*xo(kl)*xo(ll)*cosin(xe(ml}}
62 continue
61 continue
60 continue

if (eta(i,j}).eg.0.) go to 209
write (6,208} eta(i, j)
208 format (£7.3,7+’,8)

309 do 300 kl=1,n
if (alfa{i,j.kl).eqg.0.) go to 300
write (6,201} alfa(i,]j,kl),kl

201 format (£7.3,7 * x",1i2,'+',$%)

300 continue

do 360 kl=1,n

if (xi(i,J,kl).eq.0.) go to 360

write(6,2201) xi(i,Jj,kl},zz{i,3, k1) .kl
2201 format (f7.3, disc’,i2,"(x’',12,")+",$%})
360 continue

do 301 kl=1l,n

do 302 ll=1,n

if (beta(i, ) ,kl,1ll).eq.0.) go to 302

write({6,204) beta{i,j,k1,11),kl,1ll
204 format (£7.3,’ * x’,1i2," * x7,i2,'+',5)
302 continue
301 continue

do 401 kl=1,n
do 402 1ll=1,n
if (gama{i,j,k1l,1l1l).eq.0.) go to 402
write(6,205) gama{i,j,kl,11),k1,11
205 format(f7.3," * x*,12," * cosx',iZ,"+",§)}
402 continue
401 continue

do 501 kl=1,n
do 502 1l=1,n
do 600 ml=l,n
if (delta(i,j,kl,11,ml).eg.0.} go to 600
write(6,206) delta(i,j, k1,11, ml),kl,11l,ml
206 format (f7.3,* * x',i2,* * x*,i2,' * cosx’,1i2,'+'.§)
600 continue
502 continue
501 continue

210 write(6,1001)
1001 format({/)
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10 continue
11 centinue

write(6,1800)
1800 format(/,’*** The vector bix,u)’)

call matmul{(a,f,af,n,n,n}
call matmul{a,qg,ag,n,n,n}

do 1801 i=1,n
write(6,903) i
903 format(/,'b{',i2,") = ',8)
do 951 j=1,n
write(6,901) af(i,j).,3
901 format (f12.3,7 * x*,12,°+",8$)
951 <continue
write(6,2001)
2001 format (/)
do 961 j=1,n
write (6,902} ag({i, j}.,]J
902 format (£12.3,' * u’,1i2,"+',%)
961 continue
write(6,2601)
2601 format (/)
1801 continue

c

return

end
c
CCCCCCCeCtCeCtCCoCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCaCECeeeetcececaece
c <
c This subroutine provides the sclutien e
e c
< of the developed benchmark ODE system c
< c
< with the MULTIRATE AB ALGORITHM c
o] c
CCCCCCCCCCCCCCCCOCOCCCoCCCooCCCOCCCCCCoCoCoCCoeceececeecetecccoccececccecco
<

subroutine ab{n,na,nb,nc,mea,mob,moc,ha,hb,he,len,xo,u0,alfa, beta,

*gama, delta,eta,xi,zz,af,aq)

c

parameter (in=12,imo=6,itm=10001)
(o]

real alfa({in,in,in),beta{in,in,in,in),gama(in,in,in,in)

real delta{in,in,in,in,in),xi(in,in,in),eta(in,in)

integer zz{in,in.in)

real a(in,in),b({in)

real af(in,in),ag{in,in)

real uo{in},xo(in}

real y{in,itm)},phi{in,itm),h(in)}

real s{in,imo), ss (imo,imo)

real ai(in,in),det {2} ,work({in),qg(in)

integer ip(in}

real r{in},slcpe{in)

integer ne (in}
c
¢ Coefficients of different order formulas
(o

as(l,1l)=1.
ss(2,1)=3./2.
s8(2,2)=-1./2.
ss (3,1)=23./12.
s8s(3,2)=-16./12.
88 (3,3)=5./12.
sa(4,1)=55./24.
g3 (4,2)=-59./24.
ss({4,3)=37./24.
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0

[¢]

00

sa(d,4)=~9,/24.

88 (5,1)=1901./720.
s3(5,2)=-2774./720.
ss(5,3)=2616./720.
s3(5,4)==1274./720.
ss(5,5)=251./720.
ss(6,1)=4277./1440.
ss5(6,2)=-7923./1440.
s3(6,3)=9982./1440.
s3(6,4)=-7293./1440.
ss(6,5)=2877./1440.
s5(6,6)=-475./1440.

Grouping of the state variables

read {(5,93) (ne(i),i=l,n)
93 format (iZ2)

Step sizes and formulas for each group

do 532 i=1,n
if (i.gt.na) go to 2
hi{ne (i) )}=ha
do 5 nu=l,moa
s{ne (i), nu)=3s (moa,nu)
5 continue
go to 532
2 if (i.gt.(na+nb}} go to 4
h(ne (i))=hb
do 6 nu=l,mob
s (ne (i) ,nu)=ss (meb, nu}
6 continue
go to 532
4 hi(ne(i))=hc
do 7 nu=l,moc
s (ne (i), nu) =ss (moc, nu}
7 continue
532 continue

do 7000 i=l,n
Initial wvalue

y{i,1)=xo0(i)
Input

uo (i}=1.05*uo0 (i)

7000 continue

0000

4]

Specification of the rates
iml=ha/hc
im2=hb/hc

iml=1
im2=]1

do 733 it=1,len

write(6,310}) it
310 format (/,  ***** THE SOLUTION AT ’,i4,’

Number of ODEs and orderx for each case
ng=na
mo=moa

if (mod{it,iml}.eq.l) ng=na+nb
if (mod{it,iml}.eg.l) mo=mob
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[

[¢]

(o

Q

4]

[y]

00000

0oaon

if (mod(it,imZ).eq.l) ng=na+nb+nc
if (mod(it,imZ).eq.l) mo=moc

do 11 i=1,n

Previous peoint of the solution
r{iy=y(i,it)

Evaluation of A
do 230 3=1,n

a(i, j)=eta (i, )
do 231 kl=1,n

a(inj)*a(i;j)+xi(i,jfkl)*disc(zz(irj,kl).Y(klrit))

af(i,j)=a(i,j)+alfa(i, 3, k1) *y (k1, it}
do 232 1l1=1,n

a(i,j)-a(i,j)+beta(i,j,kl,ll)*y(kl,it)*y(ll,it)
a(i,j)-a(i.j)+gama(i,j,kl,ll)*y(kl,it)*COSin(3.14*y(ll,it}/180.)

do 233 ml=1,n

ali,j)=a(i, j)+delta(i, i, k1,11, ml) *y (k1,it)*

*ml,it)/180.)
233 continue
232 continue
231 continue
ai(i,j)=a(i, J)
230 continue
Evaluation of b
b(iy=0.
do 236 j=1,n
b(i)~b(i)+af(i.j)*y(j,it)+ag(i.j)*uo(j)
236 continue
11 continue

Inversion of & using LINPACK

call sgeco(ai,n,n,ip,cond,q)
if (mod(it,lG).eq.O) write(6,17) cond

y(ll,it)*cosin(3.14*y(

17 format (/, 'Condition of the matrix A = ", £15.5)

call sgedi(ai,n,n,ip,det,work,Ol)
Evaluatien of derivative of x
do 277 i=1,ng

phi(ne{i),it)=0.
do 237 j=1,n

phi(ne(i},it)-phi(ne(i),it)+ai(ne(i),j)*b(j)

237 continue
277 continue

Evaluation of next point of the solution

Case #1
do 9 i=1,na
Starting points

if {it.1lt .moa) go te 2000

t=0,

do 476 nu=1,moa

t=t+s(ne(i),nu)*phi(ne(i),it—nu+1)
476 continue

y(ne(i),it+1)=y(ne(i),it)+h(ne(i))*t
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1]

¢}

[+

[+

<

c

c

c

[=]

o]

C

slope{ne (i}}=(y(ne(i),it+l)~r(ne(i))}/h(ne (1))
Y(ne(i),it+l})=r{ne(i)}+slope{ne(i)}*ha

go to 9
2000 Y{(ne{i},it+l)=y(ne(i),it)+h(ne (i) ) *phi (ne(i},it)
slope(ne(i))=(y(ne(d),it+i)-r(ne(i}))/hine(i))
y(ne(i),it+l)=r(ne{i))+slope(ne (i)} *ha
9 continue
Case #2
if (nb.eg.0) go to 5000
do 2009 i=na+l,na+nb
Interpolation
if (mod{it,ml).eqg.l) go to 3002
Y{ne(i}),it+l}=zr(ne(i))+slope (ne{i})) *ha
go to 2009
Starting points
3002 if (it.lt. ((mob-1)*ml+l}) go to 3000
t=0.
do 2476 nu=1,mob
t=t+s(ne (i), nu) *phi (ne (i), it-nu+l)
2476 continue
yi{ne(i),it+l)=y(ne(i),it)+h(ne (i)} *t
slope(ne(i))=(y(ne(i),it+l)-r(ne(i)})/h(ne (i)}
Y(ne(i),it+l)=r(ne{i})+slope (ne(i}) *ha
go to 2009
3000 y(ne(i),it+1}-y(ne(i),it)+h(ne(i))*phi(ne(i),it)
slope{ne(i)}=({y{ne(i),it+l)-r(ne(1)))/h{ne(i))
y(ne (i), it+l)=r(ne(i)}+slope (ne{i)}*ha
2008 continue
Case #3
5000 if (nc.eq.0} go to 5001
do 3009 i=na+nb+l, nat+nb+nc
Interpolation
if {(mod(it,m2).eq.l) go to 5002
Y (ne (i), it+l)=r(ne(i)}+slope{ne(i)}*ha
go to 3009
Starting points
5002 if (it.lt. ({moc-1)*m2+1)} go to 4000
t=0.
do 3476 nu=1l,moc
t=t+s(ne (i), nu) *phi(ne (i}, it-nu+l)
3476 continue
yi{ne(i},it+1l)=y(ne(i}, it} +h(ne (i)} *t
slope(ne(i))=(y(ne(i),it+l)-r(ne(i)))/h(ne{i}}
y(ne(i),it+l)=r(ne(i))+slope{ne(i)) *ha
go to 3009
4000 y{ne (i}, it+l)=y{ne (i), it)+h(ne(i)) *phi (ne (i), it)
slope(ne (i))=(y(ne(i},it+l)-r(ne(i})) /h{ne(i))
yY(ne(i),it+l)=r(ne({i))+slope(ne(i)) *ha
3009 c¢ontinue
5001 write(6,12} (i,y{i,it+l),xo(i),h(i),slope(i},i=1,n)

12

format {1x,i2,1x,f16.5,1x,£16.5,1x%,f16.10,1x,£16.10}
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c
733 continue
c
return
end
c
CCCCCCCCCCCCCCCCCCCCOCOCCCCaCCCeCCCCCCCCCCCCCCCCCOCCCOCOCCCCOCreeeceee

