STATIC ALLOCATION FOR A DATA FLOW

MULTIPROCESSOR SYSTEM

T.M. Ravi November 1986
M. D. Ercegovac CSD-860028
T. Lang

R. R. Muntz

Static Allocation For A Data Flow Multiprocessor System

T. M. Ravi, M. D. Ercegovac, T. Lang and R. R. Muntz
Computer Science Department, University of California, Los Angeles, California 90024

This paper describes an algorithm for compile-time allocation of any acyclic data flow graph o a
general multiprocessor system. The single-pass algorithm incorporates a variable communication time
associated with a task which depends on whether successor tasks are allocated to the same or different
processors. The algorithm is based on two principles :- precedence to critical tasks and minimization of
communication time. The performance of the algorithm is studied and compared favorably with critical path
algorithms.

For effective allocation of fine grain data flow graphs with large control and communication overhead,
the graph is preprocessed by a graph reduction algorithm. The graph reduction algorithm forces the graph to be
of appropriate size prior to allocation. Performance studies indicate that graph reduction of fine grain graphs
leads to significant decrease in response time.

1. INTRODUCTION

The data flow model of computation naturally supports concurrent processing by distributing
sequencing and control of the program. Programs are represented as data flow graphs with nodes representing
computation and arcs representing data dependencies. Sequencing is done by the flow of data in an
asynchronous manner (data-driven sequencing). A node is activated when all its inpus arguments have arrived.

Moreover, as the control is decentralized many nodes can be activated simultaneously.

Data flow principles can be applied at any level where the exploitation of concurrency would lead to a
cost-effective increase in performance. Sequencing at the task level (task-flow) and at the machine instruction
level are two examples with different degrees of granularity. Of particular importance in developing cost-
effective architectures based on the data flow approach, is the choice of the granularity of nodes which depends
on the ratio of communication and processing time and the power of the dependency analysis of the user
program. The size of partitions and hence the granularity of tasks is determined to a large extent by the ease with

which the user or the user’s tools can determine dependencies in the program.

Task allocation is the assignment of tasks to processors in order to optimize a performance measure,
given the system characteristics (¢.g., number of processors and communication delays). Two main approaches
exist for task allocation. In static allocation, the tasks are allocated at compile time to processors using global
information about the program and the system organization. The cost of allocating tasks is incurred once for a
given program even though it may be executed repeatedly. However, static allocation policies can be inefficient

when estimates of run-time dependent characteristics are inaccurate.

A dynamic allocation policy is based on measuring processor loads at run-time and assigning activated
tasks to the least loaded processor. Dynamic policies use limited information about the program behavior, but
can balance the load at run-time by migrating tasks. The disadvantage of dynamic allocation is the overhead to
measure the load of processors, calculation of global minimum load (or at least the minimum over a
neighborhood of processors), and allocation of tasks at run-time. In addition global optimizations based on the

critical path in the program are not possible.

In our work we adopt a static allocation policy which is suitable for our real-time application, where a
single program is run repeatedly on a multiprocessor system. We describe an algorithm for compile time
allocation of data flow graphs to a general multiprocessor system. The algorithm is tuned for an existing

multiprocessors system described in Section 2.1,

2. THE MODEL

2.1 Architecture

The target architecture is the SANDAC IV multiprocessor {4], consisting of up to 16 Motorola
MC68000 based processors connected by a global bus. It has been modified [5) for data flow execution of task
graphs, The system is designed for real-time applications with periodic gathering of data from external sensors

and processing it to drive output actuators.

Communication between processors is message based [13]. Results from a task running on a processor
can be sent to a successor task on the same processor or on a different processor. Communication within a
processor, termed local communication, is dominated by the time taken to activate tasks. Since data flow
execution tends to have significant control overhead due to waiting-matching, task-fetch units and token
labelling [2]. Communication to a task on a different processor, termed bus communication, is more time
consuming, as the global bus also has to be accessed. Because of the characteristics of the communication

mechanism [13], the following constraints result:

. The execution of tasks and the communication of results cannot be overlapped as the processor is busy
during communication.

. Results are sent out only when the task has completed execution.

