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Abstract

This work investigates a technique for the efficient execution of functional programs by reducing
data replication and data movement. This is achieved by a system for symbolic structural evaluation of FP
programs. The system is given a description of the structure of the input object and the FP program; based
on this information and on basic algebraic relations, the system derives the structure of the result object
without the need for the actual input object. This approach is a basis for the implementation of a compiler
that solves an FP program structurally in order to generate efficient run-time environment for the actual
execution of the FP program. Algebraic equations are used to represent the structure and the location of FP
objects in a given memory organization. The manipulation of these algebraic equations allows the struc-
tural solution of some FP primitives at compile time; this process reduces the amount of data replication
and data movement required by the original FP program. The approach is demonstrated by a comparison
between the memory requirements of the compiler and of the conventional mode of implementation for FP,
namely, interpretation. We show that the compilation approach indeed results in less data replication and

less data movement.
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1. INTRODUCTION

Research into parallel computation has brought with it new problems in the creation of algorithms
and in computer architecture design. One of the aspects of these new problems is the development of high
level languages (HLLs) to enhance the programmability of highly concurrent systems. HLLs have been
developed to allow algorithmic specifications in a concise and machine-independent form. However, the
most popular HL.Ls, such as Fortran, Pascal and Algol, were developed some time ago and are based on the
so-called von Neumann architecture concept; these machines were designed to perform sequential opera-
tions on individual items of scalar data. As a result, conventional programming languages — also called
procedural or imperative languages — enforce an artificial sequentality in the specification of algorithms.
This sequentiality not only adds verbosity to the algorithm, but may prevent an efficient execution of the

algorithm on concurrent architectures.

One proposal that has been made to overcome t:.se problems is the use of a new class of pro-
gramming languages. The class of applicari;ae or functional programming languages has been advocated as
a paradigm for the development of software because of its mathematical basis, semantic elegance, ease of
expressing implicit and explicit parallelism, expandability, and modularity. This works is based on the

functional language FP described by Backus in [Back78].

In spite of their nice properties, functional languages still are not widely accepted in the real world
of programming, one of the reasons being that they have a reputation of being very inefficient to execute.
1t is clear that the user community must be convinced not only that functional languages are appropriate

tools, but also that they can be efficiently executed.
Several reasons can be listed for the performance degradation in functional programs:

a. von Neumann architectures are not suited 1o FP execution, mainly because FP does not reflect the
structure and operations on those architectures, That is, FP is not based on naming of memory

cells (variables), assignment to these cells, and repetition of elementary actions;



b. programs are based in the manipulation of lists, which require a general list manipulation system

with garbage collection, causing an overhead;

c. lack of destructive updating; a new copy of a structure is (logically) needed when the structure is
modified;
d. in general, FP systems are interpretative rather than compiled. The reason for this is that program-

1:.ung languages that adopt dynamic binding between objects and types, which is the case of FP,
are processed more naturally by interpretation. In these languages, there generally is not enough
information before run-time to generate code for the evaluaton of expressions involving objects
of unknown type. This makes languages with dynamic type binding interpretation-oriented,
whereas languages with static binding are translation-oriented. However, dynamic binding does

not completely preclude the use of compilation, which often removes sources of inefficiency.

It has been recognized by applicative language researchers that one of the critical points in the
execution efficiency of these languages is memory allocation and management. Most implementations
handle very poorly regular data structures such as arrays and vectors. Since there is a big class of problems
that manipulate arrays, it seems unlikely that functional languages will succeed if they do not handle well
this class of problems. On the other hand, sources of inefficiency can be identified that, without regard to

implementation, will be likely to contribute 10 slow down of program exccution. They are listed below.

Excessive data movement: While nobody expects a programmer to write code such as: trans @
trans, or reverse @ reverse, or even 1 @ reverse (which is the same thing as last), these cases can occur
in a subreptitious manner. Suppose a function f1 does a given job and finishes it by reversing the result list.
Suppose also that another function needs exactly the result of f1 but without the reversing step. Naturally, a
programmer ¢an take advantage of the existence of f1 and write reverse @ fl1. At execution time, the
undesired encounter reverse @ reverse will occur; a system that blindly executes such segment of pro-

gram will spend some, maybe long, time doing operations with a null effect.