Q

This subroutine provides the solution
of the developed benchmark ODE system

with the MULTIRATE EPSE ALGORITHM

OO0 an

CCCCCCCCCCCCCCCCCCCCCCCOCCCCCOCOCCCCLeCCRCCCCCOCCCCCCCCCCCcCooocccececce

00 aQa0a00a0

subroutine epse (n,df,na,nb,nc,moa,meb,moc, ha,hb,he, len, xo,u alfa,b
*eta,gama,delta,eta,xi,zz,af,aqg)

c
parameter{in=12, imo=33}

e
real alfa(in,in,in},beta(in,in,in,in},gama{in,in,in,in)
real delta{in,in,in,in,in),xi{in,in, in),eta{(in, in)
integer zz{in, in,in),df
real af{in,in, imo},b(in,imoc)
real af{in,in},ag{in, in)
real zo({in},x{in),uo{in},xd(in, imo),z (in,imc} , h {in}
real ai(in,in),det (2),work(in},q(in}
integer ip{in)
real r{in),slope(in)
integer ne (in}
real t{imo),s(imo),p{imo)

c

¢ Grouping the CDEs

[=4
read (5,93) (ne{i},i=1,n}

93 format (i2)

¢

c Step sizes for each group

<
do 532 i=1,n
h{ne{i))=he
if (i.le. (na+nb}} h{ne{i})=hb
if (i.le.na} h{ne{(i))=ha

532 continue

(o]
do 7000 i=1l,n

c

¢ Initial value

c
% (i) =xo (i}

¢

c Input

c

uo (1}=1.05*%uo (1}
7000 continue

¢
¢ Specification of the rates
¢ iml=ha/hc¢
¢ im2=hb/hc
=]
iml=10
im2=100
-]
do 733 it=1,len
if (mod{it,10}.eg.0) write(6,310) it
310 format (/,  **%*%% THE SOLUTION AT *,i4," ****%r)
<
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¢ Number of ODEs and orders for each case
(=]
ng=na
mo=moa
if (mod(it,iml).eq.l) ng=na+nb
if (mod(it, iml).eq.l) mo=mob
if (mod(it, im2).eq.l) ng=na+tnbtne
if {mod{it,im2).eq.l) mo=moc
¢
¢ Ewvaluation of A and b
C

do 9762 nu=l,mo+l
do 9761 i=1,n

do 9760 j=1,n
a(i,j,nu)=0.

9760 continue
b(i,nu)=0.
z(i,nu)=0.

xd {i,nu) =0.

9761 <continue

9762 continue

do 11 i=1,n
¢ Previcus point of the solution
r(i}=x (i}

do 230 j=1,n
a(irjrl)-eta(irj)
do 231 kl=1,n
afi,j,1y=af{i,j,)+xi(i,3,kl}*disc(zz({i,],kl}, x(kl})
a(i, jrl)-a (irjr1)+alfa (i,J,kl)*x(kl}
do 232 ll=1,n
af(i,3d,1)=a(i,j,l}+beta(i, i, k1,11) *x(kl)*x(1l1)
a{i,j,1y=a{i,j,l}+gama(i,j, k1,11}*x(kl)*cosin(x(11})}
do 233 ml=1,n
a{i,j,1)=a(i,j,1)+delta(i, j, k1,11, ml)*x(kl)*x(11l)*cosin{x{ml))
233 continue
232 continue
231 continue
ai(i,jy=a(i,j. 1}
b(i,1)=b(i,1)+af (i, ) *x(3)+ag{i, j) *uo (P
230 continue

11 continue

o]

Inversion of A using LINPACK

call sgeco{ai,n,n,ip,cond,q)
if (mod{it,10}.eqg.0) write(6,17) cond

17 format(/," --- Condition of the matrix A = ' ,£15.5}
call sgedi(ai,n,n,ip,det,work,01}

Evaluation of 1lst derivative of x

Q

do 277 i=1l,n
xd (i, 1)=x(1i}
c xd (i, 2)=0.
do 237 j=1,n
xd(i,2)=xd (i,2)+ai (i, J)*b(3. 1)
237 continue
277 continue

if {(mo.lt.2} go to 9333
do 3 nu=3,mo+l

de 1 i=i,n
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if {(i.gt.ng) go te 1000
c
do 2 j=1,n

=]
¢ Evaluation of derivatives of A

de 300 kl=1,n

if (alfa({ne{i), 3,kl).eq.0) go to 300

af{ne(i),j,nu-1)=a(ne{i}, j,nu-1)+alfa(ne(i}, i, k1) *xd(kl,nu-1}
300 centinue

de 301 kl=1,n
do 302 1ll=1,n
if (beta{ne{i),j,kl1l,11).eq.0) go to 302
w=] .
ve(,
do 101 ji=0,nu-2
v=v+w*xd (k1, nu-2-33+1) *xd (11, Jj+1)
w=w*float (nu-2-jj) /fleat (jj+1)
101 continue
a{ne{i),j,nu-1l)=aine(i}, j,nu-1)+beta(ne(i}, j,kl,11}*v
302 continue
301 <continue

de 401 kl1=1,n
do 402 ll=1,n
if {(gama{ne(i),j,kl,1l1l).eq.0) go to 402
W=l
v=0,
wt=1.
wa=],
do 111 jj=0,nu-2
if (3j.eq.0) t(jj+l)=cosin(x(1ll))
if (§j.eq.0) go to 9994
t(j3+1)=0.
do 222 1l=0,jj-1
if (1l.eq.0} s{ll+l)=sinusa{x(1ll})
if {(ll.eq.0) go to $9%0
s(l1+1)=0.
do 333 nn=0,11-1
s(ll+l)=s(1l1l+1)+wes*xd(1ll,1ll-nn+l) *t {nn+l)
ws=ws*float ((1ll-1-nn)}/float (nn+1}
333 continue
9990 t(jj+1)=t{jj+1)-wt*xd(1ll,jI-11+1)*s(11+1)
wt=wt*float {(jj-1-11)}/float (11+1})
222 continue
9394 v=v+wrxd(kl,nu-2-33+1}*t (§i+1)
we=w*float ( (nu-2-3j3j) )} /float (jj+1)
111 continue
a(ne(i), j,nu-1)=a(ne(i), j,nu-1)+gama(ne{i),j, k1,11)*v
402 continue
401 continue

do 501 kl=1,n

do 502 1ll=1,n

de 600 ml=1,n

if (delta{ne(i),j,kl,11,ml}.eq.0) go tec 600
w=],

v=0,

wp=1.

wt=1.

wa=1,

do 444 mm=0,nu-2

do 888 =0, mm

if (jj.eq.0) t(jj+l)=cosin(x(ml})
if (jj.eq.0) go to 9991

£ (33+1)=0.

do 555 1im0, jj-1

257



if (1l.eq.0) 5(11+1)-sinus(x(ml))
if (ll.eq.0) go to 9992
5(11+1)=0.
do 666 nn=0,11-1
s(ll+1)-s(ll+1)+ws*xd(ml,ll—nn+1)*t(nn+1)
ws-ws*float((ll—l—nn))/float(nn+1)

666 continue :

9992 t(jj+1)-t(jj+1)—wt*xd(m1,jj—ll+1)*s(ll+1)
wt-wt*float((jj—l—ll))/float(ll+1)

355 continune

9991 p(mm+l)=p(mm+l)+wp*xd(ll,mm—jj+1)*t(jj+1)
wp=wp*float((mm—jj))/float(jj+1)

888 continue
v=v+w*xd(kl,nu—2-mm+lj*p(nm&l)
w=w*float((nu—2—mm))/float(mm+l)

444 continue
a(ne(i),j,nu~1)=a(ne(i),j,nu-l)+delta(ne(i),j,kl,ll,ml)*v

800 continue

502 continue

501 continue

¢ Ewvaluation of derivatives of b
(=
b(ne(i),nu—l)-b(ne(i),nu-1)+af(ne(i),j)*xd(j,nu—l)
c
2 continue
<
¢ Evaluation of derivatives of z
Cc
v=0,
w=float (nu}-2.
do 6 k=1,nu-2
do 7 jy=1,n
v-v+w*a(ne(i),j,k+1)*xd(j,nu—1-k+1)
7 continue
w=w*float((nu—2~k))/float(k+1)
6 continue
z(ne(i),nu—l)-b(ne(i),nu-l)—v
go to 1
c
1000 z(ne(i),nu—l)—b(ne(i),nu-l)
c
1 continue
c
¢ Evaluation of higher derivatives of x
c
do 5 i=1,ng
do 66 i=1,n
xd(ne(i),nu)-xd(ne(i},nu}+ai(ne(i},j)*z(j,nu—l)
66 continue
5  continue
c
3 continue
c
¢ Evaluation of next point of the solution
c

9333 do 9 i=l,n
if (i.gt.ng) go to 3000
x(ne(i))=xd(ne(i),mo+l)
nu=mo
781 x(ne(i))-xd(ne(i),nu)+x(ne(i))*h(ne(i))/float(nu)
slope(ne (i} ) =(x (ne(i}) —r{ne{i}))}/h(ne(i))
nu=ry-1
if (nu.gt.0) go to 781
<
¢ Interpolation
c
3000 x(ne(i))-r(ne(i))+slope(ne(i))*ha
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if {mod (it, 10) . eq.0) write (6, 329) ne(i),x(ne(i)),xo(ne(i)),h(ne(i
*})
329 format(12,2x,f8.5,2x,f8.5,2x,f8.5)
9 continue

<
733 continue

c

return

end
[
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c . o
c This subroutine computes the product ¢ of the matrices a,b c
c c

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
¢

subroutine matmul (a,b,c,n,m, 1}
c

rwlamJMbMJLchLd

do 1 i=l,n
do 2 j=1,1
ci=0,
do 3 k=1,m
ci-ci+a(i,k)*b(k,j)
3 continue
c{i, J)=ci
continue
continue

N

return

end
c
cccccccccccccccccccccccccccccccccccccccccccccccccoccccccccccecccce

0

These are the nonlinear functicons with discontinuities

c
c
c
that appear in the elements of the nonlinear matrix A (x) c
!
c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC‘.