- If a task has several results, each result has 1o be sent out sequentially,

The processing time of a task is calculated at compile-time from the total number of cycles taken by the
instructions in the task and the instruction cycle time, The local communication time can éimilarly be calculated
by analyzing the mechanisms for task initialization in the target data flow architecture. The bus communication
is estimated from the amount of data to be communicated, the bus time and the delay in accessing the
communication network. Since the bus communication time depends on the load, this time is roughly estimated

by considering the average delays caused by a medium load on the communication network.

2.2 Computation

We consider the allocation of a program at compile-time (static allocation) to a system with n identical
pracessors. The program is partitioned at compile-time into tasks of different size. Partitioning compilers [6]
transform programs into data flow graphs with nodes representing tasks and arcs representing precedence
relationships between tasks. The partial ordering of tasks necessary for correct execution is captured by the

dependencies between these tasks. There is no restriction on the granularity of the nodes of the graph, and each

task may contain any number of instructions to be executed sequentially.

The nodes of the graph have a single point of entry and a single point of exit, i.e., a task is activated
when all its input (arguments) have arrived, and can deliver its results to successor tasks only after execution is
complete. A single entry point implies that each task is a complete self-contained portion of the computation,
and is not made to wait for intermediate inputs once its execution has begun. Having a single exit point is a

restriction imposed by our target architecture.

Tasks are the basic unit of allocation and are indivisible over processors. Preemption of tasks is not

allowed and a task once started will run until completion.

We assume the data flow graph to be acyclic without conditional nodes. It is assumed to have a single
entry node and a single exit node. As usual, any graph can be converted to a single entry single exit graph by

introducing a dummy entry and exit node.

We consider a deterministic model, where processing and communication times of tasks are known a

priori. Associated with each task we have :

tp" - processing time of task T;
tc;ij - local communication time for results between task T; and task 7

2.5 - bus communication time for results between task T; and task T;

The processing time () of a task is an estimate of the time taken to execute the task in a processor,
The communication time (f,) of a task has components due to both local and bus communication. When results
are sent to successor processes which reside on the same processor then a lower local communication time {Z,)
is incurred. Bus communication time (.5} is incurred if the results have to be sent to a task on a different
processor, The results from a tasks are sent out sequentially and hence the total communication time (z.) of a
task is the sum of the communication times of individual results. The communication time (tcf) for task T, is the

time taken to communicate all the results to the successor tasks and is given by

t'= Z 1o+ Z tep" (1)
Task T; € same processor Task T; € different processor

During the execution of task 7; the processor is busy for (rpi+tci) time units.

3. TASK ALLOCATION
3.1 Introduction

We now describe a static task allocation algorithm that reduces the response time of the program on a
system with n processors, Since optimal allocation of a graph with precedences is known to be NP-complete
[16], we develop an heuristic algorithm. Our algorithm is based on list schedules, in particular critical-path list
schedules, which have been reported in [1, 15]. We include the effect of communication times associated with

each task, by modifying the critical-path list schedule reported by Kohler [15].

A critical-path list scheduling algorithm consists of a list of tasks ordered according to the longest path
from the task to the exit node of the graph (critical path); and assigns to an idle processor the first task (i.e. the
one with largest critical path) from the list that can be executed (i.e. whose arguments are available). The
application of this algorithm to the case that includes communication times as defined in the previous section,

encounters three specific problems:

1. Since the communication time associated with a task can be local or bus communication time
depending on where its successors are executed, to reduce the overall response time it is
convenient to allocate a task and its successors to the same processor. Consequently, the

allocation algorithm has to include some mechanism for this.

2, The communication time associated with a particular task is not known before allocation, since
it depends on the processors on which the successors will be executed. Consequently, it is not

possible to calculate the precise critical paths.

3. The execution time for a particular task (processing + communication) depends on the

allocation of the successors. Because of this it is not possible to precisely estimate when the

processor will be free again.

These problems are taken care of in our algorithm as follows. To reduce the communication time,
instead of choosing the first task on the list that can be executed, we select from a set of candidates (as described

in the algorithm of the next sub-section) the one that produces the maximum saving in communication time.

It turns out that our algorithm does not rely on an exact calculation of the critical paths. This is becanse
instead of choosing the top task in the list ordered according to critical paths, we choose the top several
candidates, whose critical path falls within a certain range. Consequently, the effect of the different ordering of
tasks produced due to the lack of precision in determining the critical paths, is minimized by selecting a task for
allocation from the top few tasks on the list instead of the top task on the list. Therefore, in our algorithm for an

estimate of the critical paths, we include with each task just the local communication times of the results.

