A DYNAMIC MEMORY MANAGEMENT POLICY FOR FP

Leon Alkalaj October 1986
Milos Ercegovac CSD-860026
Tomas Lang

A Dynamic Memory Management Policy for FP
Leon Alkalaj, Milos Ercegovac, and Tomas Lang

Computer Science Department
3731 Boelter Hall
University of California, Los Angeles
Los Angeles, CA 90024
(213) 825-5414

A DYNAMIC MEMORY MANAGEMENT POLICY FOR FP
Leon Alkalaj, Milos Ercegovac, and Tomas Lang f
Computer Science Department

University of California, Los Angeles
Los Angeles, Ca. 90024

Abstract

A dynamic memnry management policy for the implementation of the Functional Language FP is
described. The corresponding garbage collection is performed as an integral part of the implementation of
the FP constructs instead of being done by an external task. This is advantageous because it eliminates un-
desirable interruptions in the execution of the program and because it utilizes efficiently the available
memory. The mechanism is easily implemented for FP because the functional nature of the language
makes the garbage created by each construct predictable and easily accessible, An implementation is
described that reduces the amount of memory required to store a stack containing pointers to the garbage
structures as well as the overhead for cell allocation. A performance analysis and measurements per-
formed using benchmark programs and an implementation on an off-the-shelf processor show that the

overhead of this policy is acceptable and that it can be reduced even further by the introduction of some

architectural support.

1 This work has been supported in part by ONR Contract N(X)024-83-K-0493.
1

A Dynamic Memory Management Policy for FP
1 Introduction

The performance of processors that execute languages using lists as principal data structures is
often determined by the list processing speed and by the efficiency of memory management. The memory
management consists of two parts: storage allocation and garbage collection. Although the two are interre-

lated, the emphasis of this paper is on garbage collection.

To avoid system interruption and long delays while garbage data structures are collected, dynamic
or on-the-fly garbage collection schemes have been proposed [11,[2],(3],[4],[5],[6]. Such schemes are
especially important in real-time applications where uninterrupted system execution is essential. For ex-
ample, if a natural language interface is written in a list processing language and is used in a database sys-
tem for urgent data retrieval in hospitals, police or fire stations, delays due to garbage collection may be

disastrous.

The previously reported garbage collection schemes are implemented by a special task that can
share the processor with the user tasks or can be executed in a special processor. In contrast to this, the
scheme proposed here performs the garbage collection operations as an integral part of the function appli-
cation, which is the basic execution mechanism of FP. This type of garbage collection is easily performed
in this case because the strictly functional style of FP and the lack of side effects makes the garbage creat-

ed by the constructs predictable and easily reachable.

The proposed scheme of garbage collection is advantageous because of the following characteris-
tics: it does not require that the program be interrupted for garbage collection, it makes good use of
memory space since the garbage is collected as soon as it is produced, and it is applicable to a multipro-
gramming environment. The main potential disadvantage is the overhead introduced during the execution
of function application for the garbage collection operations. We show that this overhead is less than the
overhead of other memory management schemes that were considered for the implementation of FP. We

also conclude that the overhead can be reduced further if some architectural support is provided.

This paper is organized in the following way: In Section 2, an overview of the functional, object-
oriented, list-processing language FP is given. The uniprocessor implementation of FP and the memory
management simulator are described in Section 3. In Section 4, the dynamic memory management policy
is introduced and compared to other alternatives. The main advantages of the memory management algo-
rithm are discussed and additional enhancement techniques are suggested. A summary is presented and

directions for future research are discussed in Section 5.
2 The FP Functional Programming Style

Functional languages represent a programming style based on function application. As an alterna-
tive to the imperative programming approach, functional languages are free of side effects and maintain
referential transparency [10]. Functional languages also offer a variety of constructs that contain easily
detectable and implicitly defined parallelism, making them attractive for multiprocessor implementations.
Drawbacks attributed to the functional programming style are related to their inefficient implementations.
Problems that account for the lack of speed include memory management, especially noticeable during
garbage collection, high frequency of function calls and parameter passing. A survey of functional

language architectures is given in {11].

FP is a functional programming language (style) proposed by Backus [12]. FP consists of a set of
objects, a set of primitive functions, a set of functional forms, a set of definitions, and an application
operator. Objects in FP are either atoms or a sequence of objects represented in a list-like fashion. An
atom is a finite string of digits or characters. Primitive FP functions represent a set of predefined functions
while functional forms are used to form higher level functions from primitive or user defined functions.