Nooagoon

function disc(1l,x)

if(x.1t.0.) disc=-1.
if(x.eq.0.) digc=0.
if(x.gt.0.) discw=l.

return

end
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
c The cos(x) function =
c c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

function cosin (x)

¥y=(x/180.)*3,1415927

z=amod {y, 6.2831853)

if (z.ge.6.2831853) write (6,1}

1 format (‘mod overflow’}
cosin=cos(z)

return

and
¢
cccccccccccccccccecccccccccccccccccceccccccecccccceccccccccccccc
c c
c The sin(x) function c
c c
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
=3

function sinus (x})

Y= (x/180.)*3.1415927

z=amod {y, 6.2831853}

if (z.ge.6.2831853) Wwrite (6, 1)

1 format ('mod overflow’)

sinus=sin{(z)

return

end
(a4
cccccccccccccccccccccccccccccccccccccccccccccccccccceccccccccccc

< . e
=] Random number generator ¢
< c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
o]

function irandom (ix)

integer a,p,ix,blS,blG,xhi,xalo,leftlo,fhi,k

data a/16807/,b15/32768/,b16/65536/,p/2147483647/

Xhi=ix/blé

xalo-(ix-xhi*blﬁ)*a

leftlo=xalo/blé

fhi=xhi*a+leftlo

k=fhi/bl5

ix-(((xalo—leftlo*blS)-p)+(fhi—k*blS)*b16)+k

if (ix.lt.m ix=ix+p

irandom=ix

return

end
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c [+
c LINPACK SUBROUTINES c
=) =]

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
(a4

SUBROUTINE SGECO (A,IDA,N, IPVT,RCOND, Z}

INTEGER LDA,N,IPVT (1)

REAL A(LDA,1),Z(1)

REAL RCOND

SGECO FACTORS A REAL MATRIX BY GAUSSIAN ELIMINATION
AND ESTIMATES THE CONDITION OF THE MATRIX.

IF RCOND IS NOT NEEDED, SGEFA IS SLIGHTLY FASTER.
TO SOLVE A*X = B , FOLLOW SGECO BY SGESL.

TO COMPUTE INVERSE {A} *C , FOLLOW SGECO BY SGESL.
TO COMPUTE DETERMINANT (A) , FOLLOW SGECO BY SGEDI.
TO COMPUTE INVERSE(A) , FOLLOW SGECO BY SGEDI.

ON ENTRY
A REAL (LD2, N)
THE MATRIX TO BE FACTORED.
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A
N INTEGER
THE CRDER OF THE MATRIX A
ON RETURN
A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS

WHICH WERE USED TO OBTAIN IT.
THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
L IS A PRODUCT OF PERMUTATION AND UNIT LOWER

OOOOOOOOOOOOOOOOOOOOOOO000(’)
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TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.

IPVT _ INTEGER(N)
AN INTEGER VECTOR OF PIVOT INDICES.

RCOND REAL
AN ESTIMATE OF THE RECIPROCAL CONDITION OF A .
FOR THE SYSTEM A*X = B , RELATIVE PERTURBATICNS
IN A AND B OF SIZE EPSILON MAY CAUSE
RELATIVE PERTURBATIONS IN X OF SIZE EPSILON/RCOND
IF RCOND IS SO SMALL THAT THE LOGICAL EXPRESSION

1.0 + RCOND .EQ. 1.0

IS TRUE, THEN A MAY BE SINGULAR TO WORKING
PRECISION. IN PARTICULAR, RCOND IS ZERO IF
EXACT SINGULARITY IS DETECTED OR THE ESTIMATE
UNDERFLOWS.

Z REAL (N)
A WORK VECTOR WHOSE CONTENTS ARE USUALLY UNIMPORTANT.
IF A IS CLOSE TO A SINGULAR MATRIX, THEN Z IS
AN APPROXIMATE NULL VECTOR IN THE SENSE THAT
NHORM (A*Z) = RCOND*NORM (A) *NORM(Z}

LINPACK. THIS VERSION DATED (08/14/78 .
CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAR.

SUBROUTINES AND FUNCTIONS

LINPACK SGEFA
BLAS SAXPY, SDOT, SSCAL, SASUM
FORTRAN ABS,AMAX1,SIGN

INTERNAL VARIABLES

REAL SDOT, EK, T, WK, WKM
REAL ANORM, S, SASUM, SM, YNCRM
INTEGER INFOQ,J,.K,KB,KPl,L

COMPUTE 1-NORM OF A

ANORM = 0.0QEQ
DO 10 =1, N

ANORM = AMAX]1 (ANORM, SASUM(N,A(1,J},1))
CONTINUE

FACTOR
CALL SGEFA(A,LDA,N,IPVT, INFO)

RCOND = 1/ (NORM (A) * (ESTIMATE OF NORM(INVERSE(A)})} .

ESTIMATE = NORM(Z) /NORM(Y) WHERE A*Z = Y AND TRANS(A}*Y = E
TRANS{A) IS THE TRANSPOSE OF A . THE COMPONENTS OF E ARE
CHOSEN TO CAUSE MAXIMUM LOCAL GROWTH IN THE ELEMENTS OF W WHERE
TRANS(U)*W = E . THE VECTORS ARE FREQUENTLY RESCALED TO AVOID
OVERFLOW,

SOLVE TRANS{U)*W = E

EK = 1.0EQ
DO 20 J = 1, N
Z2(J) = 0.0EQ
CONTINUE
DO 100 K =1, N
IF (2(K) .NE. 0.0E0Q) EK = SIGN(EK,-Z(K)}
IF (ABS(EK-Z(X}) .LE. ABS(A(K,K})))} GO TO 30
5 = ABS (A (K,K)) /ABS (EK-Z (K})
CALL SSCAL(N,S,Z,1)
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EK = S*EK
30 CONTINUE

WK = EK - Z (K}

WEM = -EK - Z (K}

S = ABS (WK)

SM = ABS (WKM)

IF (A(K,K) .EQ. 0.0E0} GO TO 40
WK = WK/A(K,K)
WKM = WKM/A (K, K)

GC TO 50

40 CONTINUE
WK = 1.0E0
. WEM = 1. 0EQ

30 CONTINUE
KPlL = K + 1
IF (KP1 .GT. N) GO TO 90
DO 60 J = KP1, N
SM = SM + ABS(Z(J)+WKM*A{K,J))
Z{J}) = Z(J) + WK*A (K, J)
S = 8 + ABS(Z(J})
60 CONTINUE
IF (S .GE. SM} GO TO 80
T = WKM - WK
WK = WKM
DC 70 J = RP1, N
Z{(J) = 2({J}y + T*A (K, J)

70 CONTINUE
80 CONTINUE
90 CONTINUE

2 (K) = WK

100 CONTINUE
8§ = l.OEO/SASUM(N,Z,l}
CALL S8SCAL(N,s,Z,1)

SOLVE TRANS(L)*Y = W

DO 120 KB = 1, N
K=N+1 - KB
IF (K .LT. N) Z(K) = Z(K) + SDOT(N—K,A(K+1,K),1,Z(K+1),1)
IF (ABS(Z(K)) .LE. 1.0E0) GO T0 110
5 = 1.0EQ0/ABS (Z (K)}
CALL SSCAL(N, S, 2,1)
110 CONTINUE
L = TPVT(K)
T = 2(L)
Z(L) = Z(K)
Z{(K) =T
120 CONTINUE
S = 1.0EO/SASUM(N, Z, 1)
CALL SSCAL(N,S,Z,1)

YNORM = 1.0EQ
SOLVE L*V = Y

DO 140 K = 1, N
L = IPVT(K)
T = Z{L)
Z(Ly = Z(K)
Z(K) =T
IF (K .LT. N} CALL SAXPY(N—K,T,A(K+1,K),1,2(K+1),1)
IF (ABS(Z(K)) .LE. 1.0E0) GO TO 130
S = 1.0E0/ABS (Z (K))
CALL SSCAL(N,S,Z,1)
YNCRM = S*YNORM
130 CONTINUE
140 CONTINUE
S = 1.0E0/SASUM(N, 2, 1)

262



oo

a0 cOCaaoOOooacaooaaOaooaaoaoaonan

150

160

CALL SSCAL{N,S,Z2,1)
YNORM = S*YNORM

SOLVE U*Z = V

DO 160 KB = 1, N
K=N+1- KB
IF (ABS(Z(K)} .LE. BBS(A(K,K)}) GO TO 150
S = ABS(A(K,K))/ARS(Z(K)}
CALL SSCAL(N,S,2,1)
YNCRM = S+YNORM

CCNTINUE

IF (A(K,K} .NE. 0.0E0) Z({K) = Z(K}/A(K.K)

IF (A(K,K} .EQ. 0.0EC} Z{K) = 1.0E0

T = -Z (K}

CALL SAXPY {(K-1,T,A(1,K),1,Z2(1).,1)
CONTINUE

MAKE ZNORM = 1.0

S = 1.CE0/SASUM(N,Z,1)
CALL SSCAL(N,S,Z,1)
YNORM = S*YNORM

IF (RNORM .NE. 0.0E0) RCOND = YNORM/ANORM
IF (ANORM .EQ. 0.0EQ) RCOND = Q.QEQ
RETURN

END

SUBROUTINE SGEFA(A,LDA,N, IPVT, INFO)
INTEGER LDA,N,IPVT(1l),INFC

REAL A (LDA,1}

SGEFA FACTCORS A REAL MATRIX BY GAUSSIAN ELIMINATION.

SGEFA IS USUALLY CALLED BY SGECO, BUT IT CAN BE CALLED

DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.

(TIME FOR SGECC) = (1 + 9/N)*(TIME FOR SGEFA)}

ON ENTRY
A REAL (LDA, N)
THE MATRIX TO BE FACTORED.
LDA INTEGER
THE LEADING DIMENSICN CF THE ARRAY A .
N INTEGER
THE ORDER OF THE MATRIX A .
ON RETURN
A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS

WHICH WERE USED TC OBTAIN IT.

THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.

IPVT INTEGER (N)
AN INTEGER VECTCR OF PIVOT INDICES.

INFO INTEGER
= 0 NORMAL VALUE.

= K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR
CONDITICN FOR THIS SUBRCUTINE, BUT IT DOES
INDICATE THAT SGESL OR SGEDI WILL DIVIDE BY ZERO
IF CALLED. USE RCOND 1IN SGECO FOR A RELIABLE

INDICATION OF SINGULARITY.