Note also that influence of programming style can generate excessive data movement and there-
fore bring inefficiencies. Suppose a programmer writes this piece of code in FP: 1 @ trans. If this code is
to be applied to a matrix, the intention is to have as a result the first column of the matrix. It is clear that
the same objective can be achieved with the following function: &1. If the FP code is directly interpreted
by a machine, in the first program the matrix is first transposed, while in the second no such data movement
occurs, there being only selection operations. Therefore, the first version is likely to be slower no matter

how the system is implemented.

To avoid this type of problem, either the programmer has to be aware of the potential inefficiency
of the first version or the system has to be smart enough to avoid the actual transposition of the matrix. It is
important to note here that both versions of the program are very clear in their intent, i.e., to select the first
. .umn of the matrix. Therefore, we do not advocate that the second version is clearer than the first one;
such a conclusion is at least debatable. In conclusion, if the programmer has to deal with efficiency ques-
tions of this natre, one of the very first motivations to use functional languages, i.e., to be machine-
independent, high-level and as natural as possible, will be no longer valid. 1t remains the option of building

a system that detects such sources of problems.

The issue of data movement is a serious one in the functional programming style. Because there
are no variables in FP, a function locates its arguments by their position within the input object; thus opera-
tions that direct data movement (transposition, selections, reversings) occur frequently in functional pro-
grams. Therefore, one of the objectives of any implementation of a functional programming system should

be the minimization of data movement,

Excessive data copying: Tt is well known that the introduction of redundancy often increases paral-
lelism. For example, the expression a (bcd+e) can be executed in four steps with only one functional unit.
On the other hand, its equivalent abcd+ae, obtained by applying the arithmetic law for the distribution of
multiplication over addition, can be executed in three steps using two functional units. Note that distribu-

tion has introduced one exira operation and that two copies of a are needed. It is this redundancy that



enables the speedup gain.

However, data replication does not always lead to gains in speed. Suppose that the piece of code
(I, trans@2] is to be applied to object <A B>, where A and B are matrices. If this code is executed

according to a string reduction semantics, for example, as in Magé's Machine [Mago80], the following

steps are obeyed:

1. <1: <A B>, trans@2: <A B>>

2. <A, trans: B>

3. <A, B'>, where B’ is B transposed.

It is clear that unnecessary replication of data occurs at step 1. The semantics of this piece of code
is only to transpose the second argument, leaving the first as it is. While implementations such as graph
reduction machines, which use pointers to the real data, do not have this as a critical problem, string reduc-
tion machines such as Mag6's machine can have performance degradation because of excessive data repli-
cation. Therefore, any implementation of a functional programming system should minimize or even elim-

inate unnecessary data replication.

The problem of data copying is more critical when programming with regular data structures such
as vectors and matrices. In functional programming, to modify a regular structure means to modify a copy
of the whole structure, even if only a small part of the structure is to be modified. Clearly, the expense of
copying large structures cannot be ignored — indeed one might try to limit parallelism in order to avoid
copying [Mago84]. There are a number of ways to avoid this problem. The most brute-force is to allow
some impure operators with side-effects, like RPLACA and RPLACD in Lisp. Clearly this is a non-
solution, since it destroys referential transparency [Back72} which is one of the chief advantages of func-

tional languages.



Another approach to attack this problem is described in (Huda85]. The authors describe a combi-
nation of static compilation techniques and dynamic run-time techriques to avoid excessive copying of
arrays. Statically, if it can be determined at the moment an array is to be updated that no other function
depends on that array, it is modified in place. If this analysis fails, they propose limiting the parallelism if
the objective is to avoid copying at all costs or to use a modified reference counting scheme that determines

dynamically if copying can be avoided.

In summary, the problem for which this article proposes some solutions is the excessive data
movement and data replication that occurs in functional languages as a consequence of the functional
semantics. This problem is more serious when the data structures involved are of regular nature such as
vectors and matrices and we show later how compilation techniques can take advantage of regularity in
lists and treat them as arrays in order to improve performance of FP programs at run-time. The next sec-
tions describe a new approach in the area of functional programming transformation with the objective of

increased performance of execution.
2. SYMBOLIC STRUCTURAL TRANSFORMATIONS
The FP primitives can be divided in two main categories:
1. computational primitives that generate atoms based on the atoms of the input object; and

2, structural primitives that do not create new atoms; they merely manipulate the atoms within an
object (e.g., trans, reverse), possibly leaving some out {e.g., selectors, last, tl) or replicating oth-

ers (e.g., distl, distr).