FP programs are functions built from other functions using functional forms.

There are no variables in an FP program and, consequently, no destructive assignments. All func-
tions map objects into objects and always take a single argument. That is, the function f:x—y has as ar-
gument the object x and as result the object y. Several primitive functional forms are defined, an exam-
ple being the compose form denoted by @. That is, (f@g)x is executed as f:(g:x). Anexample of
another functional form is the construction of functions f ... f,,represented as [f1,...,f,]. Applying

this construct to an input object x results in a list of the form (f:x, f2: %, ..., fn 1 x). User-defined

functions can be introduced by definitions using the primitive functions and functional forms, as well as
previously defined functions. A detailed and formal description of the FP functional language is given in

[12].
3 A Uniprocessor Implementation Of FP

Following Backus’ Turing award lecture, a number of architectures have been proposed for the
execution of functional languages [11],[131,[141,I9]. In the uniprocessor implementation described in {9],
the FP constructs are implemented using a small subset of the instruction set of an off-the-shelf micropro-
cessor (Motorola 68000 [16]). A compiler for FP [15], translates an FP program into a sequence of func-
tion calls that execute on the target machine. Functions have only one argument which corresponds to a
pointer to the input object. Function application consists of transforming the argument object and return-

ing a pointer to the result object.

In the example shown in Figure 1, a composition of functions First @ Sel 2 is applied to the list
object (1,(2, 3)). The object is pointed to by pointer p ;. Applying function Sel 2 returns pointer p 5 and,
after the function First is applied, the resulting object is pointed to by pointer p3. Unused portions of the

argument object are discarded as garbage.

Objects are represented in memory using Lisp-like cells consisting of two pointer fields and a tag.
Two cell types, list cells and atom cells, are identified by a bit in the tag. The two pointers in the list cell
point to the leftmost child and to the next element in the list data structure. An atom cell consists of a sin-
gle pointer to the next element, and of a value field. A Null pointer is used by both types of cells to indi-
cate the end of a data structure. An example of how an object is represented in memory using such a data

structure, is shown in Figure 2.

The proposed implementation of FP includes a dynamic memory management scheme for cell al-
location and garbage collection, which is described in the following section. An FP memory management
simulator is used to evaluate the performance of the proposed algorithm and compare it to other alterna-
tives. The simulator is based on an existing FP interpreter [18). Memory is represented as an array of cells,
in which objects are created and manipulated by function application. At any point during program execu-

tion, one may analyze the actual distribution of objects in memory and perform necessary measurements.

Figure 1: Example of Function Application

lsr i i
e P
T rof
=~
|
---) §
| I i /-
-//‘
I >;~:f —
/S - [ek
/ | |
.)
(BEE
A TLom | \
/‘/ E |
/ | L
i !)
Ji1im e
[Lo
1
bl
|
Jtom |
)
P
Sy 3tem
-
]

Figure 2: Object Representation in Memory

Benchmarks were used to evaluate the performance of the memory management algorithm. The Matrix
Multiplication and the Quicksort benchmarks are given in Appendix A. For further information regarding
the memory management simulator, or the proposed model of computation and implementation of the in-

struction set architecture for FP, see [9].
4 The Dynamic Memory Management Algorithm

The dynamic memory management policy described here is based on the fact that the cells dis-
carded after a function is applied to an object remain connected by the pointers used in the original data
structure. Consequently, by saving these pointers it is possible to access the garbage in subsequent alloca-
tion operations. To have a unified scheme, unused memory is also considered as a data structure accessible
by a pointer. However, to increase the locality of allocation, it is convenient to allocate, whenever possi-

ble, from garbage produced from previous function applications rather than from unused memory.

The scheme requires a modification of the function application operation, so that the garbage pro-
duced is collected into one object and the corresponding pointer is saved, and the development of an allo-
cation mechanism that uses these pointers for allocation of the cells required for subsequent functions. We

discuss these aspects now.
4.1 Garbage Data Structures

To dynamically store pointers to the garbage data structures left behind after a function is applied,
the FP functions are modified to return two pointers: a pointer p to the newly formed object, and a pointer
g to the garbage data structure. As an illustration, Figures 3a and 3b depict a list data structure before and
after the Select n (in this case n = 2) FP function is applied. In Figure 3a, pointer p points to the list (A,
B, ...Z) and in Figure 3b, the pointer p points to the new object B whereas g points to the garbage data

structure { A, C, ..., Z).