LINPACK. THIS VERSION DATED 08/14/78

CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
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SUBRCUTINES AND FUNCTIONS
BLAS SAXPY, SSCAL, I SAMAX
INTERNAL VARIABLES

REAL T
INTEGER IsaMax, J,K,Kpr1, L,

GAUSSIAN ELIMINATION WITH

INFO = 0
NMl = N ~ 1
IF (NM1 .LT. 1) GO TO 70
DO 60 K = 1, NM1
KPl = K + 1

FIND L = PIVOT INDEX

L = ISAMAX (N-K+1,A (K, K
IPVT(K) = L

ZERO PIVOT IMPLIES THI
IF (A(L,K) .EQ. 0.0E0)
INTERCHANGE IF NECE

IF (L .EQ. K) GO TO
T = A(L,K)
A(L,X) = A(K,K)
A(K,K} =T

CONTINUE

COMPUTE MULTIPLIERS

T = -1.0E0/A({X,K)
CALL SSCAL(N-K,T,A(

ROW ELIMINATION WIT

DO 30 J = KP1, N
T = A(L,J)
IF (L .EQ. K) GO
A(L,J) = A(K,
A(KIJ) = T
CONTINUE
CALL SAXPY (N-K,T
CONTINUE
GO TO %0
CONTINUE
INFO = K
CONTINUE
CONTINUE
CONTINUE
IPVT (N} = N
IF (A(N,N) .EQ. 0.0E0) IN
RETURN
END
SUBROUTINE SGEDI (A, LDA, N,
INTEGER LDA,N, IPVT (1), JOB
REAL A(LDA,1),DET(2),WORK

SGEDI COMPUTES THE DETERM
USING THE FACTORS COMPUTE

NM1

PARTIAL PIVOTING

Y.l + K -1

S COLUMN ALREADY TRIANGULARIZED

GO TO 40
SSARY
10

E+1,K),1)
H COLUMN INDEXING

TO 20
J)

A(K+1,K),1,A(K+1,0),1)

FO = N

IPVT, DET, WORK, JOB)
(1)

INANT AND INVERSE OF A MATRIX
D BY SGECO OR SGEFA.
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ON ENTRY

A REAL (LDA, M)
THE OUTPUT FROM SCECO OR SGEFA.

LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A

N INTEGER
THE ORDER OF THE MATRIX A

IpvT INTEGER (N}
THE PIVOT VECTOR FROM SGECO CR SGEFA,.

WORK REAL (N}
WORK VECTCR. CONTENTS DESTROYED.

JCB INTEGER
=11 BOTH DETERMINANT AND INVERSE.
- 01 INVERSE ONLY.
=10 DETERMINANT ONLY.

ON RETURN
A INVERSE OF ORIGINAL MATRIX IF REQUESTED.
OTHERWISE UNCHANGED.
DET REAL (2)

DETERMINANT OF ORIGINAL MATRIX IF REQUESTED.

OTHERWISE NOT REFERENCED,
DETERMINANT = DET (1) * 10.0**DET (2)
WITH 1.0 .LE. ABS(DET (1)) .LT. 10.0
OR DET(1) .EQ. 0.0 .

ERROR CONDITION

A DIVISION BY ZERO WILL CCCUR IF THE INPUT FACTCR CONTAINS
A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.
IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CCRRECTLY

AND IF SGECO HAS SET RCOND .GT. 0.0 OR SGEFA HAS SET
Q.

INFC .EQ.
LINPACK. THIS VERSION DATED 08/14/78

CLEVE MOLER, UNIVERSITY OF NEW MEXICQ, ARGONNE NATIONAL LAB.

SUBROUTINES AND FUNCTIONS

BLAS SAXPY, SSCAL, SSWAP
FORTRAN ABS,MOD

INTERNAL VARIARIES

REAL T
REAL TEN
INTEGER I,J,K,KB,KP1, L, NM1

COMPUTE DETERMINANT

IF (JOB/10 .EQ. 0) GO ToO 70

DET (1) = 1.0EQ

DET (2} = 0,0E0

TEN = 10.0ED

DO S0 I =1, N
IF (IPVT(I) .NE. I) DET(1) = -DET(1)
DET (1) = A(I,I}*DET (1)

- EXIT

IF (DET(1) .EOQ. 0.020) GO TO 60
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10 IF (ABS(DET(l1)) .GE. 1.0E0) GO TC 20
DET (1) = TEN*DET (1)

DET(2) = DET(2) - 1.0EO0
GO TO 10
20 CONTINUE
30 IF (ABS(DET (1)} .LT. TEN} GO TO 40

DET{l1) = DET(1}/TEN
DET(2) = DET({2)}) + l.0QEQ
GO TO 30
40 CONTINUE
50 CONTINUE
60 CCONTINUE
70 CONTINUE

c COMPUTE INVERSE (U)

IF (MOD(JOB,10) .EQ. 0) GO TO 150
DO 100K =1, N
A(K,K) = 1.0E0/A(K,K)
T = -A(K,K})
CALL SSCAL(K-1,T,A(l,K),1}
KPl = K + 1
IF (N .LT. KP1l} GO TO %0
0O 80 J = KP1, N
T =A(K,J}
A{K,J) = 0.0EQ
CALL SAXPY(K,T,A(1,K),1,A{(1,J},1}
80 CONTINUE
20 CONTINUE
1G0 CONTINUE

FORM INVERSE (U} *INVERSE (L)

[eReNe!

NM1 = N - 1
IF (NM1 .LT. 1) GO TO 140
DO 130 KB = 1, NM1
K=N - KB
KPl = K + 1
DO 110 I = KP1, N
WORK (I) = A(I,K}
A(I,K) = 0.0EQ
110 CONTINUE
DO 120 J = KP1, N
T = WCRK(J)}
CALL SAYPY(N,T,A(1,J}.,1,A(1,K},1)
120 CONTINUE
L = IPVT(K)
IF (L .NE. K) CALL SSWAP(N,A({l,K),1,A{(1.L},1)
130 CONTINUE
140 CONTINUE
150 CONTINUE
RETURN
END
]

c
cccec BLAS ¢CCCCCCCCCCCCCCCCCCECCCCCCeCeCCeCOeCCCCcCecCceeicetcCe
c
c
INTEGER FUNCTION ISAMAX (N, SX, INCX)

C
C FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE.
c JACK DONGARRA, LINPACK, 3/11/78.
Cc
REAL SX (1) ,SMAX
INTEGER I,INCX,IX,N
c

ISAMAX = 0
IF( N .LT. 1 } RETURN
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ISAMAX = 1
IF (N.EQ.1)RETURN
IF(INCX.EQ.1)GO TO 20

CODE FOR INCREMENT NOT EQUAL TC

IX = 1

SMAX = ABS(SX (1))

IX = IX + INCX

DO 10 I = 2,N
IF(ABS(SX(IX)).LE.SMAX) GO TO 5
ISAMAX = I
SMAX = ABS(SX(IX))
IX = IX + INCX

CONTINUE

RETURN

CCDE FOR INCREMENT ECUAL TO 1

SMAX = ABS(SX (1))

DO 30 1 = 2,N
IF(ABS(SX(I)).LE.SMAX) GO TO 30
ISAMAX = T
SMAX = ABS(SX(I))

CONTINUE

RETURN

END

REAL FUNCTION SASUM (N, SX, INCX)

1

TAKES THE SUM OF THuE ABSOLUTE VALUES.
USES UNROLLED LOOPS FOR INCREMENT EQUAL TO CNE.

JACK DONGARRA, LINPACK, 3/11/78.

REAL SX (1), STEMP
INTEGER I,INCX, M, MP1, N, NINCX

SASUM = 0.QE0

STEMP = 0.0EQ

IF (N.LE. 0) RETURN
IF({INCX.EQ.1)GO TO 20

CODE FOR INCREMENT NOT EQUAL TO 1

NINCX = N*INCX

DO 10 I = 1,NINCX, INCX
STEMP = STEMP + ABS {(SX(I})

CONTINUE

SASUM = STEMP

RETURN

CODE FCOR INCREMENT EQUAL TO 1

CLEAN~-UP LOOP

M = MOD (N, 6)
IF{ M .EQ. 0 ) GO TO 40
DO30 I =1,M
STEMP = STEMP + ABS (SX (1)}
CONTINUE
IF( N .LT. 6 ) GO TO &0
MPl = M + 1
DO 50 I = MP1,N,6
STEMP = STEMP + ABS (SX(I)} + ABRS
+ ABS(SX(I + 3}) + ABS (SX(I + 4)

50 CONTINUE
60 SASUM = STEMP

RETURN
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END
SUBRCUTINE SAXPY (N, SA,SX, INCX, SY, INCY)

CONSTANT -TIMES A VECTOR PLUS A VECTOR,
USES UNRCLLED LCQP FOR INCREMENTS EQUAL TO ONE.
JACK DONGARRA, LINPACK, 3/11/78.

REAL 5X(1),8Y{(1),sa
INTEGER I, INCX,INCY,IX,IY,M,MP1,N

IF(N.LE.O)RETURN
IF (SA .EQ. 0.0) RETURN
IF{INCX.EQ.1.AND.INCY.EQ.1)G0O TO 20

CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
NOT EQUAL TO 1

IX =1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (~-N+1)*INCY + 1
DO 10 I = 1,N
SY(IY} = SY(IY}) + SA*SX(IX)
IX = IX + INCX
IY = IY + INCY
CONTINUE
RETURN

CODE FOR BOTH INCREMENTS EQUAL TO 1

CLEAN-UP LOOP

M = MOD (N, 4}
IF( M .EQ. 0 ) GO TO 40
DC 20 I = 1,M
SY(I) = SY{I) + SA*SX(I)
CONTINUE
IF{ N .LT. 4 ) RETURN
MPL = M + 1
DO 50 I = MP1,N,4
SY(I) = SY(I) + SA*SX(I)
SY(I + 1) = SY(I + 1) + SA*SX(I + 1)

SY(I + 2) = SY(I + 2) + SA*SX(I + 2)
SY(I + 3) = SY(I + 3) + SA*SX(I + 3)
CONTINUE
RETURN
END

REAL FUNCTION SDOT (N, SX, INCX, SY, INCY)

FORMS THE DOT PRODUCT OF TWO VECTORS.
USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
JACK DONGARRA, LINPACK, 3/11/78.

REAL SX(1),8Y(1),STEMP
INTEGER I,INCX,INCY,IX,IY,M,MP1,N

STEMP = (Q.0EQ

SDOT = 0.0EQ

IF (N.LE. Q) RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20

CODE FOR UNEQUAL INCREMENTS QR EQUAIL INCREMENTS
NOT EQUAL TO 1

IX =1

IY = 1
IF(INCX.LT.0)IX = (~N+1)*INCX + 1
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IF(INCY.LT.0)IY = {(=N+1)} *#INCY + 1
DO 10 I = 1,N
STEMP = STEMP + SX({IX)*SY (IY)
IX = IX + INCX
IY = TY + INCY
CONTINUE
SDOT = STEMP
RETURN

CODE FOR BOTH INCREMENTS EQUAL TO 1

CLEAN-UP LOOP

M = MCD (N, 5)
IF(M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
STEMP =~ STEMP + SX({I)*SY(I)
CONTINUE
IF( N .LT. 5 ) GO TO 60
MP1l = M + 1
DO 50 I = MP1,N,5
STEMP = STEMP + SX(I)*SY(I) + SX(I + IY*SY(I + 1) +
SX(I + 2)*sY(I + 2) + SX(I + 3}*8Y(I + 3) + SX(I + 4)*SY(I + 4)

50 CONTINUE
60 SDOT = STEMP

10

20

30
40

50

RETURN
END
SUBRCUTINE SSCAL(N, 5A, 5X, INCX)

SCALES A VECTOR BY a CONSTANT.
USES UNROLLED LOOPS FOR INCREMENT EQUAL TO 1.
JACK DONGARRA, LINPACK, 3/11/78.