Correspondingly, the cost of executing an FP program can be divided between computational
costs and structural costs. Clearly, one way to reduce execution time of an FP program, as discussed in the

previous section, is to reduce the data movement and data replication required by the algorithm. This can

be achieved by gathering information on the structure of the algorithm and of the input object, and solving



the structural primitives using a symbolic evaluator based on the algebra of FP.

In the introduction article to FP [Back78], Backus defines an associated algebra of FP programs.
He demonstrates the power of the algebra by proving the comectness and equivalence of some FP pro-
grams. Others researchers also made some contributions on this algebra, such as [Will82]. Further use of
the algebra has been shown in other works [Wadl81, Wadi84, Bell84, Augu84], where some systems
designed to improve the execution efficiency of FP programs make use of the rules of the algebra. Below,

another use of the algebra is described and explored.

2.1 An Algebra of Structural Computations

We define a system for symbolic structural evaluation of FP programs as follows. The system is
given a description of the structure of the input object and the FP program; based on this information and
on the basic algebraic relations presented below, the system is capable of deriving the structure of the result
object without the need for the actual input.objects. In other words, this system defines an algebra of struc-
tural computations for FP programs, This algebra will be used as a basis for the implementation of the
compiler, described in Section 4, which solves an FP program structurally in order to generate efficient

run-time environment for the actual execution of the FP program.

An FP function f specifies how a data object 4 is mapped to another data object f (d). If we con-
sider only the structure of 4 and f (d}, f can be viewed as mapping the structure of d to the structure of
f (d), and we can associate with f a function f* which will define the mapping of the strucwres only. If we
let D be the set of data objects and S be the set of structures of the elements of D, we can view the relation

between fand f” according to the diagram of Figure 1.

The function f~ performs the same computation as f, except that it ignores the details irrelevant to
structures, In this sense, we can view the computation performed by £ as a symbolic structural evaluation.
By using symbolic evaluation, we can often deduce the structure of the result object without actually exe-

cuting the function. For example, for the FP function + we know that the structure of the input object must



D > f = D
structure structure
S > f = S

Figure 1 - Symbolic Structural Transformations
be a sequence of two numbers and that the structure of the result is a number. We do not need to execule

the program with real data to deduce this information.

However, two problems exist with this type of symbolic evaluation. First, a program that contains
a conditional functional form as in the following example is not amenable to solution by symbolic evalua-

tion:
{f =@ I[1,2]->%<,id)}

In this function the structure of the output object depends on the values of the input object; therefore the

result of a symbolic evaluation system would be non-deterministic.

The second problem is that symbolic evaluation cannot capture the semantics of the bottom object
as ** '~ defined in conventional FP, This is because a computation in the structural domain will not have the
information necessary to decide whether a computation terminates and produces proper values or not. For
example, the division function expects a pair of numbers and is supposed to deliver a number as result.
However, it can deliver bottom if the input object is not a pair of numbers or, ¢ven if it is, if the second
number is zero. Clearly, a symbolic structural evaluation system cannot capture the behavior associated
with this last case. On the other hand, there are instances where a structural evaluator can detect incon-
sistencies. For example, if an arithmetic function is applied to anything other than a list of two atomic ele-

ments, the result is undefined (e.g., +: <12 3>= ?). Therefore, we define a strucrural bottom, A, W



capture such cases.

Although symbolic structural evaluation cannot always be performed, it is important to realize that
a partial evaluation can be done on FP programs that present the obstacles described above. That is, the
symbolic evaluator ¢an solve the program structurally up to the point where a restriction is found, and then

leave the remaining portion of the program to be solved when the data values are known.
2.2 Basic Relations for Primitive FP Functions

We begin by defining the structure of an FP object. This definition singles out atoms and finite

sequences as the fundamental structures for FP objects.

Definition: The set S of structures is defined in the following way:

(1) atoms € §;
(2yif sy, 82, *+", 5, € Sthen <5y, 59, "+, 5,> € §;
(3)length: <5y, 52, -, 5,>=n€es;

(4) FP-defined objects that are argument of the constant functional form also belong to S.

