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ABSTRACT

This paper deals with the task of configuring effective graphical representation of dependencies embedded
in probabilistic models. It first uncovers the axiomatic basis for the probabilistic relation ‘‘x is indepen-
dent of y, given z,’’ and offers it as a formal definition for the qualitative notion of informational depen-
dency. Given an initial set of such independence relationships, the axioms established permit us to infer
new independencies by non-numeric, logical manipulatons. Using this axiomatic basis, the paper ex-
poses those properties of probabilistic models that can be captured by graphical representations and com-
pares the characteristics of two such representations, Markov Networks and Bayes Networks. A Markov
network is an undirected graph where the links represent symmetrical probabilistic dependencies, while a
Bayes network is a directed acyclic graph where the arrows represent causal influences or object-property
relationships. For each of these two network types, we establish: 1) a formal semantic of the dependen-
cies portrayed by the networks, 2) an axiomatic characterization of the class of dependencies capturable by
the network, 3) a method of constructing the network from either hard data or expert judgments and 4) a
summary of properties relevant to its use as a knowledge representation scheme in inference systems.

* This work was supported in part by the National Science Foundation Grant #DCR 85-01234,



1. INTRODUCTION: from Numerical to Graphical Representations

Scholarly textbooks on probability theory have created the impression that, to construct an ade-
quate representation of probabilistic knowledge, we must start, literally, by defining a joint distribution
function P (x,..., X,) on all propositions and their combinations and that this function should serve as
the sole basis for all inferred judgments. While useful for some purposes (e.g., maintaining consistency
and proving mathematical theorems), this view of probability theory is totally inadequate for representing
human reasoning.

Consider, for example, the problem of encoding an arbitrary joint distribution, P (x,..., x,,), for
n propositional variables. To store P (xq,..., X,,) explicitly would require a table with 2" entries -- an
unthinkably large number by any standard. Moreover, even if we found some economical way of storing
P(x1,..., x;) (or rules for generating it), there would still remain the problem of manipulating it to com-
pute the probabilities of those propositions people consider interesting. For example, computing the mar-
ginal probability P (x;) would require summing P (x,..., X, ) over all 2"~! combinations of the remain-
ing n-1 variables. Similzlrly, c;)mputing the conditional probability P (x; | x;) from its textbook
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P (x;)
summation over an exponentially large number of variable combinations. Human performance, by con-
trast, exhibits a different complexity ordering, i.e., probabilistic judgments on a small number of proposi-
tions (especially 2-place conditional statements such as the likelihood that a patient suffering from a given
disease will develop a certain type of complication) are issued swiftly and reliably, while judging the
likelihood of a conjunction of many propositions entails a great degree of difficulty and hesitancy. This
suggests that the elementary building blocks of human knowledge are not the entries of a joint-distribution
table. Rather, they are the lower-order marginal and conditional probabilities defined over small clusters

of propositions.

definition P (x; | x;) = would involve dividing two marginal probabilities, each a result of

Another problem with purely numerical representations of probabilistic information involves the
issue of psychological meaningfulness. While capable of computing coherent probability measures for all
propositional sentences, the numerical representation often leads to computation procedures in which in-
termediate steps are totally different from those used by a human reasoner. As a result, the process lead-
ing from the premises to the conclusions cannot be followed, tested or justified by the users, or even the
designers, of the reasoning system. For example, even simple tasks such as computing the impact of a
piece of evidence ¢ on a hypothesis £ via

Y Pxq,...x,)
X; h.‘
Phle)= P}E’;;;’) =5
Y P(xyq,..., xy)
X;#e

appear to require a horrendous number of meaningless arithmetic operations, unsupported by familiar
mental processes.

However, the most striking inadequacy of traditional theories of probability lies in the way these
theories address the notion of independence. The traditional definition of independence involves equality
of numerical quantities, e.g., P (h, e) =P (h) - P (e), suggesting that, to verify whether 2 and e are in-
dependent, one needs to test whether the joint distribution of e and 4 is equal to the product of their mar-
ginals. Contrast this with the ease and conviction with which people identify independencies while, at the
same time, being unwilling to provide precise numerical estimates of probabilities.