REAL SA, SX (1)}
INTEGER I,INCX,M,MP1, N, NINCX

IF(N.LE.0)RETURN
IF (INCX.EQ.1)GO TO 20

CODE FOR INCREMENT NOT EQUAL TO 1

NINCX = N*INCX

DC 10 I = 1,NINCX, INCX
SX(I) = SA*SX(I)

CONTINUE

RETURN

CODE FOR INCREMENT EQUAL TO 1

CLEAN-UP LOOP

M = MOD (N, S)
IF( M .EQ. 0 ) GO TO 40
DC 30 I = 1,M
SX(I) = SA*3X(I)
CONTINUE
IF( N .LT. 5 } RETURN
MPl = M + 1
DO 50 I = MP1,N,5
SX(I) = SA*SX(I)
SX(I + 1) = SA*SX(I + 1)
SK(I + 2) = SA*SX(I + 2)
SX(I + 3) = SA*SX(I + 3)
SX(I + 4) = SA*SX(I + 4}
CONTINUE
RETURN
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SUBROUTINE SSWAP (N, SX, INCX, SY, INCY)

INTERCHANGES TWO VECTORS.

USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO 1.

JACK DONGARRA, LINPACK, 3/11/78.

REAL SX(1),5Y(1l),STEMP

INTEGER I,INCX,INCY,IX,IY,M,MP1, N

IF (N.LE.Q) RETURN

IF (INCX.EQ.1.AND.INCY.EQ.1)GO TO 20

CODE FOR UNEQUAL INCREMENTS COR EQUAL INCREMENTS NOT EQUAL

TC 1

IX = 1
IY = 1

IF(INCX.LT.Q)IX = {(-N+1)*INCX + 1
TF(INCY.LT.Q}IY = ({(-N+1)*INCY + 1

DO 10 I = 1,N
STEMP = SX(IX)
SX(IX) = SY(IY)
3Y (IY) = STEMP
IX = IX + INCX
IY = IY + INCY

CONTINUE

RETURN

CODE FOR BOTH INCREMENTS EQUAL TO 1

CLEAN-UP LOOQP

M = MOD (N, 3)
IF{ M .EQ. 0 ) GO TO 40
DC 30 I = 1,M
STEMP = SX(I)
SX(I) = SY(I)
SY (I} = STEMP
CONTINUE
IF( N .LT. 3 ) RETURN
MPI =M + 1
DO 50 I = MP1,N,3
STEMP = SX({I)
SX(I) = SY(I)
SY (I) = STEMP
STEMP = SX(I + 1)
SX(I + 1) = SY(I + 1)
SY(I + 1) = STEMP
STEMP = SX(I + 2)
SX(I + 2} = SY(I + 2)
SY(I + 2} = STEMP
CONTINUE
RETURN
END

SUBROUTINE SGESL({A, LDA, N, IPVT,B, JOB)

INTEGER LDA,N,IDVT(1l},JOB
REAL A (LDA,1),B(1)

REAL SDOT, T

INTEGER K, KB, L, NM1

NMl=N-1

IF (JOB.NE.Q) GO TO 50
IF (NM1.LT.l) GO TO 30
DO 20 K=1,NM1

L=IPVT (K}
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T=B (L)
IF (L.EQ.K) GO TO 10

B (L) =B (K)

B({K)=T

CONTINUE

CALL SAXPY(N—K,T,A(K+1,K),1,B(K+1),1)
CONTINUE ’
CONTINUE

DO 40 KB=1,N

K=N4+1-KB

B(K) =B (K) /A (K, K}

T=-B(K)

CALL SAXPY(K-I,T,A(I,K),1,B(1),1)
CONTINUE

GO TO 100

CONTINUE

DO 60 K=1,N
T-SDOT(K—l,A(l,K),l,B(l),l)
B(K)=(B(K)-T} /A (K,K)
CONTINUE

IF (NM1.LT.1) o TO 80

DO 80 KB=1,NM1

K=N-KB
B(K)-B(K)+SDOT(N-K,A(K+1,K),1,B(K+1),1)
L=IPVT (K}

IF (L.EQ.K) GO TO 70

T=B (L)

B(L)=B (K)

B (K) =T

CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN

END

The following two FORTRAN 77 programs show a possible implementation

of some of the modules of the multiprocessor implementation procedure as presented

in Chapter 4. It is used in Chapter 7 for the performance analysis of the procedure.

The first program includes:

The main program that defines the physical characteristics of the dynamic
structure and calls the appropriate subroutines that are required by each of

the 11 tests specified by Figure 7.2,

The subroutine BENCHMARK that shows a possible implementation of the
procedure that generates the benchmarks shown in the previous section, as

presented in Chapter 5.
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3. The subroutines PARTITIONAB and PARTITIONPS that shows a possible
implementation of the partitioning procedure, as presented in Section 4.3, for
the AB and the EPSE algorithms respectively. These subroutines include a
possible implementation of the FFD algorithm for the selection of the

number of processors.
The second program includes:

L. The main program that reads the results of the partitioning and calls the

appropriate routines for assigning and sequencing,

2. The subroutine ASSIGN that shows a possible implementation of the assign-

ing procedure, as presented in Section 4.4,

3. The subroutine SEQUENCE that shows a possible implementation of the

sequencing procedure, as presented in Section 4.5,

Q

cccccccccccccccecccccccccccccccccccccccccccccccccccccccccccccccccccccccc
g THIS PROGRAM PROVIDES THE PARTITIONING FOR THE 2
g MULTIPROCESSCR IMPLEMENTATICN g
2 OF THE EPSE OR THE AB ALGORITHM FOR THE SOLUTION 2
2 OF A DEVELOPED BENCHMARK ODE SYSTEM Z
zccccccccccccccccccccccccccccccccccccccccccccccceccccecccccccccceccccecg
c

parameter(inbd-a,in-48,in1-49,int-S)

Q

integer ta(in,in,int),th(in,2)
integer ecm(in,inl, in)
complex cb (inkd, inbd)

real cu(inbd, inbd)

real sr(in),se(in)

real uo(in)

integer f1, fu,df

write (6,14)
14  format (/,r**¥k***xx*+ THE PHYSICAL MODEL ##*#%sksixnrs)
nbd=8
df=6
write(6,1) nbd,df
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format (" -——~ Number of bodies = "+1il," with ',il," d.o.f. each')
read (5, 2) ((cb(i,J),d=1,nbd),i=1, nbd)

format (£6.3,2x,£6.2)

write (6, 3)

format (' --- The coupling of the bodies’, /}

write(6,4) ((cb(i,3},3j=1,nbd),i=1, nbd)

format (8 (£7.4, "+3",£6.2, 1x)}

ib=5
write(6,6) ib
format {* --- The excitation applies on the ’,il, "th body’}

uc (df* (ib-1)+1)=1.

uo (df* (ib-1)+2})=1.

read (5,72} ((cu(i, i), j=1,nbd),i=1,nbd}
format (8 (£3.1, 1x)}

write(6, 73)

format (/,’--- The coupling between bodies and inputs’, /)
write (6, 74) {({eu(i, j}, 3=1,nkd}, i=1, nba)
format (8 (£3.1, 1x})

write(6,52)
format (F ******+%x4* THE BENCHMARK A(X)dx/dt=AFx+AGu ****kxxk*r)

n=nbd*df

Sparsities of the benchmark

=]
1=2
1=3
1=4

-—=> linear distribution

——-> exponential distribution

———> inverse exponential distribution
—==> linear distribution with long task

1=4

srmin=.9%2

srmax=.98

if (l.eq.4) srmin=.97
if (l.eg.4) srmax=.98
do 99 i=1,n

if (l.eg.l.or.l.eq.4) sr(i)-srmin+(float(n)-float(i))*(srmax-srmi

*n)/{(float (n)-1.)

if (l.eqg.2) sr(i)-srmin+((float(n)—float(i))**Z.)*(srmax-srmin)/(

*{float (n)-1.)**2,)

if (l.eg.3) sr(i)nsrmax-((float(i)—l.)**2.)*(srmax—srmin)/((float

*(n)-1.)y**2.)

99

se(l)=.99
continue
if {l.eg.4) sr{n}=.0
if (l.eg.4) se(n)=,97

call benchmark(n,nbd,df,ib,cb,cu,uo,sr,se,ta,tb,ecm)

Partitioning procedure

al=]
flm=1
fu=5
if (al.eq.2) go to 47

Algorithm
al=1 ---> EPSE
al=2 ---> AR

na=12
nb=24
ne=12
moa=8
mob=16
moc=16
ha=0.001
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hb=0.01
he=0,1
write (6,56} ha,hb,hc
56 format (/, *** PARTITICN COF THE EPSE ALGORITHM xxkr [/ "with step s
*izes *,£5.3,1x,£5.3,1x,£5.3,/})

c call partitionps(n,ﬁa,nb,nc,moa,mob,mcc,fl,fu,ta,tb,ecm)
go to 48

c

¢ For al=2 ---> AB

c

47 na=48

nb=0
ne=0
moa=6
mob=6
moc=6
ha=0.001
hb=0.001
hc=0.001

write{6,46) ha,hb. hc
46 format(//,'*** PARTITION OF THE AB ALGORITHM ***’',k /, "with step si
*za8 ‘,f6.4,1x,£6.4,1x,£6.4,/)

c call partitionab(n,na,nb,nc,moa,mob,moc,fl,fu,ta,tb,ecm)
c
48 stop
end

c
CCECCCCOCCCCCCCCCCCCCCoCeCCeCEeCCCCCCCCECCCOCCeCseCetcCCCCCCacecaacccces
[s]