By saving the pointer to the garbage data structure, either in main memory or in a register, we per-
form dynamic garbage collection. From Figures 3a and 3b, one can note that to have a single pointer to the
garbage data structure, the list-processing function is modified to return a single garbage data structure. In

the above example, the next pointer of the cell preceding the selected cell, is modified to point to the cell

SEL2:(A,B.C,....N)-->8B

N

L ®

>

<A 7

Figure 3: Garbage generated during the Select Function

following the selected element. In primitive functions such as First, Last, Tail, or Front, no modifications
other than saving the garbage pointers are necessary, while in other primitive functions such as Select and
Transpose, instructions were added either to connect different parts of the garbage data structure (as in the
case of the Select function) or to terminate the garbage data structure with a Null pointer. On the other
hand, primitive functions such as DistributeLeft or DistributeRight remain the same, since they do not

produce garbage data structures.
4.2 Cell Allocation

During function application cells have to be allocated to produce intermediate and result objects.
These cells are allocated, one at a time, by the Allocate_cell_Algorithm described in Figure 4. Two alter-

native possibilities for the selection of the cell to allocate are
1. Allocate from the leaves of the garbage data structure.

2. Allocate the root of the garbage data structure.

Allocate_cell_Algorithm ()
Begin
IF (saved_garbage pointer_available)
return (cell from_garbage data_ structure)
ELSE
return (next_free_cell_pointer);
End;

Figure 4: The Cell Allocation Algorithm

To select among these schemes we compare the cost of performing the allocation and the size of
the stack that is used to contain the pointers to the garbage. The cost of allocation is clearly larger in the
first scheme since it is necessary to traverse the garbage structure to get to the leaves. To compare the size
of the stack, we develop a Markov chain model of the allocation process in which the state is the size of

the stack.

For Scheme 1 (allocation from leaves) the transitions are the following:

i) From S; to S;,, with probability r, whenever a new garbage data structure is generated (after

function application).

ii) From S; to S;_, with probability g, whenever the garbage data structure is completely allocat-
ed (after allocating all the leaves and the root of a single garbage data structure, the stack size is reduced

by one garbage pointer).

iii) From §; to S;, with probability s, whenever a leaf of the garbage data structure is allocated

(and the garbage data structure is not exhausted).
The steady state probability to be in state S ; is given by the following equation:
r. . r.;
Qf =(-—)—=Y
q9 49
The average size of the stack, is given as:

(=)

r
N'=Y jo}= qr
j (1--)
q
One should note that the values 7, g and s are given as a fraction of all the operations performed

on the stack. Consequently,
r+q+s =1 O<rg,s<1)

Similarly, for Scheme 2 (allocation from root) the transitions are

i) From S; to §;, ;. whenever a new garbage data structure is generated (after function application,
with probability 7) or when a list cell is allocated that has two non-Null pointers (probability {). The pro-
bability of this transition is, therefore, r+{. The stack size increases by one when a list cell with two
pointers is allocated because both pointers must be saved, so as not to lose any part of the garbage data

structure,

ii) From S; to S;_;, whenever an atom cell with a Null pointer is allocated (with probability &) or
when a list cell with two Null pointers is allocated (with probability #). In each of these cases, the pointer

to the allocated cell is obtained by popping the saved garbage pointer and no other pointers are saved.

iii) From S; to S;, whenever a list cell with one Null pointer is allocated (with probability 7 } or

whenever an atom ce!l with a non-Null pointer is allocated (the probability of this is @).

The steady state probability to be in state S) and the average size of the stack are:

r+lr+l

0 == v
!
(=)
, - n+b
N =E.‘]Qj= r+i
j (1~
n+b

where, r+l+n+b+m+a =1 (r,i,n,bm,a>0).

To guarantee that the stack size does not grow to infinity (that is, that the probability of this hap-

pening tends to zero), the following conditions must be met:

r .
—<1 for leaves-allocation
r+i .
<1 for root-allocation
n+b
. . r r+i))
If the above conditions hold, the ratios — and " determine the rate at which the stack grows for
q n

Schemes 1 and 2, respectively. To show that the rate for Scheme 1 is larger than that for Scheme 2, we use

the following inequalities:

n+b >>q

I'>>n+b

The first inequality states that the probability of allocating a list cell with two Null pointers (n) or
an atom cell with one Null pointer (b) in the root allocation policy is much greater than the probability of
fully allocating a garbage data structure in the leaves allocation policy (¢). The reason that supports this

claim is that the average size of the stored garbage data structure is large, which makes ¢ small, while the

fraction of list cells with two Null pointers and atom cells with one Null pointer is significant. In the
benchmarks used, which created relatively small garbage data structures, ¢ was of the order of a fraction

of a percent, while n+b was between 8% to 10%.