Whereas a person may show reluctance to giving a numerical estimate for the probability of being
burglarized the next day or of having a nuclear war in five years’ time, that person can usually state with
ease whether the two events are dependent or independent, namely, whether knowing the truth of one pro-
position will alter the belief in the other. Likewise, people tend to judge the 3-place relationships of con-
ditional dependency (i.e., x; influences X; given x, ) with clarity, conviction and consistency. For exam-
ple, it is undisputed common knowledge that knowing the departure time of the last bus is relevant for as-
sessing how long we are about to wait for the next bus. However, once we leam the current whereabouts
of the next bus, the former no longer provides useful information. These common-sensical judgments are
issued qualitatively with not the slightest reference to numerical probabilities and could not possibly rely
on arithmetic operations with precise probabilities.

This suggests that the notions of relevance and dependence are far more basic to human reasoning
than the numerical values attached to probability judgments. Consequently, if one aspires to construct
common-sensical reasoning systems, it is important that the language used for representing probabilistic
information should allow assertions about dependency relationships to be expressed qualitatively, directly
and explicitly. Unlike the case of numerical representations, the verification of dependencies should not
await lengthy numerical manipulations but be accomplished swiftly by a few primitive operations on the
salient features of the representation scheme. Moreover, once asserted, these dependency relationships
should remain a stable part of the representation scheme, impervious to variations in numerical inputs.
For example, one should be able to assert, categorically, that the event of nuclear disaster is independent
of encountering a home burglary; the system should retain and reaffirm this independence even after one
changes the estimated likelihoods of these and other events in the system.

Making effective use of information about dependencies is a computational necessity, essential in
any reasoning. If we have acquired a body of knowledge z and now wish to assess the truth of proposition
x, it is important to know whether it would be worthwhile to consult another proposition y, which is not
in z. In other words, before we examine y, we need to know if its truth value can potentially generate
new information relative to x, not available from z. In the absence of such information, an inference en-
gine would spend precious time on derivations bearing no relevance to the task at hand. Relevance infor-
mation, if available, can guide and focus the derivations in such a way that only those truly needed for the
target conclusion get activated. But how would relevance information be encoded in a symbolic system?

Explicit encoding is clearly impractical because the number of (x, ¥, z) combinations needed for
reasoning tasks is astronomical. Relevance or dependencies are relationships which change dynamically
as a function of the information available at any given time. Acquiring new facts may destroy existing
dependencies as well as create new ones. The former change will be called monotonic as it narrows the
scope of propositions relevant to the target conclusion, and the latter will be called nonmonotonic as the
scope of relevant propositions widens. For example, in trying to predict whether I am going to be late for
a meeting, it is normally a good idea to ask somebody on the street for the time. However, once I establish
the precise time by listening to the radio, asking people for the time becomes superfluous, and their
responses would be irrelevant, thus demonstrating monotonic change of dependencies. For an example of
a nonmonotonic relationship, consider the following: Normally, knowing the color of X 's car tells me
nothing about the color of Y ’s, but if X were to tell me that he almost mistook ¥ 's car for his own, a new
dependency is created between the two color variables -- whatever I learn about the color of X 's car will
have bearing on what I believe the color of ¥ 's car to be. What logic would facilitate these two modes of
reasoning?



In probability theory, the notion of informational relevance is given precise quantitative underpin-
ning using the device of conditional independence, which successfully captures our intuition about how
dependencies should change with learning new facts. A variable x is said to be independent of y, given
the information z , if

Pxylz)=P(x1z)P(ylz)

Accordingly, if x and y are marginally dependent (i.c., dependent, when z is unknown) and become con-
ditionally independent given z, a monotonic relationship holds. Conversely, if x and y are marginally in-
dependent and become dependent upon learning the value of z, a nonmonotonic relationship between
x,y and z is captured. Thus, in principle, probability theory could provide the machinery for identifying
which propositions are relevant to each other with any given state of knowledge.

However, we have already argued that it is flatly unreasonable to expect people or machines to
resort to numerical verification of equalities in order to extract relevance information, Human behavior
suggests that such information is inferred qualitatively from the organizational structure of human
memory, not from manipulating numerical values assigned to its components. Accordingly, it would be
interesting to explore how assertions about relevance can be inferred qualitatively and whether assertions
equivalent to those of probabilistic dependencies can be derived logically without references to numerical
quantities. This task is dealt with in Section 1, which establishes an axiomatic characterization of proba-
bilistic dependencies and examines whether the set of axioms matches our intuitive notion of information-
al relevancy.