This subroutine provides a BENCHMARK CDE system in the form

o000

c
. c

A (x) x=AFx+AGu=b (x,u) c
c

(=}

CCCCCCECCeCECaaCCCCCCCECOCCCCCeleataCCCeCCoCECCCCCeleSeCaCCCCCECCCCeeee
C

subroutine benchmark(n,nbd,df,ib, cb,¢u,uo, sr, se,ta,tb,ecm)
c

parameter(inbd=8,in=48,inl=49, int=6}
[

integer ta(in,in,int),tb{in,2)

integer ecm(in,inl,in)

real gama({in,in),delta{in,in,in),theta(in}

complex cb{inbd, inbd}

real cu{inbd, inkd)

real a{in,in),f{in,in),£ff{in,in},g(in,in},gu(in)

real af(in, in),ag({in,in)

real alfa(in},beta(in,in)

real xo{in),uo(in}

real sr{in),se(in}

integer zz(in).df
c

nl=n+1
C
¢ Matrix F
c

do 1500 i=1,nbd

do 1501 j=1,nbd

cr=real{cb(i,3))

ci=aimag (cb (i, j})

do 1502 kk=1,df-1,2

ii=df*i-kk+1

jj=df*j-kk+1

fi{ii,jj)=cr

£(ii-1,Jj)=ci

£(ii, jj-1) =-ci

f{ii-1, jj-1l}=cr

1502 continue
1501 continue
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1500 continue
de 8000 i=1,n
do 8001 4=1,n
R (i, §y=£(i, §)
8001 continue
8000 continue
c
c Matrix G
C
ii=0
do 1511 k=1,nbd
do 1513 1=1,nbd
ii=(k-1)*df
Ji=(1-1)*df
de 1510 i=jii+l,ii+df
do 1512 I=3i+1, jj+ar
g{i, j) =cu (k, 1)
if (i.eq.j} g{i,jy=1.0
1512 continue
1510 continue
1513 continue
1511 continue
c
¢ Equilibrium point
c
call matmul(g,uo,gu,n,n,l)
do 513 i=1,n
Xo{i)=~-gu(i)
313 continue
call sgeco(ff,n,n,ip,cond,q)
call sgesl(ff,n,n,ip,xo,O)

write(6,292)

292 format (/, " ~—- The nonlinear matrix A(x)r)
Mms=1
igead=1

do 11 i=1,n
do 10 4=1,n

iseed=irandom(iseed)
z-float(iseed)/2147483648.
if(z.le.sr(i}) go to 10
write (6, 900) i, 5

900 format{'A(’,i2,',',i2,’) =", 8)

iseed-irandom(iseed)
z-float(iseed)/2147483648.
iseed~irandom(iseed)
z-float(iseed)/2l47483648.
eta=5, *z

a(i, j)-a(i,j}+eta

do 30 kl=1l,n
iseed-irandom(iseed)
z-float(iseed)/2147483648.
if (z.1lt.se(i)) go to 30
iseed-irandom(iseed)
z-float(iseed)/2147483648.
t=z

iseed-irandom(iseed)
z-float(iseed)/2147483648.
iseed=irandom(iseed)
z=float(iseed)/2147483648.
§=5 %z

if (t.ge.0.5) go to 21

if (t.1t.0.49} go to 20
theta(kl)=s
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ZzZ (k1) =mm
a(i,j)-a(i,j)+theta(k1)*disc(zz(k1),xo(kl))
mm=mm+1
go te 30

20 alfa(kI)=-g
go to 811

21 alfa(kl)=s ’

811 a(i,j)-a(i,j)+alfa(k1)*xc(kl)

30 continue

do 40 kl=1,n
iseed—irandom(iseed)
Z=flpat (iseed) /2147483648,
if (z.le.se(i)} go to 40
do 41 11=1,n
iseed-irandom(iseed)
z=float (iseed) /2147483648,
if {z.le.se{i)) go to 41
iseed-irandom(iseed)
z=float (iseed) /2147483648,
tmz
iseed-irandom(iseed)
z-float(iseed)/2147483648.
g=5, %z
if (t.ge.0.5) go to 23
beta (k1, 11)=-g
go to 813

23 beta(kl,ll})=g

813 a(i,j)-a(i,j)+beta(kl,ll)*xo(k1)*xo(ll)

41 continue

40 continue

do 50 kl=1,n
iseed—irandom(iseed)
z=float (iseed) /2147483648,
if (z.le.se (i)} go to 50
do 51 1l1=1,p
iseed-irandom(iseed)
z=float(iseed)/2147483648.
if (z.le.se(i)} go to 51
iseed-irandom(iseed)
z=float (iseed) /2147483648,
L=z
iseed=irandom(iseed)
z=float (iseed) /2147483648,
S=j %z
if {t.gt.0.5) go to 25

24 gama(kl,ll)=-g
go to 815

25 gama(kl,1ll) =g

815 a(i,j)-a(i,j)+gama(kl,ll)*xo(kl)*cosin(xo(ll))

51 continue

S0 continue

do 60 kl=1,n
iseed-irandom(iseed)
z=float (iseed) /2147483648,
if (z.le.se(i}} ge to 60
do 61 11=1,n
iseed—irandom(iseed)
z=float (iseed) /2147483648,
if (z.le.se (i)} go to 61
do 62 mi=1,n
iseed-irandom(iseed)
z-float(iseed)/2147483648.
if (z.le.se(i)) go to 62
iseed-irandom(iseed)
z=float {iseed) /2147483643,
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t=z
iseed=irandom(iseed}
z=float (iseed) /2147483648.
s=5.%z -
if (£.gt.0.5) go to 27
delta{kl,ll,ml)=-s -
go to 817

27 delta(ki,ll, ml)=s

817 a(i,j)=a(i,j)+delta(kl,ll,ml)*xo(kl)*xo(ll)*cosin(xo(ml))

62 continue

61 continue

60 continue

write(6,208) eta

208 format(f7.3,"+',8)
ta{i,j,6)=ta(di,j, 6)+1
eta=0.

309 do 300 kl=1,n
if (alfa{kl).eq.0.) go to 300
write(6,201) alfa(kl}),kl

201 format(f7.3," * x',12,'+°., %)
ta(i:jvl)-ta(irjrl)"'l
ecm{i, j,kl)=1
alfa{kl)=0.

300 continue

do 360 kl=1,n
if (theta(kl).eg.0.) go to 360
write(6,2201) theta(kl},=zz(kl),kl
2201 format (£7.3, * dise’,i2," (x",12,"}+', %)
ta(i,3j,5=ta{i,j,5)+1
ecm(i, j, kl)=1
theta (kl}=0.
zzZ {k1l} =0
360 continue

do 301 kl=1,n
do 302 ll=l,n
if (beta(kl,ll).eq.0.) go to 302
write(6,204) beta(kl,11l}),k1,11
204 format (£7.3,’ * x' i2,° * x',i2,"+',8)
ta(i,j,2)=ta(i,j,2)+1
ecm(i, j,kl)=1
ecm(i, j,1ll)y=1
beta(kl,11)=0.
302 continue
301 continue

do 401 kl=1,n
do 402 1l1=1,n
if (gama(kl,1ll).eq.0.) go to 402
write (6,205) gama(kl,11),kl,11
205 format(f7.3," * x’,i2,* * cosx’,i2,"+',5)
ta({i,]j,3)=ta(i,j,3}1+1
ecm(i, j,kl)=1
ecm{i, j,1ll)=1
gama (k1,11)=0.
402 continue
401 continue

do 501 kl=1,n
do 502 1ll=1,n
do 600 ml=1,n
if (delta(kl,11l,ml).eq.0.} go to 600
write {6,206} delta(kl,li,ml), k1,11, ml
206 format (£7.3,' * x',i2,' * x’,1i2,’ * cosx’,i2,’+',5)
ta(i,j,4)=ta(i,§,4)+1
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ecm(i, j,kl)=1
ecm(i, 3,11)=1
ecm{i, j, ml)=1
delta(kl,11,ml)=0.

600 continue

502 continue

501 continue

210 write (6, 1001}
1001 format (/)

1¢ continue

1l continue

write(6,1800)
1800 format(/,’--- The vector b(x,u)’, /)
call matmul (a,f,af,n,n,n)
call matmul {a,g,ag,n,n,n)
do 1801 i=l,n
write(6,503) i
903 format(/,'b(',iE,’) =, 8)
do 951 j=1,n
if (af{(i,3).1t.0.001) go to 951
write (6, 901) af(i,3),.3
901 format (f12.3,* * X ,12,'+7,8)
tb(i,l)-tb(i,1)+1
ecm{i,nl, j)=1
951 continue
write({6,2001)
2001 format (/)
do 961 j=1,n
if ((3.1t.13).0r. (3.9t.14) .or. (ag(i, $) .1t.0.001)) go to 961
write (6, 902) ag(i, ), 3
902 format (£12.3," * y4 "ei2,f 4+, 8)
tb(i,2)-tb(i,2)+1
961 continue
write(6,2601}
2601 format (/)
1801 continue

return

end
¢
CCCCCCCCCCCCCCCCCC‘.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
[+

c This subroutine provides the PARTITICON into tasks c
o . <
c of the solutien of an ODE system A(x)x=b (x,u) c
c <
< with the AB algorithm a
c c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccceccccecccceccccec
c

subrocutine partitionab(n,na,nb,nc,moa,mob,moc,fl,fu,ta,tb,ecm)
(]

parameter(in-48,1n1=49,int-G,im=20)
c

integer ta(in,in,int),tb(in,2)

integer t(in),tr(in),te(in,inl)

integer tx(in),tf(in)

integer ecm(in,inl,in),rcm(in,in)

integer ne(in)

integer f1, fu
c

nl=n+l

ncl=1

nc2=0

nc3=0

write(6, 76) ncl,nc2, ne3
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Lo

]

76

format ("ncl,nc2, ne3 =,42,1x,12,1%,12, /)

Grouping the ODEs

93

read (5, 53) (ne (i}, i=1,n)
format (i2)