Finally, to be able to calculate the execution ﬁﬁe of each task once it has been allocated, we reverse the
graph and perform the allocation on the reversed graph. To obtain the actual schedule it is sufficient to reverse
the schedule obtained. This procedure solves the problem because now a task is allocated after its actual
successors, and therefore its communication times are known. To have the correct task charged with the
communication time in the reversed graph, the communication times are associated with input arcs. As
illustrated in Figure 1, the cost of communrication tc35 is incurred by the processor which executes task T3, but
cannot be estimated when task Ty is allocated because the task T'5 has not yet been allocaied, However if we
reverse the graph and then apply the allocation algorithm to the graph, then Ts is allocated before T3, In the

reversed graph, the cost of communication tc”

is associated with the input arc to T3, and charged to the task
T4. Now as task T's is allocated before T3, hence tc35 can be estimated when T'5 is allocated. Consequently,
reversing the graph before allocation allows us to maintain correct bookkeeping when the value of

communication time depends on the allocation of successor nodes.

(@))

Figure 1 : Graph Reversal

Hence as the input to the allecation algorithm, we provide the reversed version of the original data flow

graph with communication times associated with the input arcs.

3.2 The Algorithm

Consider a graph with tasks Ty, T T}, to be executed on n processors Py, P P,. The arcs of

the graph represent precedences in the graph. Two lists are constructed - a Processor list (L,) and Task list (Ly).

The processor list L,, contains the processors listed in increasing order of busy times. The processor on
top of the list is the one which will become free next. Initially, the processors are in any order in the list, as they

are all free.

The task list L, consists of unallocated tasks in decreasing order of their critical path lengths. The
critical path length CP(7;) of a task T, is defined to be the length of the longest path from the exit node to T;. In
the calculation of critical paths, we take the lower value of the communicaton time (i.e., the local

communication time) for the arcs, The critical paths of nodes in a graph can be evaluated recursively, starting at

the exit node T. The task list L; is initially generated by sorting the tasks in decreasing order of their critical

paths. When a task has been allocated it is removed from the task list L, .
The allocation algorithm is as follows :
1. Choose the top processor P, from the processor list L,, which is the next processor to become idle.

2. Scan the task list L, from the top, until the first candidate for execution in processor P, is found. A task
is a candidate for execution if it has been activated, i.e., if all its immediate predecessors have .

completed execution and delivered their results.

3. Continue to scan the task list and choose as candidates all activated tasks with critical path within a
deviation A from the critical path of the first candidate. Stop scanning the task list as soon as a task

which does not fall within the deviation A is encountered.

4, Select amongst the candidates the task Tsg; to be assigned to processor P,. The task which, when
allocated to the processor P,, gives the maximum saving in communication time is selected. The
saving in communication time is the sum of the difference of the bus and local communication time for

each immediate predecessor task assigned to the same processor P,,.

5. The busy time of the processor P, is updated. The processor will be busy for the period (t,'+2.") from

the time it starts executing the task (T'ggy). The communication time (tci) is calculated from Eq. (1).

6. The processor P, is reinserted at the appropriate position in the processor list Lp, which is ordered

according to increasing busy time,
7. The task Tsz; is removed from the task list L,,

8. If no activated tasks are found in L, for allocation to P, i.e. if no candidates are found in Step (2), then
processor list L, is scanned for the first processor Pj, whose busy time is greater than the busy time of

P,. This amounts to waiting for a processor to complete execution of a task, and checking again if any

new tasks can be activated.

Processor Py, is removed from its position and placed on the top of the processor list L,. Processor P,
and any other processors with busy time equal to that of P, are updated with busy time equal to the

busy time of P}, thus creating idle times in processors when no tasks are ready.

9. Go back to Step (1) and continue this procedure until the task list (L,} is empty.

The allocation algorithm is described in detail in Ravi [19], The output of the algorithm is a list of tasks

which have been allocated to each processor. The list can be reversed to obtain a schedule for execution.