Having a logic of dependency would be useful for testing whether a set of dependencies asserted
by an expert is self-consistent and would also allow us to infer new dependencies from a given initial set
of such relattonships. However, such logic would not, in itself, guarantee that any sequence of inferences
would be psychologically meaningful, i.e., correlated with familiar mental steps taken by humans. To fa-
cilitate this latter feature, we must also make sure that most derivational steps in that logic correspond to
simple local operations on structures depicting common-sensical associations. We call such structures
dependency graphs.

The nodes in these graphs represent propositional variables, and the arcs represent local dependen-
cies among conceptually-related propositions. Graph representations are perfectly suited for meeting our
carlier requirements of explicitness, saliency and stability, i.c., the links in the graph permit us to directly
and categorically express the essential dependence relationships, and the graph topology displays these re-
lationships explicitly and preserves them, in fact, under any assignment of numerical parameters.

It is not surprising, therefore, that graphs constitute the most common metaphor for describing
conceptual dependencies. Models for human memory are often portrayed in terms of associational graphs
(e.g., semantic networks [Woods, 1975], constraint networks [Montanari, 1974], inference nets [Duda,
Hart and Nilsson, 1976] and conceptual dependencies [Schank 1972]). Graph-related concepts are so en-
trenched in our language (e.g. ‘‘threads of thoughts,”” ‘‘lines of reasoning,’” *‘connected ideas,’’ *‘far-
fetched arguments’” etc.) that one wonders whether people can, in fact, reason any other way except by
tracing links and arrows and paths in some mental representation of concepts and relations. Therefore, a
natural question to ask is whether the informal notion of informational relevancy or the more technical no-
tion of probabilistic dependencies can be captured by graphical representation, in the sense that all depen-
dencies and independencies in a given model would be deducible from the topological properties of some
network. This question will be addressed in Sections 2 and 3.



Despite the prevailing use of graphs as metaphors for communicating and reasoning about depen-
dencies, the task of capturing dependencies by graphs is not at all trivial. When we deal with a
phenomenon where the notion of neighborhood or connectedness is explicit (e.g., family relations, elec-
tronic circuits, communication networks, etc.), we have no problem configuring a graph which represents
the main features of the phenomenon. However, in modeling conceptual relations such as causation, asso-
ciation and relevance, it is often hard to distinguish direct neighbors from indirect neighbors; so, the task
of constructing a graph representation then becomes more delicate. The notion of conditional indepen-
dence in probability theory is a perfect example of such a relational structure. For a given probability dis-
tribution P and any three variables x, y, z, while it is fairly easy to verify whether knowing z renders x
independent of y, P does not dictate which variables should be regarded as direct neighbors. Thus, many
different topologies might be used to display the dependencies embodied in P. We shall also see that
some useful properties of dependencies and relevancies cannot be represented graphically. Markov and
Bayes networks represent two approaches to minimizing such deficiencies.

This paper is organized as follows: Section 1 uncovers the axiomatic basis for the probabilistic
relation “‘x is independent of y, given z " and offers it as a formal definition for the qualitative notion of
informational dependency. Given an initial set of such independence relationships, the axioms established
permit us to infer new independencies by non-numeric, logical manipulations. Sections 2 and 3 examine
those properties of probabilistic models that can be captured by graphical representations and compare the
properties of two such representations: Markov Networks (Section 2) and Bayes Networks (Section 3). A
Markov network is an undirected graph where the links represent probabilistic dependencies, while a
Bayes network is a directed acyclic graph where the arrows represent causal influences or frame-slot rela-
tionships. For each of these two network types we establish:

(1) aformal semantic of the dependencies portrayed by the networks,

(2) an axiomatic characterization of the class of dependencies capturable by the network,

(3) amethod of constructing the network from either hard data or expert judgments and

(4) asummary of properties relevant to its use as a knowledge representation scheme in
inference systems.