Length of tasks

65

1002
900

35

75

le

15

1000
901
18

45

85

*}

*)

write (6, 65)
format {/, "~~~ Case 1 ==t/

if (ncl.eq.0) go to 9S00

do 5 i=1,n

tr(ne(i) =0

tx{ne(i))=0

do 6 j=l,n
te(ne(i),j)-fl*ta(ne(i),j,1)+2*fl*ta(ne(i),j,2)+(2*fl+fu)*ta(ne(i
,j,3)+(3*fl+fn)*ta(ne(i),j,4)+fu*ta(ne(i),j,5)
tr(ne(i))-tr(ne(i))+te(ne(i),j)

continue

te(ne(i),n1)=fl*tb(ne(i),1)+fl*tb(ne(i),2)
tf(ne(i})=n

if (i.le.na) tx(ne(i})=moa+2

if (i.gt.na} tx(ne(i))=tx(ne(i))+2
tr(ne(i))=tr(ne(i})+te(ne(i),nl)+tf(ne(i))+tx(ne(i))
continue

do 1002 i=1,n

t(i)=t(i)+ncl*tr(i)

continue

Write (6, 8)

format (/, " ——- Length of rows’, /)

write (6, 35} (tr(i),i=1,n)

format (12(110})

write(G,?S}
format (/, " --- Case 2 -—=r,/)

if (nc2.eq.Q) go to 901

do 15 i=l,n

trine(i})=0

tx(ne(i))=0

do 16 4=1,n
te(ne(i),j)=fl*ta(ne(i),j,l)+2*fl*ta(ne(i),j,2)+(2*fl+fu)*ta(ne(i
,j,3)+(3*fl+fu)*ta(ne(i),j,4)+fu*ta(ne(i),j,5)
tr(ne(i))=tr(ne(i})+te(ne(i),j)

continue

te(ne(i),nl)-fl*tb(ne(i),1)+fl*tb(ne(i),2)
tf{ne(i))=n

if (i.le.na) tx (ne (i) y=moa+2

if (i.le.nb.and.i.gt.na) tx{ne (i) )=meb+2

if (i.gt.na) tx{ne(i})=tx (ne(i))+2
tr(ne(i))=tr(ne(i))+te(ne(i),nl)+tf(ne(i))+tx(ne(i))
continue

do 1000 i=1,pn

t(i)ﬂt(i)+nc2*tr(i)

continue

write(6,18)

format (/, " -—- Length of rows’, /)

write (6, 45) (tr (i), i=1,n)

format(lZ(ilG))

write(6, 85)

format (/,’--- Case 3 ==t /)
1f (ne3.eq.0) go to 902
do 25 i=1,n

tr(ne{i))}=0
tx(ne(i))=0

do 26 j=1,n .
te(ne(i),j)=fl*ta(ne(i),j,1)+2*fl*ta(ne(i),j,2)+(2*fl+fu)*ta(ne(1
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26

25

1001
902
28

55
c

*),j,3)+(3*fl+fu)*ta(ne(i),j,4)+fu*ta(ne(i),j,5)

tr(ne(i))=tr(ne(i))+te(ne(i),j)
continue
te(ne(i),nl)-fl*tb(ne(i),l)+fl*tb(na(i),2)
tf({ne(f})}=n

if {(i.le.na} tx{ne (i) )=moa+2

if (i.le.nb.and.i.gt.na) tx{ne (i) )=mob+2
if (i.le.nc.and.i.gt.nb) tx(ne (i) ) =moc+2
if (i.gt.na) tx(ne(i))-tx(ne(i))+2
tr(ne(i))-tr(ne(i))+te(ne(i),n1)+tf(ne(i))+tx(ne(i))
continue

do 1001 i=1,n

t(i)?t(i)+nc3*tr(i)

continue

Wwrite (6, 28)

format (/,*" --- Length of rows’,/)

write (6, 55) (tr(i),i=1,n}

format(lz(iIO))

¢ Cecupling between tasks

=]

do 100 i=1,pn

do 200 k=1,n

do 300 j=1,n1
if(ecm(i,j,k}.eq.l) roem(i, k) =1

300 continue
200 continue
100 continue
write (6,117}
117  format (/,’ -~ Coupling of tasks’,/}
write (6, 416) ((rcm(i,j),i-l,n),j-l,n)
416 format (48(il,1x))
a
write (6, 928}
928 format (/,’--- Total length of rows’, /)
write (6, 955) (t(i),1i=1,n)
955 format (12(¢i12)}
c
return
end
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
c This subroutine provides the PARTITION into tasks c
c . c
[+ of the s=olution of an ODE system A () x=b(x,u} c
c c
c with the EPSE algorithm c
c c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
subroutine partitionps(n,na,nb,nc,moa,mob,moc,fl,fu,ta,tb,ecm)
e
parameter(in-48,in1-49,int-6,im-20,imo-16)
c
integer ta(in,in,int),th(in,Z)
integer t(in),tr(in),te(in,inl,imo)
integer tx(in),tz(in,imo),txd(in,imo)
integer ecm(in,inl,in),rcm(in,in)
integer ne {(in)
integer f1, fu
c

76

nl=n+1

ncl=90

nc2=9

nc3=1

write (6, 76) nel,ne2, ne3

format (“ncl,nc2, nel =,12,1x,12,1x,12, /)
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[#]

Grouping the ODEs

93

read(5,93) (ne(i},i=1,n)
format {(i2)

Length of tasks

17

6

16

10

12

1002
900

255

27

46

write (6,17}

format(/, '-—-— Case 1 ~--",/}
if (ncl.eq.Q) go to 900

do 5 i=1l,n

tri{ne(i)}=0

de 6 j=i,n

te(ne(i},j,l)=fl*ta{ne{i}, j,1}+2*fl*ta{ne{i},j,2)+{2*f1+fu) *ta (ne

*(1),3,3)+(3*fl+fu) *ta(ne(i},j,4)+fu*ta(ne(i), J, 5}

tr{ne{i})=tr(ne(i})+te(ne(i},j,1)

continue

te(ne(i}),nl,l}=fl*tb(ne(i),1l)+fl*tb(ne (i}, 2)

txd{ne{i},l}=n

tr(ne(i)}=tr(ne(i))+te{ne(i},nl,l)+txd{(ne(i).,.l)

if {(i.gt.na) go to 1C

do 2 nu=2,moca

do 16 j=1,n
te(ne(i),j,nu)=fl*ta(ne(i},J,1)+2*nu*fl*ta(ne(i),j,2)+(6*nu-6) *fl

**ta(ne(i),Jj,3}+(8*nu-6})*£fl*ta(ne({i), j, 4)

tr(ne(i})=tr{ne(i})+te(ne{i), j,nu}
continue

te{ne(i),nl, nu)=£fl*tb{ne(i), 1)

if (nu.eq.2) tz(ne(i),nu)=1

if (nu.gt.2) tzi{ne(i),nu)={nu- 1)*(n+1)+1
txd(ne (i}, mi}=n
trine(i))=tr(ne(i})}+te{ne(i},nl,nu)+tz (ne{i},nu)+txd{ne{i}),nu}
continue

tx(ne (i) )=3*moa
tri{ne(i))=tr(ne(i)}+tx(ne{i})

go to 5

de 12 nu=2,mca
tz{ne(i),nu)=fl*tb({ne{i},1)
txd(ne (i), nu)=2
tr{ne(i))=tr(ne(i))+tz(ne(i} ,nu)+txd(ne (i), nu}
continue

tx{ne(i))=2
tr{ne(i))=tr(ne{i)}+tx(ne{i})

continue

do 1002 i=1,n

t(i)y=t(i)+ncl*tr (i}

continue

write (6, 8)

format (/,’--- Length of rows’,/}
write(6,255) (tr(i)},i=1,n}

format {12(il10})

write (6,27}

format {/," ' —--—- Case 2 ---",/}

if (nc2.eq.0) go to 901

do 15 i=1,n

tr(ne(i))=0

do 46 j=1,n

te(ne(i), 3, 1)=fl*ta{ne (i), j, 1) +2*£l*ta(ne(i},J, 2)+(2*fl+fu) *ta{ne

*(1),3,3Y+(3*£1+fu) *ta (ne (i), j, 4)+fu*rta(ne (i), 3, 5)

tr(ne{i)}=tr(ne(i))+te(ne(i),j,1)

continue
te(ne(i),nl,)=fl*tb(ne{i},l)+fl*tb(ne (i),2}
txdi{ne(i}, l)=n

tr (ne(i))})=tr({ne{i))+te(ne{i),nl,1l)+txd(ne{i}, 1}
if {i.gt.{(natnb}} go te 110

if {i.gt.na) geo te 310
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236

32

42
310

1llse

412

110

112

15

1000
801
18

155

37

56

do 32 nu=2,moa
do 236 j=1,n
te(ne(i),j,nu)zfl*ta(ne(i),j,1)+2*nu*fl*ta(ne(i),j,2)+(6*nu—6)*fl

**ta(ne(i),j,3)+(8*nu—6)*fl*ta(ne(i),j,ﬂ)

tr(ne(i))-tr(ne(i))+te(ne(i),j,nu)
continue

te(ne(i),nl,nu}-fl*tb(ne(i),l)

1f (nu.eq.2) tz{ne(i),nu)=1

if (nu.gt.2) tz(ne(i),nu)=(nu—1)*(n+1)+1

txd(ne{i),nu)=n
tr(ne(i))=tr(ne(i})+te(ne(i),nl,nu)+tz(ne(i),nu)+txd(ne(i),nu)
continue

tx{ne (i) }=3*moa

tr(ne(i))-tr(ne(i))+tx(ne(i))

if (moa.ge.mob) go to 15

do 42 nu=moa+1,mob

tz(ne(i),nu)=fl*tb(ne(i),1}

txd(ne(i),nu)=2
tr(ne(i))=tr(ne(i))+tz(ne(i),nu)+txd(ne(i),nu)

continue

go to 15

do 412 nu=2, mob

do 116 j=1,n
te(ne{i),j,nu)-fl*ta(ne(i),j,1)+2*nu*fl*ta(ne(i),j,2)+(6*nu—6)*fl

**ta(ne(i),j,3)+(8*nu—6)*fl*ta(ne(i),j,4)

tr(ne(i))-tr(ne(i})+te(ne(i),j,nu)
continue

te(ne(i),nl,nu)*fl*tb(ne(i),l)

if (nu.eq.2) tz(ne(i),nu}=1

if (nu.gt.2) tz(ne(i),nu)-(nu—l)*(n+1)+1
txd(ne (i}, nu)=n
tr(ne(i))-tr(ne(i))+te(ne(i),nl,nu)+tz(ne(i),nu)+txd(ne(i),nu)
continue

tx{ne (i) )=3*mob+?
tr(ne(i))=tr(ne(i))+tx(ne(i))

go to 15

do 112 nu=2, mob

tz(ne(i),nu)-fl*tb(ne(i),l)

txd(ne (1}, nu)=2
tr(ne(i))-tr(ne(i))+tz(ne(i),nu)+txd(ne(i),nu)
continue

tx (ne{i))=2

tr(ne(i))-tr(ne(i))+tx(ne(i))

continue

do 1000 i=1,n

t{i)=t (i)+nec2*tyr (1)

continue

write {6,18)

format (/, " —-- Length of rows’,/)

write(6,155) (tr(i),i=1,n)

format(lZ(ilO))

write(6,37)

format (/,’ --- Case 37,7/}

if (nc3.eq.0) go to 902

do 25 i=1,n

tr{ne(i))=0

do 56 j=1,n
te(ne(i),j,1)-fl*ta(ne(i),j,1)+2*fl*ta(ne(i),j,2)+(2*fl+fu)*ta(ne

*(i),j,3)+(3*fl+fu)*ta(ne(i),j,4)+fu*ta(ne(i),j,5)

tr(ne(i))-tr(ne(i))+te(ne(i),j,l)

centinue
te(ne(i),n1,1)=fl*tb(ne(i),1)+fl*tb(ne(i),2)
txd{ne(i),1)=n
tr(ne(i))=tr(ne(i))+te(ne(i),nl,l)+txd(ne(i),1)
if (i.gt. (na+nb)} go to 410

if (i.gt.na) go to 510

do 62 nu=2,moa
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66

62

72

86

82

92

410

216

22

25

1001
902
28

55

do 66 j=1,n
te(ne(i),Jj,nu)=fl*ta(ne(i}),j,1}+2*nu*fl*ta(ne({i), j,2)+(6*nu-6) *£fl