One should note that if, while allocating from the garbage data structure (in the leaves-allocation
scheme) a new garbage pointer is saved, the probability of fully allocating the data structure and thus
reducing the stack size, is greatly reduced if one would continue allocation from the newly stored data
structure. It is therefore assumed that the allocation continues from the same garbage data structure even
when new pointers arrive. This means that, for the leaves allocation policy, a FIFO model is assumed. The

probability ¢ then depends only on the average size of the stored garbage data structure.

The second inequality states that the probability of allocating a list cell with two garbage pointers
in the root allocation policy, is not much larger than the sum of probabilities (#+&). In the performed
benchmarks, / was of the order of 15% to 20%, which supports our claim. Therefore, from our results and

observations, we note that the following is true:

r+l
n+b g

Consequently, the rate of increase of the stack in the root-allocation scheme is smaller than that in
the leaves-allocation one. Therefore, the root allocation approach was used in the implementation since it
eliminates the traversal overhead of allocation and its stack requirement is less demanding. Nevertheless,
it is still not clear that the storage size is not unreasonably large. This is especially true if we know that
highly nested list structures are common to list-processing languages, so there may in fact be a significant
number of list cells with non-Null pointers present within the garbage data structures (that is, the probabil-
ity I may be large). This issue of storage requirements for saved garbage pointers is further addressed in

the following section where special-purpose garbage registers are introduced.
4.3 Special-Purpose Garbage Registers

As was noticed in the previous section, the size of the stack in the root allocation approach grows
for two reasons: saving pointers to new garbage data structures and allocating list cells that have two non-

Null pointers. In order to reduce the frequency of these events, special-purpose garbage registers are intro-

duced. Before we explain their role in garbage collection, let us give an example that lead us to their use.
In the initial implementation of FP, a single garbage pointer was used to store the garbage data structure
created when binary operations were performed. In Figure 5 we show the data structure before and after

the execution of an arithmetic operation.

The garbage created consists of two atom cells. In case of the Matrix Multiplication benchmark
where there are 2n3-n> multiplications and additions, for a matrix size of n=10, one would need to save
1900 pointers to collect 3800 garbage cells. To eliminate this undesirable feature, a single storage loca-
tion, that is, a special-purpose garbage register, is used for all cells discarded after performing binary
operations. Since we know that the garbage consists of only two atom cells, one can modify the binary
primitive functions so that the discarded atom cells are "threaded” onto an existing data structure, reserved
just for the binary operations. In this case, the 2n3-n? pointers in the above mentioned example for the

Matrix Multiplication benchmark, are replaced by a single pointer.

Localizing onto a single data structure the atom cells discarded after performing binary opera-
tions, and allocating from this data structure, reduces the likelyhood of allocating list cells with two non-
Null pointers. Also, since for binary operations one does not save a garbage pointer but rather use an exist-
ing garbage data structure, the stack size does not increase for these operations. Therefore, the use of a
special-purpose garbage register for binary operations, reduces both factors that influence the growth of

the size of the storage for garbage pointers, that is, both probabilities r and /.

To generalize this concept, we can perform the threading of discarded cells onto an existing gar-
bage data structure, for other FP functions as well, not only the binary functions. We choose to perform
this operation only for those FP functions for which we know the exact form of the garbage left behind.
For example, in case of the Select operation, the garbage data structure depends on the length of the list
and the structure of the remaining elements of the list, so that to thread this data structure onto an existing
one would require traversing one of the data structures, finding a cell with a "vacant" pointer, and then
combining the two data structures into one. Rather than doing this, the pointer to the garbage data struc-
ture is saved. On the other hand, the garbage cells discarded after the AppendLeft function is applied,

consists of a single garbage cell. This is shown in Figure 6.

10

Figure 5: Garbage generated by Arithmetic Operation

APPENDL : X

Figure 6: Garbage generated by APPENDL

Other functions such as AppendRight, Concatenate or Transpose, also produce garbage data struc-
tures whose forms are predictable. The garbage collection for these functions is performed within the
function itself. For these functions, no garbage pointers need to be saved, therefore relaxing the demand
for extra storage. The cost of the overhead, which consists of a few extra instructions, is discussed in the

following section.