2. AN AXTIOMATIC BASIS FOR PROBABILISTIC DEPENDENCIES

Definition: Let U = {a, B, ...} be a finite set of discrete-valued variables (i.e., partitions or attributes)
characterized by a joint probability function P ('), and let x, y and z stand for any three subsets of vari-
ables in U. x and y are said to be conditionally independent given z if

Px,ylz)=Px|z)P(ylz) whenP(z)>0 H

Eg. (1) is a terse notation for the assertion that, for any instantiation z, of the variables in z and for any in-
stantiations x; and y; of x and y, we have

P(x=x; and y=y;lz=z;) = P (x=x;1z=2;) P (y=y;12=2;) 2

The requirement P (z )> O guarantees that all the conditional probabilities are well defined, and we shall
henceforth assume that P > 0 for any instantiation of the variables in {/. This rules out logical and func-
tional dependencies among the variables, a case which would require special treatment.

We use the notation / (x,z ,y )p or simply / (x,z,y) to denote the independence of X and y given
z; thus,
Ix,z,y)p iff Px,ylz)=P(x1z)P(ylz) 3)
Unconditional independence (also called marginal independence) will be denoted by [ (x, &, y), i.e.,
I(x,D,y)p iff Px,y)=P&)P()
Note that I (x, z, y) implies the conditional independence of all pairs of variables e x and Be y, but the

converse is not necessarily true.

The conditional-independence relation / (x,z,y) satisfies the following set of properties [Lau-
ritzen, 1982]:

I(x,z,y)<=>P(xly,z)=P(x!z) (4.2)
I(x,z,y)<=>P(x,zly)=P(x1z) P(zy) (4.)
I(x,z,y)<=> 3f,8:P(x,y,2)=f(x,2)g(y,2) (4.c)
I(x,z,y)<=>P(x,y,2)=P(x|2)P(y,2) (4.d)
I(x,2,y)=>1(x,(z, f (), ¥) (5.2)
Ix,z,y)=>1(f(x,z2),2,y) (5.b)

The proof of these properties can be derived by elementary means from the definition (3) and the basic ax-
ioms of probability theory. These properties are based on the numeric representation of P and, therefore,
would not be adequate as an axiomatic system.

We now ask what logical conditions, void of any reference to numerical forms, should constrain
the relationship / (x, z, y) if it stands for the statement *'x is independent of y, given that we know z ** in
some probability model P. The next theorem establishes such a logical basis:

Theorem I: Letx,y and z be three disjoint subsets of variables from U, and let [ (x, z, y) stand for



the relation ‘‘x is independent of y, given z '’ in some probabilistic model P, then I must satisfy the fol-
lowing set of five independent conditions:

Symmetry (6.2)
I(x,z,y)<=>1(y,z,x)

Decomposition (6.b)
Ix,z,y gw)=I(x,z,y) & I(x,z,w)

Intersection (6.c)
Ix,z ygw,y) & Ix,z gy, w)=>I(x,z,y uw)

Weak Union (6.d)
Ix,z,y uw)=Ikx,z yw,y)

Contraction {6.e)
Ix,z yy, w)&Ix,z,y)=1x,z,yUw)

Remarks: The symbol \_j in y y_) w should not be confused with logical disjunction. Rather, it stands
for the conjunction of events asserted by instantiating the set union y \_jw. For example,
I(x,@,y U w) stands for

P=x;&y=y;&w=w)=Px=x)PQy =y;&w=w) Vi, jk
When convenience prevails, an altenative, simpler notation, I (x, &, yw), will be used.

Restricting the arguments of / () to disjoint subsets does not affect the generality of Theorem 1.
Once [ is defined on the set of disjoint triplets x, ¥, z it is also defined on the set of all triplets. This is
seen from Eq.(5.b). Which, by proper choice of f , implies

I(X,Z’J’)<=>I(x'2o2,)’)

For technical convenience we shall also adopt the convention that every variable is independent of the null
set,ie., f(x,z, D).