Only the above belongs to S.

We denote o (f:s5) the structure of the object resultant from the application of f 10 an object of

structure s.
Operationally, we represent the structure of FP object as follows:

a, Atoms (numbers, characters and boolean values) have structure a. Note that if we assign different
types to these atoms (like num to numbers, char to characters, and bool to boolean values), we go
into more detail than needed for a structural evaluation system. Clearly, the function + expects a
lists of two numbers, and the function and expects a list of two booleans; however, from the struc-
tural point of view, both expect a list of two atoms. This is sufficient for the sysiem we are

describing here. The ype information is needed for rype inference systems, as can be found in



works like [Cart85, Mish85, Kata84]. However, type inference is beyond the scope of the system

we are developing here.

b. The empty sequence has structure <>,

c. If s represents the structure of object x,, 5, represents the structure of object x5 ..., 5, represents
the structure of object x,, then <s, s,, ', 5,> represents the swucture of the sequence
X[, Xy 0y e

d. Homogeneous sequences: If every element x; of a sequence <xi, x, * -, x,> has the same

structure s, we can define a more compact representation for the structure of the sequence. Two
representations are defined. Representation 1 is simply <s">. Representation 2 captures more
information than the previous one, It enumerates the structure of the elements of the homogene-
ous sequence: <s'*>. Note the difference between <5, 52, -, 5,> and <s'™>_ In the former
case, the structure of each element of the sequence may be different, whereas in the later case all
elements have the same structure, In Representation 2, if we want to single out one element of the
sequence (say, the k* element) we use s**. This is to remove ambiguity between this case and s*,
which represents a list of k elements with same structure under Representation 1. The usefulness

of the distinction between the two representations will soon become clear.

Exampie: The input for a matrix multiplication program, consisting of the sequence of a matrix
A, and a matrix B,,.,, has the following structure representation: <<<ga™>"> < <a'>™> >. Since this

case presents homogeneous sequences, we can use the aliermative representation:

i, Im

<<<al™>ls < <glisl?s 5,

The distinctive treatment given 10 homogeneous sequences will be of foremost importance in
practice. It will allow the compiler to detect and efficiently manipulate such sequences, which are nothing
more than regular structures (vectors and arrays), As for the two altemnative representations, we will some-

times want to capture more detail and sometimes less. For example, if we apply the primitive tl to a

10



sequence of structure <s"> the result will have structure <s"~' >, Similarly, tIr applied to <s"> also has a

result with structure <s”~>. Only the alternative representation captures the distinct behaviors of tl and

1

tir. The primitive tl applied to <s'*> results in <s%*>; whereas tlr applied to <s'*> results in <s'"7'>,

If we pose some restrictions on the structure of input objects we can describe, for each FP primi-
tive, the structure of the expected result object. Below we describe the basic siructural transformations
induced by some of the FP primitives. In the description, the notation f : s — ¢ means that an FP function f
applied to an object of structure s returns an object of structure ¢. Note the restrictions imposed on the

primitives distl, distr, trans, pair and split,

Selectors: k: <51, 52, "+, 5> and 1k<n - 555 A
For homogeneous sequences:

k: <s'"> and 1<k<n — s*%; A

tl: <8y, 83, ", S,> and 122 o <5y, 53, 7, S22 A
For homogeneous sequences:

th: <s'"> and n22 5 <5%¥%>; A

distl: <5, <t¥">> 3 <<s, 1> > A

Restriction: Second element is a homogeneous sequence. distr has similar behavior,

trans: < <s'™>M > s <ces!™>i™ s moazl; A

Restriction: Homogeneous  uences.

pairr  <s*> <<V A

Restrictions: Homogeneous sequence and n even.

splitt < ¥ > 5 < <s!™2 s V2 5 50 A

Restrictions: Homogeneous sequence and a even,

11



F, if s#¢

eq: <5, {>— .
1 {a, if s=t

null: <>— T;F
length: <s5,,5;, """, > —2n<>—=HA

2

+,- % /,and, or: <a*> 5 a; A

2.3 Structural Behavior of Functional Forms
Below is the description of the structural behavior of the FP functional forms,
Composition
c(f@g:s)=c(f:0(g:5))
Construction
S ([f1. f2, * 0 ful 8} = <o(fyis), o(fais), - -0, 6(fuis)>
Apply-to-All
a(&f: <5y, 82, L far)=<6(fi5y), o(f i50), -, O(f 150>