3.3 Graph Reduction

‘When the processing times of tasks are small compared to the communication times then thrashing can
occur because of excessive communication overhead and the allocation algorithm is not as effective as the graph
has not been properly partitioned. This is because at the time of allocation of a task there is a limited view of the
surrounding subgraph and little freedom to force the allocation of the subgraph to which the task belongs to a
single processor. Consequently, when the original data flow graph ts fine grain we can frequently achieve better
response times from allocation by preprocessing the graph and transforming it to a larger grain task graph.
Graph reduction is an additional heuristic to force tasks, which are the unit of allocation, to be of appropriate
size. Replacing subgraphs by single nodes thereby reducing the fine grain graph into a variable resolution task
graph, forces the allocation of subgraphs to a processor when the parallelism within the subgraph cannot be
effectively utilized. Moreover the time taken for the allocation process is reduced as less nodes have to be
allocated now. Other work on the exploitation of larger grain data flow parallelism include Babb {3], Ercegovac

[7, 8], Gajski [9, 10], Gaudiot [11, 12], Hwang [14], and Ravi [20].

The appropriate size of tasks depends on a tradeoff between the efficiency of the algorithm to exploit
parallelism and the overhead due to communication and activation. The criterion used here for lumping together

nodes into a single task is the local minimization of the response times for subgraphs under consideration.

Figure 2 : Graph Reduction

Consequently, the condition for combining a node T with its predecessor nodes, provided each of the
predecessor nodes has a single result, is:

¥, T8 < max (g, Tror8 Ly Trarslily for 1 <i <T.narg,
: i
]

where tpT‘ arglf] is the processing time of the ith predecessor node of node T,

T, arglil
b

t is the communication time of the result of ith predecessor to node T',

and T'; .narg is the number of predecessors of node T';.

This condition amounts to examining the critical path of the subgraph assuming the predecessor nodes
are activated at the same time, and comparing it with the sum of the processing times of all the nodes in the
subgraph. This condition permits us to make a local decision on whether to execute the subgraph as it is or to

lump it into one node and execute it sequentially,

This step is illustrated in Figure 2. Figure 2a is a subgraph with low-level parallelism and tasks with
large overhead, while in Figure 2b the nodes Ty, T», T3 and T4 have been lumped together into a single node
T‘l. In the subgraph of Figure 2a, node T can execute only after the results from node Ty and T3 and T4 have
arrived. For the local optimization if we assume that nodes T, T3 and T4 are activated at the same time, then
the result from nodes 75 and Ty will arrive after 5 cycles and the result from node T4 will arrive after 8 cycles.

Hence node T is activated only after 8 cycles. In the sequential case (Figure 2b) the result from nodes T, T3

10

and T4 are available after 6 cycles, as we do not have to communicate between different processors. In this case

the subgraph of Figure 2a can be reduced to Figure 2b.

The criterion for reduction is tested by an algorithm (Upreduction [19]) which traverses the graph

starting at the exit node, It combines a node with its predecessors whenever the reduction criterion is met.

The reduction algorithm results in graph ransformations of two kinds:
. Reduction of fine grain parallelism when local criterion suggests that it cannot be effectively

utilized. These are transformation of the kind illustrated in Figure 2.

. Combination of sequential nodes. Sequential nodes which have single arguments and results
are combined together into a single node, saving the communication time between them. This is

illustrated in Figure 3.

(a) ®)

Figure 3: Reduction of Sequential Nodes

However, it must be emphasized that graph reduction is a heuristic, which is applied locally to a node
assuming that all its predecessors can be activated at the same time. It can result in a longer critical path for the

program when a node on the critical path is combined with predecessors not belonging to that path.

11

4. PERFORMANCE

To study the performance of the algorithm we chose 10 precedence graphs abstracted from real
programs, which were allocated to varying number of processors, and statistics collected. Five of the precedence
graphs chosen are irregular and asynchronous with arbitrary patterns of precedence, The other group of graphs is

highly regular, symmetric and synchronous.