The use of special-purpose garbage registers reduces the factor that determines the growth of the
stack (r+{) and increases the factor that affects the stack size reduction (n +b). In the Matrix Multiplica-
tion benchmark, 80% of the cells allocated using the garbage data structures, were atom cells. In the
Quicksort benchmark, this number was slightly below 70%. Of the allocated list cells, more than half had
either one or both pointers equal to Null. The number of times new garbage pointers were saved was also
significantly reduced. Figures 7(a) and 7(b) show the stack histograms obtained for both benchmarks. In
both cases the number of memory cells allocated is larger than what is available in memory. For example,
the Matrix Multiplication benchmark allocated 2752 cells from a memory pool of 1000 cells and the
Quicksort benchmark allocated 1686 cells from the same memory size of 1000 cells. The histogram for
the Quicksort benchmark indicates that a maximum of 19 locations were required to store the pointers to
the garbage data structures. Similarly, the histogram for the Matrix Multiplication benchmark shows that
only 8 pointer locations were sufficient to store all the garbage pointers. The special purpose register is ac-
cessed 200 times in the first case and 1200 in the latter. Therefore, from the above two histograms, we can
see that by adding few modifications to the implementation of FP functions (adding on the average only
few instructions), garbage data structures may be saved and managed without imposing significant
demands on the amount of storage necessary. Moreover, allocating the root of the garbage data structure

allows for cell allocation without traversal.
4 4 Performance Estimate

To estimate the performance of the dynamic memory management algorithm, the time is divided

into two parts: the time to allocate cells 7, and the implementation overhead time T, . That is,

T = Ta +T0h
Let N, be the number of allocated cells. Then the cell allocation time T, is given as

11

1200
. [frequency

1000 :l--
\
i \ |
40z — Y

L. 3
§20 \

206 -

0 2 s & sta~k size

Figure 7a: Histogram of Stack Size for Matrix Multiplication
5300 —

frequency

400 —

/ '

200 —

109 =
0 1 L L] I L L L L l i 1 1 1 k !
1 s 10 15 stgck size 20

Figure 7b: Histogram of Stack Size for Quicksort

T, =Ny,
where 7, is the average time to allocate a single cell. The implementation overhead of the algorithm con-

sists of saving the garbage pointer for some FP functions and adding a few extra instructions in other func-
tions. One should note that not all functions introduce an overhead, only those that create garbage. There-
fore, the implementation overhead may be expressed as the sum of all the overheads incurred by each exe-
cuted FP function. Let tgf,, be the overhead for function f and let Fy be the number of times this func-
tion is executed in a given program. The implementation overhead may then be expressed as a sum over

all functions f , so that
Ton = 2Fy Xl
!

IfN ¢ is the total number of FP functions executed, we can express the average overhead per exe-

cuted function as
_ A f
Toh = (N_)EFf Xlon
ff
Therefore, the overall time performance of the algorithm may be expressed as

T =Nyt #Nst,p,

One should note that N r is the total number of executed FP functions, whereas not all produce
garbage and, therefore, do not produce implementation overhead. In the Quicksort benchmark, for exam-
ple, these functions accounted for 26% of all executed functions. The Select functions, which require
one extra instruction besides the instruction to save the garbage pointer (a Push instruction), accounted for
549 of the overall number of executed functions. On the Motorola 68000 [16], the overhead per executed
function for the Matrix Multiplication benchmark was 12 cycles (that is, an average of one Push instruc-

tion), and for the Quicksort benchmark an average of 15.12 cycles.

The memory allocation cost was evaluated by averaging the costs of allocating atom cells, list
cells, and allocating by incrementing the memory cell pointer. An average of 70.5 cycles for the Matrix
Multiplication and 71.6 for the Quicksort benchmark was obtained. This cost of approximately 70 cycles
per cell allocation is relatively high. The reason behind this cost is the testing whether the allocated cell is

a list or atom cell, and then saving the corresponding garbage pointer. That is, the cell allocation is taking

12

the burden of garbage collection.

By expressing the number of executed functions Ny as the ratio of the number of allocated cells
N, and the average number of allocated cells per function Na)p , the implementation overhead is propor-
tional to the number of allocated cells. The average number of allocated cells per function is measured as a
parameter of the used benchamrks. The overall performance of the two benchamrks may be expressed as

T =K xN,
where Ky13s=79.7 and K5 =77.6 are the performance constants .