Very often in FP programs, apply-to-all is used over a homogeneous sequence, i.¢., in the form
&f :<s'™>. Unfortunately, it is nof true that if objects x, y have the same structure then f :x, f :y will have

the same structure. An easy counter-example is:
&iota: <1, 2, 3> = <<1>, <1, 2>, <1, 2, 3>>,

However, there is a significant class of FP functions where it is true that if objects x, y have the same

structure then £ :x, f:y will have the same structure. Formally, we have:

12



Definition: The class of structurally well-behaved FP functions is formed by those functions f such that if

olx)=c(y) then off :x}=0(f:y), where x, y are abjects.

In particular, all primitive FP functions, except for iota, and with the restrictions imposed in the
definitions of the previous pages, are structurally well-behaved. For the class of structurally well-behaved

functions and for homogeneous sequences, we have the following behavior for apply-to-all:

o (&F: <s'™>) = <c'*(fi5)>

Constant

% x:y=x, forall objectsx, y.

Conditional

Two types of conditionals are permitted. The first type acts as a switch. For this type, (p —>f 12), f

and g must produce structurally equivalent output objects for any input object. For example, in

>@[1,2}->1;2)

the outcome of (> @ {1, 2]) depends on the value of the input object (which is supposed to be a list of at
least two numbers). However, independent of the result of the predicate, the final result of the function has
the same structure (in this case, an atom). Formally, we allow all conditionals (p—f ;g): x where

o(f :x) = o(g :x) for all x.

The second type of conditional can be interpreted as structural control. The predicate must be
based purely on structure (¢.g., atom, null, = @ [length, %51). The value of the predicate can be deter-
mined by the structure of the input object. In this case, the structure of the result will be the structure of one
of the two functions (f or g) applied to the input, depending on the value (T or F) obtained from applying p
to the structure of the object. By allowing this second type of conditional, all recursions that are terminated

by a structural predicate can be unfolded completely. This allows a whole class of computations that can be

I3



represented by acyclic computational graphs to be structurally evaluated.

Right Insert, Tree Insert

We treat both inserts uniformly. We restrict them so that they act upon homogeneous sequences

and are applied to the following FP primitive functions only: +, -, *,/, and, or, xor. Then, we have:

o(!lf: <a’">)=a

o(|f:<a*">)=a

3. REPRESENTATION OF REGULAR STRUCTURES IN A LINEAR MEMORY

In this section we expand the algebra of structural transformations by imposing a memory model
for the storage of objects. Assume a linear memory as the model for storage of objects. The input ebject to
an FP program will be stored in the memory beginning at location 0 and occupying consecutive locations.
We also assume that each memory location can hold any FP atom (numbers, characters, etc.). With this
storage model, we can represent regular structures by using algebraic equations that describe the positions

of each atom of the str~ture in the memory.

For example, the positions of the elements of a vector A[1:n] can be represented by the following

equation:

loc(ag;)=i-1, 1%i<n

Similarly, a matrix B[1:n, 1:m] would have the following equation:

loc(by) =m(i-D+(-1), 1<i<n, 1<jsm

Clearly, similar equations can be derived 10 represent higher-order arrays.

i4



Using these algebraic equations to represent regular structures, we can derive the algebraic equa-
tion of the expected result object for each FP structural primitive. Now we describe the basic algebraic

transformations induced by some FP structural primitives.

Selectors

k: A[l:n], 1<£k<n
input: loc(a)=i-1, 1<i<n

output: foc(a,) =0

k: A[l:n,1:m], 1<k<n
input: loc(a;)) =mi-1+{(j-1), 1<is<n, 1$jsm

output: foc(ay;) = j-1, 1<j<m

Similarly, for higher-order arrays.

Tail

tl: Af{l:n]
input: loc(a;))=i-1, 1<iz<n

output: loc{g;)=i-2, 2<i<n

th: A[l:n, 1:m]
input: loc(a;;) =m@i-1+(j-1), 1<isa 1<j<m

output: loc(a;) = m(i-2y+(j-1), 2<i<n, 15j<m

Similarly, for higher-order arrays. Tail-right (tlr) has similar behavior.

