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Abstract

In a previous paper an algorithm to convert redundant number representations into con-
ventional representations was presented. The conversion is performed concurrently with the
digit-by-digit generation of redundant forms by schemes such as division, square root, and on-
line operations in which redundantly represented results are generated in a digit-by-digit manner,
from most significant to least significant. Here we discuss a variation of this algorithm that

results in a more effective implementation for some on-line algorithms and combinational imple-
mentations.

1. Introduction

In a previous paper [1] we presented an algorithm to convert a signed fraction from a
redundant (signed digit) into a conventional range-complement representation. Such a conver-
sion is necessary, for example, in SRT division or square root algorithms that produce this
redundant result {2,3,4,5,6], or to convert operands and results in on-line algorithms into the
equivalent conventional forms [7,8,9,13]. The algorithm differs from the standard approach for
the conversion, which consists of a carry-propagate addition of the positive and negative digits,
since it is done on-the-fly while the digits of the redundant representation are produced from

most to least significant and has a delay of approximately one carry-save adder.

The previously prdposed algorithm generates two conditional forms, in a technique simi-
lar to that used in conditional-sum addition [10}, and selects one of them when a nonzero digit is

produced. Here we propose a variation of this algorithm which requires just one form and one



control bit per digit. This variation has a more efficient implementation for higher radices and for

combinational implementations of right-to-left algorithms, such as multiplication [12].

We first review the previously proposed algorithm and the corresponding impiementation

and then present the new variation and compare both.

2. Previous Algorithm and Implementation

We want to convert the fractional signed-digit representation
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into the conventional range-complement representation
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The digits of p are produced from most significant to least significant and the conversion
is done on-the-fly as each digit is produced. Let us call g [k ] the converted fraction after k digits

have been produced. The algorithm generates two conditional forms A [k] and B [k ] such that

qlk] = A K] =

and

(2.4)
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This results in the following recurrence:
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* p,>0 since p is normalized.

B[1]=

The algorithm is illustrated for » =4 and p; € {-3,...,3} in Figure 1.



Figure 1. Example

k | px Alk] Blk] (k]

1] -2 12 1.1 1.2

2 0| 1.20 1.13 1.20

3 3| 1.203 1.202 1.203

4 | -1 | 1.2023 1.2022 1.2023

5 0 | 1.20230 1.20223 1.20230

6 ( -1 | 1.202233 1.202232 1.202233

7 2 | 1.2022332 1.2022331 1.2022332
8 | -3 | 1.20223311 | 1.20223310 | 1.20223311

The sequential implementation of the algorithm requires two registers to hold A (k] and

B[k], respectively. These registers are shifted left with insertion of a new digit. They also re-

quire parallel loading capabilities to load A [k] with B[] and vice versa. This implementation

is shown in Figure 2a.

In a combinational implementation, two vectors are kept and the selection is done using

multiplexers as shown in Figure 2b.

3. Variation of the Algorithm and Implementation

The algorithm we present now is based on the following observations:

- In the previous algorithm the value of the j-th digit of B[] is equal or one less than the

corresponding digit of A [k]. Consequently, it is not necessary to keep both forms, but just one

form and one bit per digit to indicate whether both digits are the same or not.
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Figure 2a. Sequential Implementation
of Basic Scheme
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Figure 2b: Combinational Implementation
of Basic Scheme



- Whenever p,#0 all digits, with exception of the least significant, of A [k] are equal to
the corresponding digit of B[] and will remain unchanged in later steps (we say that they are

already resolved).

- To produce a digit of A{k+1], the corresponding digit of A [k ] is decremented whenever

it has not been resolved and py 1 <0.

According to these remarks, instead of keeping two conditional forms, it is sufficient to
keep just A [k] and one bit per digit indicating whether it has been already resolved. The algo-

rithm is the following:

For j<k,
Ailk if R;[k]=1or 20
Ajlk+1] = k] ' ilk] P+t an
(A;lk]-1) mod r if R;(k]=0and p;.;<0
if R;[k]=lor #()
Rj[k‘l'l] - 1 . _;[ ] Pk+1 3.2)
0 if Rj[k]=02nd pk+1=0
For j=k+1,
(3.3)
Apk+1]1=peyy mod r
(3.4)

Rinlk+1]=0

An example is shown in Figure 3.



k| Pe Alk]
R [k]

1 3103
1.0

2 2| 022
1.10

3 1 | 0.221
1.110

4 0 | 02210
1.1100

5 0| 022100
1.11000

6 | -3 | 0.220331
1.111110

7 2 | 0.2203312
1.1111110

8 | -1 1 022033113
1.11111110

Figure 3. Example of Alternative Scheme

The sequential implementation consists of two registers, containing A[k] and R[],
respectively. To each digit of A [k] there is an associated decrementer. The decrementation is
controlled by R [k ] and the sign of py,. In addition, R [k+1] is determined by R (k] and the fact

that p; .1 #0. This implementation is shown in Figure 4a.

The combinational implementation is shown in Figure 4b. As indicated it requires m2i2
decrementers. To avoid this, it is possible to postpone the decrementation until the last level.
Thus requires another bit-vector, D (£ ], which indicates whether the corresponding digit of A (4]

has to be decremented. The recurrence for D {k] is

D,[k+1]= {1 if Dj[k]=1or (R;(k]=0and pis1#0)

0 otherwise

(.9
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Figure 4a: Sequential Implementation
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This implementation is shown in Figure 4c.

The comparison between Figures 2 and 4 shows the following:

- In the sequential case, we are replacing a "radix-r" register by a bit-register and a set of
decrementers. This does not seem a good alternative. However, in some on-line algorithms [11]
in which it is necessary to append the new digit instead of shifting, the decrementers have to be
there anyhow. In such cases, the implementation produced by the new algorithm might be

preferable.

- In the combinational case, the number of lines and the complexity of the cells is re-

duced. This has to be compared with the additional decrementers needed.

4. Summary

An algorithm for converting redundant forms into range complement conventional forms
concurrently with digit-by-digit generation is presented. The algorithm has simple sequential and
combinational implementations. In the sequential implementation, its delay (independent of the
working precision), roughly equals two logic levels plus a register shift/load time. In the combi-
national case, there is a delay per stage equivalent to three gate delays. The algorithm is applica-
ble in nonrestoring division and square algorithms, in producing conventional results in on-line

algorithms, and in left-to-right multiplication [12].
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K-0159 of the Office of Naval Research.
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