The intuitive interpretation of Egs. (6.c) through (6.e) follows. (6.c) states that, if y does not af-
fect x when w is held constant and if, simultaneously, w does not affect x when y is held constant, then
neither w nor y can affect x. (6.d) states that learning an irrelevant fact (w) cannot help another ir-
relevant fact (v ) become relevant to x. (6.e) can be interpreted to state that, if we judge w to be irrelevant
(to x) after learning some irrelevant facts y, then w must have been irrelevant before learning y. Togeth-
er, the weak union and contraction properties mean that leamning irrelevant facts should not alter the
relevance status of other propositions in the system; whatever was relevant remains relevant, and what
was irrelevant remains irrelevant.

The operational significance of axioms (6.2)-(6.¢) and their role as inference rules can best be ex-
plained by employing a graph metaphor, letting / (x, z, y) stand for the phrase ‘‘z separates x from y”
or, in other words, ‘‘the removal of a set z of nodes from the graph would render the nodes in x discon-
nected from those in y.'" The validity of (6.a) through (6.e) if clearly depicted by the chain x —z—y—w
and in the schematics of Appendix 1.



Symmetry (6.a) simply states that if z separates x from y then it also separates y from x. The
decomposition axiom (6.b) asserts that if z separates x from the compound set § =y ‘U w then it also
separates x from every subset of S. The intersection axiom (6.c) states that if within some set of variables
S=xuwuyuwzUw,x is separated from the rest of S by two different subsets, S, and S5, (ie.,
§i=z Uy and S, =2z U w) then the intersection of S ; and §, would also separate x from the rest of
S.

The weak union axiom (6.d) provides the conditions under which a separating set z can be aug-
mented by additional elements (w ) and still separate x from y. The condition is that the added subset w,
must come from that part of the space which was initially separated from x by z. The contraction axiom
(6.e) provides conditions for reducing the size of the separating set; it permits the deletion of a subset (y)
from the separator (z U y) if the remaining part, z, separates the deleted part y from x. Figure O pro-
vides schematic descriptions of these rules.

The proof of Theorem 1 can be derived by elementary means from the definition (3) and from the
basic axioms of probability theory. The proof that Eqs. (6.a) through (6.e) are logically independent can be
derived by letting I/ contain four elements and showing that it is always possible to contrive a subset / of
triplets (from the subsets of /), which violates one property and satisfies the other four.

The intersection property is the only one which requires the assumption P (x) > 0 and will not
hold when the variables in U are constrained by logical dependencies. For instance, if y stands for the
proposition *‘The water temperat:-e is above freezing,” and w stands for ‘‘The water temperature is
above 32°F,”’ then, clearly, knowing the truth of either one of them renders the other superfluous. Yet,
contrary to (6.c), this should not render both y and w irrelevant to a third proposition x, say, whether we
will enjoy swimming in that water. In su~ a case, Theorem 1 will still retain its validity if we regard each
logical constraint as having some small probability € of being violated, and let e—=0.

The assumption P(E) 2 & 2 0 amounts to stating that every event or combination of event, no
matter how outrageous, has some chance of being true. As strange as it sounds, this is not an unreasonable
assumption to make while talking about empirical facts. For example, it is not completely impossible for
the water temperature to be above freezing and below 32° F (e.g., if it is very salty) and, now, that we ac-
cept such a possibility we must also denounce the statement that knowing any one of these two facts
renders the other superfluous relative to any x. If x represents our concern about swimming in that water
then the temperature becomes the relevant fact, rendering its freezing status irrelevant. If, on the other
hand, our interest lies in ice formation, it is the freezing point, not the temperature, that is relevant. This is
exactly what axiom (6.c) claims; if two properties exert influence on x, then (at a sufficiently fine level of
detail) it is impossible that either one of them, interchangeably, would render the other irrelevant. Sym-
metrical exclusion is only possible when we are dealing with definitional properties (e.g., y: ‘‘The water
temperature is above 32°F; w: ‘“The water temperature is not equal or lower than 32°F,”") but not with
properties subject to independent empirical tests.

Despite their striking similarity to vertex separation in graphs, properties (4.b) and (4.d) are much
weaker than their graph counterparts. In graphs, two sets of vertices are said to be separated if there exists
no path between their individual elements. The composition property (4.b), on the other hand, contains
only one-way implication; a variable & may be independent of each and every individual variable in set y
and still be dependent on the entire set. For example, let y be the outcomes of a set of fair coins, and let &
be a variable that attains the value 1 whenever an even number of coins tum up heads and the value 0 oth-
erwise. o is statistically independent on every element as well as any proper subset of y; yet, o is com-



pletely determined by the entire Set y.