Distribute-Left

distl: <s, A{l:n}>

15



Distribute-left replicates n times the first argument 5. Below, sizeof(s) is the number of memory

cells used by object s,

input: loc(a;) = sizeof (s}+(i-1), 1<i<n
output: loc(a;) = {(i—1)+ixsizeof (s}, 1<isn

loc(s)"* = (k—1)+(k—1)xsizeof (s}, 1<*k<n
Note the notation *k 1o indicate that we have replication of object s.

If 5 itself is a vector:
distl: <S[1:m], A[l:n]>
input:  loc(s)={(i-1), 1<i<m
loc{a)=m+{i-1), 1<i<n
output: loc(s)™* =mk—1)+{i-1), 1<i<m, 1<*k<n

loc{a)=(i-1+im, 1<i<n

The extension to higher-order arrays is straightforward. Distribute-right (distr) behaves similarly;

only the second element is the one to be replicated.
Transpose:

trans: A{l:n, 1:m]
input: loc(ay;) =m@E-1+(j-1), 1<i<n, 1<j<m

output: loc(a;;) = (i~1Hn(j-1), 1<i<n, 15j<m

trans: <A [1:n],A5[L:in], - - An[lin]>
input:  loc{a;))=(i-1), 1<i<n
loc{ay)=n+Hi-1), 1<i<n

loc(@n)=(m-Dn+(i-1), 1<i<n

16



output: loc(a,)=m(i-1), 1<i<n

loc(ay)=1+m(i-1), 1<i<n

lo¢(@m) = (m=11+m(i-1), 1<i<n

The other structural FP primitives — apndl, apndr, concat, pair and split — do not move the
atoms of the object; only the structure changes according to the transformations of Section 2.2. Therefore,
there exists no change in the algebraic equations that describe the posi...as of regular structures when any

of these FP primitives are applicd.

4. MANIPULATION OF ALGEBRAIC EQUATIONS AND COMPILATION

In the previous sections, an algebra for symbolic structural evaluation of FP programs was
defined. In this section, we show how the algebra can be implemented as a compiler for FP programs. The
compiler gathers information on the structure of the algorithm and of the input object, and solves the struc-

tural primitives at compile time, Figure 2 shows an overall scheme of the approach.

This approach will be clearly beneficial if the objects involved in the computation are of regular
nature, such as vectors and matrices. However, general lists are also expected to take advantage of the
method. Below, we give an idea of how the compiler works by means of an example. A more detailed dis-
cussion on some implementation issues is given in the next section. The example used is the matrix multi-

plication program (MM) presented in [Back78):

(MM &&(+)@ &&&* @ &&trans @ &distl @ distr @ [1, trans@2] }

We assume the same linear memory model for storage of objects presented of last section. The
input object to the FP program is stored in the memory beginning at location 0 and occupying consecutive
locations. Note that the assumption of linear memory does not imply that the processor is sequential or of

the von Neumann type. For example, Mag6's machine [Mago80) is a full binary tree of processors where
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Figure 2 - Compilation: Proposed Approach for
Optimization of FP Programs

the memory can be considered to be linear (the leaves of the tree constitute the memory of the machine).

Suppose the input object is a list with matrices A(n x m) and B{m x I). Note that the first four
steps of the program have only structural primitives (& &trans @ &distl @ distr @ [1, trans@2]). What
this part does is to manipulate and expand both matrices so they become three-dimensional objects inter-

leaved element by element in a form appropriate for all the multiplications to be done in just one step. For

clarity, we rewrite MM by dividing it in a structural part and a computational part:

{MM compute @ expand ]

{compute &&(+) @ &&&* )

{expand &&trans @ &distl @ distr @ [1, trans@2] }

18



If we store A and B in the linear memory as described above, we can identify any element of

either matrix by the following algebraic equations (Figure 3 illustrates the matrices’ elements positions for

n=2, m=3, |=4):
loc(a;;) =m@i-1y+(j-1), 1<i<n, 15jSm (1a)
loc(b;;) = nm+l(i=1(j—1), 1€i<m, 155<! (1b)