The five asynchronous graphs were obtained from Martin [18] with backward branches eliminated. The
regular and synchronous graphs chosen are the 16-point Fast-Fourier Transform (FFT), Sort-Merge (SM),
GRSEQ, Matrix Multiply (MM) and SYNS. The Sort-Merge graph is characterized by binary branching till a
concurrency of 32 nodes and then a binary merge. GRSEQ is a group-sequential task graph with precedences
from stage to stage. The 4X4 Matrix Multiply is obtained from a program written in Functional Programming
Language (FPL). The final graph SYNS is the same precedence graph as the last graph (ASYNS) of the previous
group, but this time with constant and equal times instead of random times. This graph branches into a number

of identical streams but the precedences within a stream are highly irregular. Table I summarizes the graphs used

as benchmarks.
TABLE I
Name Descripticn No. of Nodes
ASYNI | Weather Prediction (WWP 32) 32
ASYN2 | Assignment & Sequencing (82V) 82
ASYN3 | Complex Numerical Weather Problem (NWP 147) 146
ASYN4 | Complex Assignment & Sequencing L2) 193
ASYNS | Graph with identical streams (X-RAY) 223
FFT 16-point Fast-Fourier Transform 80
SM Sort-Merge (Max. Parallelism =32) 94
GRSEQ | Task Graph with Stagewise Precedences 62
MM 4X4 Matrix Multiply 188
SYNS | ASYNS with equal times 223

For the graphs in the synchronous group we assign equal times to each of the nodes and to each of the

arcs. The processing and communication times for nodes of the asynchronous graph are chosen to be unequal

12

and vary over a range from the mean in order to investigate the performance for general program graphs. The
execution time of each node (#;), the local communication time () and the bus communication time (f.) are
chosen randomly from a uniform distribution across a specified interval. In our measurements we specified a
range of 10% of the mean for the processing time and the bus communication time and kept the local
communication time constant. The choice of a range of 10% along with the general asynchrony of the graph

permits us to test our algorithm for graphs where nodes do not lie in distinct levels.

The principal performance characteristic is the response or completion time of the program graph,
which we attempt to minimize. The response time is compared to the upper critical path length (2cp,) and the

lower critical path length (tcp,), where

lcp, = 3 (t,'+ p) tY) and
i € nodes on the critical path J € arcs from node {
fep, = > B+ X)

i € nodes on the critical path J € arcs from rode i

The other performance measures of interest are the total bus communication time and average idle time
per processor. The total bus communication time is the sum of the times spent by each processor in
communicating with other processors. The average idle time is calculated as the sum of the idle times of all
processors divided by the number of processors (N). In the model of architecture we have considered the
processor is busy during communication and hence communication times are not counted as idle times. Note that
the idle time also includes the time from the completion of execution of tasks on a processor to the maximum

completion time of all the processors.
The objectives of this performance evaluation are the following:

. To examine the behavior and characteristics of the allocation algorithm and its effectiveness in
speeding up the computation in a multiprocessor system. In particular the response time is compared to the

average idle time and the total bus time. We also study the effect of the variation of communication and

13

processing time on the performance of the allocation algorithm.

critical tasks and minimization of communication time.

algorithm to the critical path list schedules which have been reported [1, 15, 17] to be near optimal, where

communication times have not been considered.

We performed more than 3000 allocations on the

observed. We chose two representative graphs - Asynchronous X-RAY graph (ASYNS) and Matrix Multiply

{MM) to illustrate our results.

4500

Demonstrate the effect on response time of the two major features of our algorithm - precedence to

In particular we are interested in comparing our

Observe the improvement in response times when a fine grain graphs are reduced before allocation.

ten graphs, and present the general characteristics

4000
3500

3000

2500
/ Response Time

t, = 19-21
to=0.1
tep=1.9-2.1

=2

2000
Critical Path (U

1500 - ¥ a\‘: per
1000 === oo, Av.Ide Time |

Critical Path (Lower)

500 e Total Bus Time
ok=""T" | 1 | | ! |
1 3 5 7 9 11 13 15
N

Figure 4 : Time Characteristics for Graph ASYNS

14

We first examine the reduction in response time of programs when allocated to multiprocessor systems,
Figure 4 plots (for graph ASYNS) the variation of response time, average idle time per processor and the total
time spent in bus communication with number of processors (N). Initially the specdup is almost linear, but as the
number of processors is increased the response time saturates to a value between upper critical path length
(tcp,) and the lower critical path length (fcp,). We observe that while the total bus communication time
becomes constant, the average idle time increases as the number of processors is increased. Note that as the
number of processors is increased, the average idle time per processor approaches the response time, implying

very little processor activity in each processor.