**ta (ne(i},3,3)+(8*nu-6) *£1%*ta(ne (i), 3, 4)

tr(ne(i))=tr(ne(i))+te(ne{i}), j,nu)

continue

te(ne(i),nl,nu)=£fl*tb(ne{i), 1}

if (nu.eg.2) tz(ne{i),nu)=1

if (nu.gt.2) tz{ne(i),nu}=(nu-1}*(n+1l)}+1

txd(ne (i), nu)=n
tr{ne(i})=tr(ne{i)}+te(ne(i},nl,nu)+tz (ne({i),nu) +txd (ne (i), nu)
continue

tx{ne(i) }=3*moa

tr(ne(i))}=tr{ne(i}}+tx(ne(i))

if {(moa.ge.moc} go to 25

do 72 nu=moa+l,mcc

tz (ne{i) ,nu)=Ffl*tb(ne (i}, 2}

txdi{ne (i), nu})=2

tr(ne(i))=tr(ne(i))+tz (ne(i),nu)+txd(ne(i),nu)

continue

go to 25

do 82 nu=2,mob

do 86 j=1,n
te(ne(i),j,nu}=fl*ta(ne(i), 3, 1}+2*nu*fl*ta{ne(i}, j,2)+ (6*nu-6) *fl

**ta(ne(i}, j,3)+ (8*nu-6)*fl%ta(ne(i), j, 4)

tr(ne(i))=tr(ne{i))+te{ne(i), },nu}

continue

te{ne(i},nl,nu)=fl*tb(ne(i), 1)

if (nu.eqg.2) tz(ne(i),nu)=1

if (nu.gt.2) tz({ne(i),nu)=(nu-1}* (n+1)+1

txd(ne (i), nu)=n
tr{ne(i})=tr(ne(i))+te(ne(i},nl,nu)+tz (ne{i),nu)+txd (ne (i), nu)
continue

tx(ne(i})=3*mob+2

tr{ne(i))=tr{ne(i))+tx (ne(i})

if (mob.ge.moc) go to 25

de 92 nu=mob+l,moc

tz{ne (i) ,nu)=fl*tb{ne (i), 2}

txd{ne (i), nu)=2
tr(ne(i))=tr(ne(i)}+tz(ne(i},nu)+txd(ne (i}, nu}

cantinue

go to 25

do 22 nu=2,moc

do 216 j=1,n
te(ne(i),j,nu)-fl*ta(ne(i),j,l)+2*nu*fl*ta(ne(i),j,2)+(6*nu—6)*fl

**ta(ne(i),3,3}+(8*nu-6)*fl*ta{ne (i), j, 4)

tr(ne(i))=tr(ne{i})+te (ne(i),j, nu)
continue

te(ne(i) ,nl,nu}=fl*tb{ne (i), 1)

if (nu.eqg.2) tz (ne(i),nu)=1

if (nu.gt.2} tz(ne{i),nu)={(nu-1)*{(n+l)+1
txd(ne (i), nu)=n
tr{ne(i}))=tr(ne(i}}+te(ne(i),nl,nu}+tz (ne(i),nu)+txd(ne (i}, nu)
continue

tx(ne (i} )=3*moc+2
tr(ne(i))=tr{ne(i))+tx(ne(i))

continue

do 1001 i=1,n

t (1) =t (1) +ne3*tr (i)

continue

write (6,28}

format {/,’--- Length of rows’,/}
write{6,55) (tr(i),i=1,n)

format (12(110})

¢ Coupling between tasks

c

do 100 i=l,n
do 200 k=1,n
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do 300 j=1,nl
if (ecm(i, 3, k}.eq.l) rem{i,k)=1
300 continue
200 continue
100 continue
write (6,57)
57 format{/,’'-—— Coupling of tasks’,/)
write (6,416) ({rem(i,j),i=1,n),j=1,n)
416 format (48(il,1x)}

write (6, 928}

928 format(/,’-—- Total length of rows',/)
write({6,955) {(t(i),i=1,n)

955 format {12(il2)}

return
end

CCCCCOCCCCCCCOCCCCCCCeCeCCCCCCCCCCeCCCCCOCCCCoCCCCeCCCoCCCCCeCLCe

<

o QGO0 0 o 0Ogaoa000o00na0

4]

9]

THIS PROGRAM PROVIDES THE ASSIGNMENT AND SEQUENCE
FOR THE MULTIPROCESSOR IMPLEMENTATION

OF THE AB OR THE EPSE ALGORITHM

CCCCCCCCOCCCCCCCCOCCCCeCCCCOCCCCCCCCCCCCCCOCCCCCCoCCCCCCCCCCel

parameter(in=48, im=48)
integer as(im,in),p{im,ir},pr(im),t{in}, st (in),f{im}
integer ntp(im},rcm{in,in}
integer bst,al,z
Algorithm
al=1 ---> EPSE
al=2 ---> AB
al=l
bound on the sclution time

if (al.eq.l) Lst=400000
if {al.eq.2) bst=4000

number of sclution cases
if (al.eg.l) nc=100
if (al.eg.2) nc=1
n=48

number of nonzero elements
ns=35

read dependencies

read (5,2} ((rcm(i,j},i=1,n),j=1,n}
2 format (48(il,1x))

FFD algorithm on total tasks

read (5,1) (t{i),i=1,n}
1 format (12(il2}))

m=1

do 60 i=1,n

st (i) =t (1)
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60 continue
do 22 i=]l,n-1
max=i -
do 23 k=i+l,n
if (st (max).lt.st {k}) max=k
23 continue
it=st (max)
st (max)=st (i}
st (i} =it
22 continue
z=bst- (nc* (ns**3) )/ (3*m}
do 1522 i=1,n
j=1
1534 if {(z-pr(j)).ge.st(i})) go teo 1533
J=4+1
if (j.gt.m} m=m+l
Z=bst-{nc* {ns**3)) /(3*m)
go to 1534
1533 pr{j)=pr{j)+st(i)
1522 <¢ontinue
write(6,555) m
555 format{/, ' *** Number of processors = ’,i2)}

Schedule the executicn of total tasks
as=assignment matrix

ntp=number of tasks per processor
p=processors with their assigned tasks

read(5,991) (t(i),i=1,n}
991 format {(12(il2))
if (m.eqg.l) go to 90
call assign{n,m,t,as,ntp,p)
call sequence(n,m,as,rcm,ntp,p)
goe to 91
90 ntp{l)=n
do 92 i=1,n
as(l,i)=1
p(l,1i)=i
92 continue

Schedule the excecution for each soluticn case
91 11=3

70 write(6,19} 11
19 format {'Case # ', ,il,/)

read tasks of case 3,2,1

read(5,81) (t(i},i=1,n)
81 format (12(il0)}

completion times of processors

do 3 j=1,m
f(j)=(ns**3) /(3*m)
do 4 i=1,ntp(])
£ =£ 3+t (p (3, 1))
4 continue
3 continue

print schedule of excecution

do 21 j=1,m
write (5,25) 3

25 format('p’,i2,’'=",$}
do 32 i=1,ntp(j}
write (6,10} p(j,i)
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10 format (i2,’+',8)
32 continue
write (6,13} £(3)

13 format{’ ---> £=7,1il10}

21 econtinue
write (6,15}
15 format (/)

fafofatololslalslalalalalalat el vt el atotlalafalafalatal ol ofololalefalefalefeloful ol slelalalafatatetolatals tatafedulola alatalalaialolole)

This subroutine is the implementaticn of the
LPT algorithm

ololelalalel ol elelelel el sl elalalalalefal ol slat ol o slololalalalet clelel el el el alafal sl alalofafolol ool alalalatelelel el alatalalololalsl

<
c
<
c
[

integer as(im, in),p{im,in),t {in),st(in) ist (in),ntp(im}, £ (im}

c
¢ go to next solution case
c
11=13i-1
if (1ll.eq.0) go tao 71
go to 70
c
71 stop
end
c
c
c
c
c
c
<
c
subroutine assign(n,m,t,as,ntp,p)
o4
parameter(in=48, im=48)
c
<
c initialization
c
do 30 j=1,m
£{3)=0
ntp{j)=0
do 31 i=1,n
as{j,i)=0
p(j, 1)=0
31 continue
30 continue
Cc
c Sorting of the tasks
=1
do 5 i=1,n
st (i)=t {i)
5 continue
do 61 i=1,n
max=1
do 50 1=1,n
if (st{l}).gt.st{max)) max=l
50 centinue
ist (i) =max
st (max) =0
61 continue
c

do 60 i=1l,n
st (1)y=t (i}

60 continue
do 22 i=1,n-1
max=1i
do 23 k=i+l,n

if (st {max).lt.st(k}}) max=k

23 continue
it=3t (max)
st (max)=st (i)
st {i) =it

22 continue

286



[¢]

assignment

do 3 i=1,n
min=1 -
if (m.eq.1l) go toc 93
do 12 3=2,m ’
if (f(min).gt.f(j)) min=j
12 continue
93 as{min, ist (i)} =1
f(min)=f(min)+st(i)
3 continue

do 14 j=1,m
k=1
do 35 i=1,n
if (as(j,i).eq.o) go to 35
pli k)=1
k=k+1
ntp (J}=ntp(j)+1
35 continue
14 continue

return

end
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

[¢]

This subroutine SEQUENCES the eXecution of the tasks

c

<

assigned to any processor c
c

c

subroutine sequence(n,m,as,rcm,ntp,p)
Parameter(in=48, im=48)
integer dr(im,in),rcm(in,in)

integer as(im,in),p(im,in)
integer ntp (im)

0

Initialization

do 1 j=1,m
do 2 i=1,n
e(i,1)=0

2 ceontinue

1 continue

[¢]

Priorities of the tasks

do 5 J=1,m
do 4 i=1,n
dr{j,i)=-48
if {as (i, 1) .eq.0) go to 4
dr(j, i)=0
de 6 k=1,n
dr(j,i)=dr(j,i)+rcm(i,k)*(l-as(j,k))
¢ continue
4 continue
5 continue
(o)
¢ Sequence the execution of the tasks by sorting their priorities
e

do 11 §=1,m
do 3 i=1,ntp ()
1=1
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do 12 k=2,n

if (dr(j,1).lt.dr{j.k}} 1=k
continue .

dr(j, 1)=—dr(j,1)

p(jll}=l

continue

continue

return
end
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