5 Comparison with Static Memory Management

As was indicated before, the main disadvantage of the dynamic memory management scheme is
the overhead introduced to produce the garbage data structure and to allocate cells from it. Therefore, to
determine the usefulness of this approach we now compare its performance with two alternative static al-

gorithms.

In the first static algorithm, memory cells are allocated by sequentially incrementing a cell pointer.
When the end of memory is reached, garbage collection is performed by marking the useful data structures
and reallocating them to the beginning of memory. We call this algorithm the Sequential Algorithm. In the
second approach, cells are initially linked together into a linked list data structure. Cell allocation is per-
formed from this list of free cells and when the end of memory is reached, the garbage cells are relinked

into a free list. We refer to this algorithm as the Linked List Algorithm.

The execution time of the two static memory management algorithms is divided into the follow-

ing three parts:

1. The memory allocation time T,

2. The memory overflow time T,

3. The overhead time to support cell allocation and garbage collection Ty, .

13

That is,
T = Ta +Ta +T0h

Let N, be the number of allocated cells, N,, the number of overflows and Ny the number of func-
tions executed The performance of the static algorithms may be expressed as
T “—'Nata +Noto +thoh
where ¢, is the average time to allocate a single cell, £, is the average overflow time, and #,, is the aver-

age overhead per executed FP function.

Since many of the performance parameters are implementation dependent, the three memory
management algorithms are compared by implementing them on an on-the-shelf microprocessor, the
Motorola 68000 [16]. The performance for the Matrix Multiplication and Quicksort benchmarks is shown
in Table L. The times are cycles per memory cell and the size of the object S corresponds to the fraction

of the memory. For a detailed description of the performance analysis, refer to [9].

Table I: Performance Comparison for the two Benchmarks

(Matrix Multiplication/Quicksort)

So
2% 4% 6% 3 16%
T 80/74 95/91 113/108 128/134 | 210/210
T, 174/165 | 178/168 | 182/171 189/176 | 200/194
T, 79/78 T9/78 7978 79/78 79/78

From the table one can note that the dynamic memory management algorithm performed as well
as the sequential algorithm, even when the size of the copied object is small compared to the size of
memory. As the size of the object grows, so does the overhead in both the sequential and the linked list
algorithm. This s not the case for the dynamic algorithm. Therefore, even under the most favorable con-
ditions for the static memory management algorithms, the dynamic memory management algorithm per-
forms comparably well. As the conditions for the static approaches become more realistic (that is, the size
of the object that causes garbage collection increases), the dynamic algorithm easily outperforms them.

Further benefits of the dynamic algorithm are discussed in the following section.

14

§ Properties of the Dynamic Memory Management Algorithm

The dynamic memory management algorithm used in the implementation of the FP language is

superior to the static memory management algorithms in several ways:

« NO OVERFLOW OVERHEAD. Being dynamic in nature, it avoids halting the system due to garbage
collection. Therefore, it eliminates the potentially long delays that affect the performance of both the

sequential and the linked list algorithm.

« NO CONTROL STACK. Both the sequential and the linked list algorithm require a means of identify-
ing the garbage cells from the useful cells, once the end of memory is reached. To do so, the useful data
structures are first traversed, marked, and then reclaimed. Marking, on the other hand, is an expensive
operation. If a recursive mark strategy is used (which seems like the normal thing to do), marking a highly
nested data structure may require an unreasonably large control stack {17]. On the other hand, nonrecur-
sive algorithms are more expensive and complex. The dynamic algorithm avoids recursion alltogether,

thus eliminating the need for a large control stack for garbage collection purposes.

« NO MARK BITS. Mark bits are usually used to distinguish between user accessible and garbage cells.
Depending on the memory management scheme, as many as three bits are used for marking and garbage
collection purposes. In the dynamic algorithm there is no need for mark bits. This allows the implementor
to use the available area for other purposes that may enhance system performance. For example, informa-
tion about the form of the garbage data structure may further enhance the performance of memory

management.