From our observation, scheduling anomalies such as the increase in response time with additional
processors are rare and cause negligible deviations. Their occurrence is most probable when the communication
time to processing time ratio is very high, or when the response time curve has saturated and the number of
processors is further increased. In synchronous graphs when the number of processors (N) is a factor of the total
natural concurrency of the graph, then allocation to each processor is symmetrical and a significant improvement
in response time is noted. However, when this happens in the saturated part of the curve and the number of

processors is further increased then increases in the response time can be noted.

We next observe the effect of changing the ratio of bus communication time and processing time on the
response time curves. Figure 5 compares the response time curves for different ratios of communication and
processing time for the Matrix Multiply graph. The processing time is kept fixed while the bus communication
time is varied. We keep the local communication time almost zero in order to isolate the change in bus
communication time on the response time. Systems with extremely high communication time ratios (tcpfty) are
unable to utilize large number of processors and their minimum response times are several times higher than the
lower critical path length (tcp,)- But as the communication time becomes smaller than the processing time, the

difference in response times for different ratios (for example Iepfty = 1/5 & 1/10) becomes negligible. Thus, for

i5

2000

18001~ ty
1600 |-

1400

1200

T 1000

800

600

400

200

Figure 5 : Variation of Response Time for MM with
Ratio of Communica‘ion and Processing Time

fine grain graphs the time taken by communication across processors limits the minimum response time

achievable.

Our algorithm allocates a task to a processor based on two driving principles - precedence to critical
tasks and the minimization of the communication time between this task and predecessor tasks which have
already been allocated. We demonstrate next the importance of both principles and show how performance

suffers when either one is ignored.

In Figure 6 we illustrate the performance improvement of our allocation algerithm over the case when
only critical path scheduling is enforced and no attempt is made to have predecessor-successor tasks cohabit in
the same processor. The examples are the Matrix Multiply and ASYNS graph, where the ratio of communication

time and processing time is 1/4. The curves in Figure 6 shows the percentage improvement in response time of

16

40

35

oM w

30

25|

% Time 20}

151

10

i8

Figure 6a : Percentage degradation in Performance for Matrix Multiply
by not enforcing minimization of communication criteria

our algorithm over the case when only critical path scheduling is enforced. We observe an average degradation
of 24.7% for the Matrix Multiply graph and 6.9% for ASYNS5, when no attempt is made to allocate a task and its

successors to the same Processor.

TABLE I
% Improvement in Response Time
Graph
teplly =1/10 | tepftp =1 | Lopfty =2

ASYNI1 1.9 9.9 13.8
ASYN2 0 31 1.2
ASYN3 0.9 9.6 10.6
ASYN4 0.2 24 33
ASYNS 1.2 12.6 18.9
FFT 1.6 15.8 27.1
sM 3.7 26.8 46.4
GRSEQ 1.2 16.5 384
MM 6.1 42.3 75.7
SYNS5 2.0 214 27.1

17

30

t, = 23.75-26.25
ty=0.2

25 tep= 9.5-10.5
20}
% Time 15|-
10
5

0
0 14

Figure 6b : Percentage degradation in Performance for ASYNS by
not enforcing minimization of communication criteria

Table II shows the percentage improvement in response time of our algorithm compared to the critical
path allocation algorithm. For each of the five synchronous and asynchronous graphs we calculate the average
improvement in response time for number of processors till saturation, for low and high ratios of communication

and processing time.

As expected the improvement in response time is greater when the communication times are higher.
This is because the net reduction in communication time achieved by reducing interprocessor predecessor-
successor task communication is larger when the bus communication time is high. Also the communication
minimization criterion has more effect for the synchronous graphs, because several tasks with the same critical
path become enabled at the same time, and the choice of which task to allocate can be based on maximum

saving in communication time, rather than in random. Graphs ASYN2 and ASYN4 have limited parallelism, and

18

have few candidates to choose from while allocating a task to a processor. Hence the additional communication
reduction hueristic resylts only in a small gain over the performance achieved by the critical path criterion. We
have also observed that the improvement is largest when the speedup is almost linear and reduces when the

speedup curve saturates.