After the first step of expand ({1, trans@2]), matrix A does not change and matrix B is tran-

sposed; this new situation can be described by the equations:

loc(ai;) = m(i-1}-(j-1), 1<i<n, 1<j<m (2a)

loc(by) = nm+(i-1Hm (1), isism, 15/l (2b)

The primitive distr broadcasts one copy of matrix B to the right of each row of matrix A. The new

positions are described by:

loc(ay;) = (m+mD(i-1)}+(j-1), 1<i<n, 15j<m (3a)

loc(bt) = m+(i =1)+m (j=1+(m+ml)(k-1), 1<i sm, 1Sj<), 1<*k<n (3b)

Note that these new equations reflect the following facts: a) each row of A is separated by strides
of (m+ml), i.e., the size of each line of A plus the size of each copy of B; b) a new index & (from 1 to n, the
number of lines of A) represents the multiple copies of B; it is marked with a * to show that it represents
repetitions of the original object as was done in Section 3; c) the first copy of matrix B now begins at loca-

tion m, just after the first line of A.

The next step, &distl, broadcasts one copy of each line of A to each line of each copy of B (tran-

sposed). The resulting structure has n lists of / lists of 2 lists of m elements cach and can be described by
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Figure 3 - MM Example for A(2 x 3) and B(3x 4)

n=2, m=3, [=4)
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After &&trans:

1 AEHIEREIR 2 |[8]] 3

1 2 3 1 2 3

A s []]] ¢ AGIE

4 [3]|| 5 6 |[T|| 4 [[2]]| S 6
After & & &* (new object C):

1 (1027 2 (12]30 3114133

F-9

16 1 36

4 [25]54 8 130(60) | 1213566 16 | 40| 72

After & &(!+) (final object D):

3844 |50|56) |83 )98 |113|128

Figure 3 (cont’d) - MM Example for A(Z2x 3) and B3 x4)

the following equations:

loc(al) = 2mi (i —1)+(j =1 +2m (k-1), 1Si<n, 1Sj<m, 1S*k <!

loc(bl) = m+(i—1)+2m (G -1)+2mi (k-1), 1SiSm, 1<j<!, 18%<n
Finally, the last step of expand (& &trans) yields the following equations:

loc(al) = 2ml (i—1)+2(j ~1)+2m (k-1), 1<i<n, 1Sj<m, 1<%ksl

loc(by) = 142 ~1)+2m (j—1)+2mi (k-1), 1<i<m, 1< <), 1<*k<n

(4a)

(4b)

(52)

(3b)

Now the system must treat the computational part of the program, i.e., the function compute. The

n® multiplications (&&&*) are applied on the atoms described by the set of equations 5 and generate a
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new object that we call C and that has its positions described by the following equations:

loc(cip) = ml i —1H2(j~1)Hk-1), 1<i<n, 1</<l, 1<k<m (6)

The final step of the program takes the newly created object C and generates a new one, D, which

is the final answer and occupies the positions described by:

loc(dyj) = 1 —1y+(j-1), 1<i<n, << %)

After these transformations, 2 pseudo-code for the compiled MM program would have the follow-
ing text:
1. Transfer elements of A from positions

loc(a;) = m@i-1+(j-1), 1sisn, 1<j<m

to positions

loc(aky = 2ml (i~ 1)+2(j—1}2m (k-1), 1<i<n, 1j<m, 1<k<]

2, Transfer elements of B from positions
loc(bij) = nm+ (i—1)+(f-1), 1si<m, 1<j <)
to positions

loc(bl) = 1420 - 1)+2m (j -1+ 2ml (k-1), 1<i <m, 1j<l, 1<k<n

3. Multiply A*B generating result C in positions

loc(c;p) = ml(i-1m{(j-1+(k-1), 1si<m, 1<j<l, 1<k<n

4, Add (multiple-operand) generating result D in positions

loc(dy) = 1(i-1)}+(j-1), 1<i<n, 1)<t
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With a system that, given the initial FP program and the structure of its input object, is able o
make the transformations described by the set of equations from (1) o (7), without manipulating the real

data, the following immediate benefits would result:

a. unnecessary data replication is eliminated in the step [1, trans@2], as discussed in the first sec-
tion;
b. data movement is minimized, since all the structural part of the program, which was composed by

four steps, is collapsed to one step;

c. the equations have information about the amount of replication of each object; the compiler can
restrain replication if the target machine is not sufficiently concurrent for the input object. Note
also that the algorithm implies no sequencing whatsoever; this is now left to the compiler, again in

case of not sufficient parallelism;

d. the elimination of intermediate steps in the computation can reduce significantly the cost of gar-

bage collection in systems that use this technique to reclaim storage.