« SIMPLE IMPLEMENTATION. The dynamic algorithm lends itself to a simple software implementa-
tion. In the sequential algorithm, copying the useful data structure to the beginning of memory is not a
simple task to perform. If there are user cells present at the beginning of memory where we intend to copy
the data structure, reallocation is performed in several steps. The complete algorithm is described in [91.
The dynamic algorithm does not encounter such problems. Most of its implementation is included into
the coding of the FP functions. The rest is merely using a dedicated stack data structure. On the other
hand, compared to the linked list approach, the dynamic algorithm avoids both memory initialization and

relinking of memory, when garbage collection is performed.

15

« HIGH LOCALITY. An important property of the dynamic algorithm and a direct consequence of the
dynamic approach to garbage collection, is that there is a high locality of object representation in memory.
For example, because of the immediate reuse of discarded garbage cells, the Matrix Multiplication bench-
mark allocated alltogether 2752 cells, from a pool of 337 physically allocated cells. The Quicksort bench-
mark used and reused 223 cells for the allocation of 1686 cells. Therefore, one can note that in the dynam-
ic algorithm, the upper bound of used memory increases only if there is an object to represent that requires
more memory cells than has already been allocated. In this sense, overflow may occur in the dynamtic ap-
proach only if one needs to represent an object in memory that requires more memory cells than is offered
by the pool of available cells. This, though, is an unavoidable situation in our case, since no virtual
memory support is considered. In both the sequential and the linked list algorithms, objects "migrate” dur-
ing program execution, leading to more diverse memory reference patterns and, therefore, less locality.
The high locality feature of dynamic algorithm suggests that a cache memory placed between the FP

machine and memory may be highly effective.

« SIMPLE MULTIPROGRAMMING. The dynamic algorithm does not require any changes to be used in
a multiprogramming environment. The allocation of cells is performed in the same way whether it is for a
single process or several, the same stack for saving garbage pointers may be used for all processes, and its
contents need not be saved on a context switch. The multiprogramming implementation of the dynamic
algorithm also maintains all the properties of the single-task implementation. For example, no overflow
can occur as long as there is at least one cell that is not used by any of the running tasks, and the overhead
is still proportional to the number of allocated cells and the number of executed FP functions. The level of

multitasking would have no impact on the overhead of memory management.

This property is a direct consequence of the fact that the dynamic algorithm matches the inherent
flexibility of the pointer data structure it is managing. To understand this better, we can note that the
pointer data structure used for the representation of objets in memory is very flexible. There are no

demands as to where the building blocks of the objects need to be since they are connected by pointers.

On the other hand, the use of the static algorithms in a multiprogramming environment is serious-
ly constrained. In the sequential case, partitioning memory into subspaces for each task and managing

each as a separate sequential portion of memory would increase the frequency of overflows and conse-

16

quently the overflow overhead. In the linked list algorithm problems exist with marking and relinking. If
there are several tasks in memory, and if the memory allocator reaches the end of memory, all the useful
data structures belonging to every task must be marked. Only then may one collect the unused cells into a

list of free cells.

« NO EQUILIBRIUM CONSTRAINT. Recently, an incremental on-the-fly memory management
schemes for list-processing languages has been proposed [8]. In this scheme, the memory management is
performed incrementally by a periodically scheduled garbage collection process. Every time the garbage
collector is scheduled, it will perform a portion of marking and reclaiming of the unused cells onto a list of
available cells. Given the rate at which new cells are allocated and the rate at which they are reclaimed,
one must guarantee an equilibrium condition. That is, one must guarantee that the collector will always
run long enough to provide the mutator with a sufficient number of free cells. To do this, to manage a
memory of size M a significantly larger memory must be provided. This condition is described by Baker

in [2].

In contrast, the dynamic algorithm described in this paper is not implemented as a separate task.
Therefore, there is no concern whether the garbage collector will run long enough and whether it will stay

"ahead" of the mutator. There is also no additional memory required.

« A SIMPLE VLSI IMPLEMENTATION. The simplicity of the dynamic memory management algorithm
implies that on-chip VLSI hardware support for the algorithm may require affordable hardware resources.
The gain in performance, on the other hand, would be significant. For example, since most of the cost of
the dynamic algorithm lies in cell allocation and, more specifically, within testing the allocated cell, one
could add simple hardware support to enable the testing prior to cell allocation. This in fact implies cun-

currency within the processor, something we could not achieve on an off-the-shelf microprocessor.

More elaborate hardware support may include a register file on chip, either dedicated to the pur-
sose of garbage collection or as a shared resource. Such hardware support would lead to further perfor-
mance improvements. In this case, a mechanism to manage register file overflow and underflow would

have to be provided.