12

tp = 25
ty=0.2
104~ tev=2.5

% Time 6

oL/ 1 I T T S
0 2 4 6 8 10 12 14 16 18

N

Figure 7a : Percentage degradation in Performance for Matrix Multiply by
not enforcing critical path ordering

When the deviation (A) is made very large then the critical path List ordering is no longer operative.
Tasks are allocated based only on the minimization of communication time. In Figure 7, we show the percentage
improvement in performance of the algorithm compared to the case in which the only driving principle is the
minimization of communication time, We show the improvement in response time when A=0 compared to when
A=100 units for the Matrix Multiply, and A=10 compared to A=468 for ASYN3. The graph ASYNS5 was not
chosen to illustrate the effect of the critical path criterion, because lengths of parallel paths in ASYNS do not

differ sufficiently, and the average improvement is only 2.3 %, With the deviation {(A) so high, at each stage of

19

14

tp = 23.75-26.25
tg=0.2
top= 2.37-2.62

12

% Time

14

Figure 7b : Percentage degradation in Performance for ASYN3 by
not enforcing critical path ordering

the algorithm the candidates for allocation to a processor are all the enabled tasks in the graph. For Matrix
Multiply with A=0 the algorithm performs better than when A=100 units, except at certain points like N= 4 and
16 where the two do the same, because N is a factor of the natural concurrency of the graph, and in these cases
the minimization of communication rule is sufficient to force symmetrical allocation. Also note that the critical

path criterion has a more pronounced criterion when the number of processors increases.

Finally we examine the effect on performance of graph reduction prior to allocation. We observe that
when bus communication times are high (f/t, > 2) then graph reduction which consists of lumping of
sequential nodes and the combination of a node with its predecessors (reduction of paralielism), leads to
significantly better performance. In Figure 8 we compare the response time curves for Matrix Multiply and
ASYNS, with and without reduction for z, = 10, £; = 0 and #.4 = 20 (in the average for the asynchronous graph),

so that £/t = 2. We observe an average improvement in the response time of about 16.1% for Matrix Multiply

20

1200

1100

1000

900

T 800

700

600

500 |- LRI NBENR

400 | E | 1 | L~

Figure 8a : Effect of Graph Reduction on Response Time for MM

2200

2100
2000
1900
1800
T1700
1600
1500
1400
1300

1200 | |] 1 { |
2 4 6 8 10 12 14 16

Figure 8b : Effect of Graph Reduction on Response Time for ASYNS

21

and 7.2% for ASYNS, when graph reduction is performed under these circumstances. Moreover the number of
nodes to be allocated reduces from 188 to 106 for Matrix Multiply and from 223 to 134 for ASYNS, thus
reducing the time for allocation. In Figure 9 we show the percentage improvement in response time of the graphs

with just combination of sequential nodes and with both sequential reduction and reduction of parallelism.

30
Sequential + Parallel
251 Reduction
~ -
. / ~ S
20 "’ ‘\ ’.r v
L T '
15
% Time 10}
5L Sequential —
Reduction
(1] -
5
-10 | i |] | | i i
0 2 4 6 8 10 12 14 16 18

Figure 9a : Effect on Performance for MM due to Sequential Reduction
& Both Sequential and Parallel Reduction

However when the processing times are much greater than bus times then reduction can cause a fall in
performance. This can be attributed to the fact that we loose flexibility in allocating tasks when several tasks are
lumped together. We studied the response time of the benchmark graphs with and without reduction, with ¢, =
10, t,; = 0 and £, = 1 (in the average for the asynchronous graphs). For such a low ratio of communication and
processing times, only sequential reduction took place, and hence two of the ten graphs remained unchanged on
reduction. The maximum degradation in response time observed in our experiment was 6.7 %. In only 55 % of

the cases was there any change in the response time when reduction took place, and the average net increase in

22

18-
16| n
\ Sequential + Paralle!
14 \ / Reduction
A

% Time
-
- - \\

R .
Sequential
Reduction

|] !

10 12 14 16

Figure 9b : Effect on Performance for ASYNS due to Sequential Reduction
& Both Sequential and Parallel Reduction

response time when a change was observed was only 0.4 %. We thus note that even when the tasks have low
control and commauntication overhead, the penalty of preprocessing the graph is minimal.
5. CONCLUSIONS

We have developed an algorithm for allocation of a acyclic graph data flow graph to a general
multiprocessor system. It is a list scheduling algorithm which incorporates variable communication times,

depending on whether the successor task is allocated to the same or different processors. The algorithm is based

on two principles:

Precedence to critical tasks

Minimization of communication time

23

Performance studies indicate that our algorithm is well behaved, relatively anomaly free, and compares

favorably with critical path algorithms which did not take any special measures to handle communication time.