Note that the method does not eliminate data movement completely; it simply brings together
several steps of data movement and replication into a single step; in the above example, all steps of expand

are abstracted by the transformation from equations (1) into equations (5).

It is clear that this approach needs structural information about the input object such as arrays
dimensions. Although FP programs can be built that work for gzeneral structures (in reality, the above MM
works for any conformable matrices), the fact that the user has to supply information on structure and size
is not necessarily bad or less general since the programmer knows anyway what will be the kind of input
object the function is expected 1o act upon. Furthermore, this information will be needed by the machine
sooner or later; wh- we are proposing here is 1o have the information sooner and take advantage of it w0

improve the overall performance of the system.
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5. PERFORMANCE EVALUATION

This section presents a summary of some performance evaluation results done on the approach
described in the previous sections. For a more detailed description, refer to [Arab86]. We investigated the
effects of the structural transformation techniques at compile time on a conventional uniprocessor model.
A comparison was made between two approaches: the traditional interpreted mode of execution of FP pro-

grams versus the compilation mode proposed in this work.

We assumed that both the compiler and the inteérpreter run in a conventional von Neumann archi-
tecture, For the model, we also assumed a non-interleaved linear memory; one-word-at-a-time transfer
between processor and memory; one memory word capable of storing any atom; and a string reduction
execution mode, which implies that distinct copies of actual objects are generated for each function appli-

cation,

A major motivation in this work has been to minimize the necessity for data movement and data
replication in the evaluation of FP programs, and therefore to minimize memory accessing. We will use
two comparison measures in order to assess the data movement and data replication that occurs in each

approach, compiled and interpreted:

a. Memory Requirements: We use the amount of data memaory required for the execution of an FP
program, without reuse of storage, as the measure of data replication for comparison between the
two approaches. M, is the memory requirements for the interpretation case and M., for the

compilation case. We also define Ry = M, /M, 10 Observe the ratio between the two cases.

b. Bus Traffic: We examine the bus traffic in order to measure the data movement required by a pro-
gram. This can be done by counting the number of loads and stores generated by the program. The
rationale is that a fetch requires an item in the memory o be moved from memeory to a register in
the processor; a store requires a movement in the inverse direction; both require use of the bus.

We denote BT, the bus iraffic for the interpreted case and BT, the bus traffic for the compiled
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case. Finally, we define the ratio Rpr = BT (/BT comp-

We have examined some characteristic FP programs under the measurements defined above: the
matrix multiplication program - it is a typical representative of an arithmetic intensive problem; another
vector processing problem, but with an additional characteristic: the Fast-Fourier Transform is a recursive
program; some purely structural programs (descriptions of interconnection patterns); and, finally, an associ-

ative searching problem, which has the charactenistic of not being numeric intensive.

Table 1 summarizes the memory requirements improvements for the FP programs analyzed. In

the table, Ry, shows the limit value of Ry for very large input objects.

Program Ry
MM 20
ffistages 42
shuffle 20
unshuffle 2.0
butterfly 3.5
bitreversal | 1.25
RANGE 1.75

Table 1 - Summary of Memory Requirements Results

The summary of results for the bus traffic is shown in Table 2 — Ry shows the limit value of Ry

for very large input objects.

Program Rpr
MM 2.0
ffistages 5.0
shuffle 3.0
unshuffle 3.0

butterfly 6.0
bitreversal | 1.6
RANGE 1.8

Table 2 - Summary of Bus Traffic Resuits

6. CONCLUDING REMARKS
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This paper has presented the development of an algebra of structural transformations for FP pro-

grams that is used as a basis for the implementation of compiler techniques for the FP system. We also

showed a compilation technique which minimizes the amount of data replication and data movement dur-

ing the execution of FP programs. This technique uses algebraic equations to represent the structure and

the location of FP objects in a given memory organization. The manipulation of these algebraic equations

allows the optimization of FP programs at compile time.
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