17

6 Conclusions and Future Directions

A dynamic memory management algorithm used in the implementation of the functional language
FP was described in this paper. The strictly functional characteristics of the language enabled a simple,
flexible, and efficient dynamic garbage collection scheme. The task of dynamic garbage collection is not
implemented using a separate processor nor as a dedicated task on a shared processor. Rather, garbage col-
lection is performed as an integral part of the implementation of the high-level constructs. That is, each

function that creates garbage performs its own garbage collection.

Cell allocation, in the proposed memory management approach, is performed by allocating the
root of the garbage data structure rather than the leaves. This scheme was shown to be better because it el-

iminates traversal, and it reduces the probability of the stack growing excessively large.

Since the size of the stack required to store all the garbage pointers was recognized as a potential
hazard to this memory management implementation, special purpose-registers for garbage collection were

introduced.

The performance of the dynamic memory management policy was evaluated and compared with
two static policies, sequential and linked list. It was shown that the dynamic policy is superior compared
to the static approaches because it has a lower overhead, it provides good memory utilization and locality,
it can be used without modification in a multiprogramming environment,and has a simple implementation

which could effectively use hardware support.

Other important properties of the dynamic memory management scheme are that it does not re-
quire a control stack, it does not need mark bits, and it does not impose an equilibrium constraint between

the tasks of the mutator and collector.

A possible enhancement to the dynamic algorithm in a multiprogramming environment, may be
achieved by adding a task to aid the garbage collection process. This task would merge two garbage data
structures into one, reducing in this way the size of the stack required and improving the use of a register
file. The added task would merely look for the first cell in one of the garbage data structures that has room

for an extra pointer. That is, it would search for either an atom cell or a list cell with a Null pointer. Once

18

such a cell is found, the two data structures may be merged into one, and the size of the stack may be re-

duced.
References

1] G.L. Steel, Jr. "Multiprocessing Compactifying Garbage Collection”, Comm, ACM, 18, No.9, 1975.

{2] H. G. Baker, Jr. "List Processing In Real Time On A Serial Computer”, Comm. ACM, 21, No.4,
1978.

[3] H.Lieberman and C. Hewitt, " A Real Time Garbage Collector That Can Recover Temporary Storage
Quickly”, MIT Lab memo.

[4] P.Bishop, "Garbage Collection In a Very Large Address Space”, MIT Lab TR-178.

[5] P.Deutsch and D. Bobrow, "An Efficient Incremental Automatic Garbage Collector”, Comm. ACM,
19, No.9, 1976.

[6] E.W. Dijkstra et al. "On the Fly Garbage Collection: An Exercise In Cooperation”, Comm. ACM,
21, No.11, 1976.

{71 D. Knuth, "The At Of Computer Programming”, Vol 1.,Addison-Wesley, 1973,

[8] T. Hickey and J. Cohen "Performance Analysis Of On-the-fly Garbage Collection”, Comm. ACM,
27, No. 11, Nov.1984.

[9]1 L. Alkalaj "A Uniprocessor Implementation Of The FP Functional Language", UCLA Master’s
Thesis Report, April 1986, CSD-860064.

[10] D.A. Tumer, “The Semantic Elegance of Applicative Languages”, Proc. Functional Programming
Languages and Computer Architecture, 1981.

[11] S. Vegdahl, "A Survey of the Proposed Architectures for the Execution of Functional Languages,
IEEE T.on C., Vol C-33, No. 12, Dec.1984.

[12] J. Backus, "Can Programming be Liberated from the Von Neumann Style”, CACM Vol. 21, No.8,
1978.

[13] M. Castan and E.I.Organick, "An HLL-RISC Processor for Parallel Execution of FP-Language Pro-
grams", 9th Annual Symposium on Computer Architecture, 1982.

[14] T.Huynh, L.W.Hoevel and B. Hailpemn, "An Execution Architecture for FP", IBM Thomas J. Wat-
son Research Center, RC 11238, Feb. 1983,

[15] L. Shih-Lien "A Compiler for Functional Programming System ", UCLA Master’s Thesis Report,
1984.

{16] Motorola 68000 Reference Manual,

[17] I.Cohen, "Garbage Collection of Linked Data Structures”", ACM Computing Surveys, Vol.13, No.3,
September 1981.

[18] D.Lahti, "Applications of a Functional Programming Language”, UCLA Master’s Thesis, 1982.

19