When the program graph is fine grain, i. e. the control and communication overhead is comparable to or
exceeds the processing time of a task, then we preprocess the graph with a graph reduction heuristic. The graph
reduction algorithm forces the tasks of the graph to be of appropriate size before allocation. From experiments
we observe that graph reduction leads to significant improvement in performance if the graph is fine grain, i.e.
when the ratio of communication time and processing time is large. However with large grain task graphs, graph

reduction is not effective.

ACKNOWLEDGEMENTS

This work was supported in part by the Contract No. 25-3074 "Multiprocessor System Evaluation and
Programming Environment” from the Sandia National Laboratories. We are grateful to Mr. George Davidson of

Sandia National Laboratories for his comments and cooperation in this work,

REFERENCES
1. Adams, T.L., Chandy, K. M., and Dickson, J. R. A comparison of list schedules for parallel
processing systems. Comm. ACM 17, 12 (Dec. 1974), 685-690.
2, Arvind and Culler, D, E. Tagged Token Dataflow Architecture. Tech. Rep. 229,
Computation Structures Group, Laboratory for Computer Science, MIT, Cambridge, Mass.,
July 1983.
3. Babb 11, Robert G. Parallel processing with large grain data flow techniques. JEEE Comput,

(July 1984), 55-61.
4, Borgman, C. R. and Pierce, P. E. A hardware/software system for advanced development

guidance and control experiments. ATAA Computers in Aerospace Conference, AIAA-83-
2416, Oct. 1983, Hartford, CT, 377-384.

24

10.

11.

12.

13.

4.

15.

16.

17.

18.

9.

20.

Davidson, G. Personal communication, Oct. 1985.

El-Dessouki, O., Huen, W. and Evens, M. Towards a partitioning compiler for a distributed
computing system Journal of Digital Systems V, 1/2 (1981), 157-179.

Ercegovac, M. D., Chan, P. K. and Ravi, T. M. A dataflow multiprocessor architecture for
high speed simulation of continuous systems. Proc. International Workshop on High-Level
Architecture, 1984,

Ercegovac, M. D. et al. Task partitioning, allocation and simulation for a dataflow
multiprocessor system. Proc. Summer Computer Simulation Conference, 1984.

Gajski, D. D. etal. Cedar. Proc. Compcon, Spring 1984, 306-309.

Gajski D. D. and Pier, Jih-Kwon, Essental Issues in Multiprocessor Systems. JEEE
Computr. (June 1985), 9-27,

Gaudiot, J. L. On program decomposition and partitioning in data-flow systems. UCLA
Computer Science Department Report No. CSD-821212, Dec. 1982.

Gaudiot, J. L. and Ercegovac, M. D. Performance evaluation of a simulated data-flow
computer with low resolution actors. Journal of Parallel and Distributed Computing, 2,
321-351 (1985).

Harris, D. L. Inter-processor communication. Sandia Aerospace Computer Development
(SANDAC), Sandia National Laboratories, Albuquerque, New Mexico, May 1984.

Hwang, K. and Su, S. P. Priority scheduling in event-driven dataflow computers. TR-EE
83-36, School of Elec. Eng., Purdue Univ., Dec. 1983,

Kohler, Walter H. A Preliminary evaluation of critical path method for scheduling tasks on
multiprocessor systems. IEEE Trans. Comp. (Dec. 1975), 1235-1238.

Lenstra, J. K. and Rinnooy Kan, A. H. G. Complexity of scheduling under precedence
constraints. Operations Research 26, 1 (Jan.-Feb, 1978), 22-35.

Lord, R. E. Scheduling recurrence equations for solution on MIMD type computers, Ph.D.
Dissertation, Washington State University, Pullman, WA, 1976.

Martin, D, and Estrin, G. Experiments on models of computations and systems. /EEE Trans.
on Electronic Comp. (Feb. 1967), 59-69.

Ravi, T. M. and Ercegovac, M. D. Allocation for the Sandac multiprocessor system. UCLA
Computer Science Department Report No. CSD-860059, Feb. 1986.

Ravi, T. M. Partitioning and Allocation of Functional Programs for Data Flow Processors.
M.S. Thesis, UCLA Computer Science Department Report No. CSD-860063, Apr. 1986.

25