Property (6.d) is also weaker than its corresponding property in graphs. If z is a cutset of vertices
which separates x from y in some graph, then augmenting z by additional elements always keeps x and y
separated. (6.d), on the other hand, severely restricts the conditions under which a separating set z can be
enlarged by additional elements w -- w must be chosen from a set which, together with y is already
separated from x by z.

Completeness Conjecture: The set of axioms (6.a) through (6.¢) is complete when [ is interpreted as a
conditional-independence relation. In other words, for every 3-place relation / satisfying (6.a) through
(6.e), there exists a probability model P such that

Pixly,z)=Pxl1z) iff I(x,z,y)

Although we have not been able to establish a general proof of completeness, we were not able to
find any general property of conditional independence, valid for all P, which is not implied by (6.a)
through (6.¢).

The usefulness of axiomatizing the notion of probabilistic dependence is three-fold. First, it al-
lows us to conjecture and derive interesting and powerful theorems which may or may not be obvious in
the numerical representation of probabilities. For example, the chaining rule [Lauritzen, 1982}

[G,y, ) &I(xy, 2, w) = 1(x,y, w)

follows directly from Egs. (6.d) and (6.e) and is important for recursively constructing directed graph
representations (See section 4.). Another interesting theorem is the ‘‘mixing rule’’ [Dalkey, 1986]

Ix,z,yw)& I(y,z,w) => I(xw,z,y)
which also follows from Egs.(6.d) and (6.e).

Second, the set of axioms (6.2) to (6.e) can be viewed as qualitative inference rules which can be
used to derive new independencies from some initial set of instances. For example, if an expert provides
us with an initial set, S, of qualitative independence judgments in the form of triplets (x, z, ¥ ), we can
use axioms (6.2)-(6.e) to generate the closure of § or, alternatively, to test whether a given additional tri-
plet (x’, z’, y”) logically follows from S. In this fashion, one can test and maintain consistency in the da-
tabase as well as prevent reasoning systems from spending inordinate effort on variables proven irrelevant
to the target hypotheses. Third, the axiomatic system provides a parsimonious and convenient code for
comparing the features of several dependency models as well as expressive power for various representa-
tions of these models. In sections 3 and 4, for example, we will use the axiomatic characterization to com-
pare the expressive powers of directed vs. undirected graphs and to reveal what type of dependencies are
not capturable by graphical representations.
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3. MARKOV NETS
What’s in a missing link?

Suppose we have a collection U of interacting elements and we decide to represent their interac-
tions by an undirected graph G in which the nodes correspond to individual elements of U . Naturally, we
would like to display independence between elements by a lack of connectivity between their correspond-
ing nodes in G and, conversely, dependent elements should correspond to connected nodes in G . This re-
quirement alone, however, does not take full advantage of the expressive power of graph representation. It
treats all connected components of G as equivalence classes and does 7ot attribute any special
significance to the topological configuration within each connected component of & .

Clearly, if graph topology is to convey meaning beyond its connectedness, a semantic distinction
must be made between “*direct connection’’ and **indirect connection’’ in the sense that arbitrarily adding
a link between indirectly connected elements should correspond 0 a totally different state of dependency.
This means that the absence of a direct link between two elements & and § should reflect the fact that their
interaction is not basic but conditiornal, i.e., it may become stronger, weaker or zero, depending on the
state of other elements in the system, especially those that lie on the paths connecting o and B and, thus,
mediate between them.

As an example, consider a group of two males {M |, M ,} and two females {F |, F ,} who occa-
sionally engage in pairwise heterosexual activities. The fact that there is no direct contact between the two
males or the two females can be represented by the diamond-shaped graph of Fig. 1, which may also be
used to represent conditional dependencies between various propositions. For example, if by m; (and f;)
we denote the proposition that male M; (respectively, F;) will car ’ a certain venereal disease within the
next year, then the topology of the network in Fig. 1 asserts that f | and f , are independent given m ; and
m, namely, once we know for sure whether M | and M ; will carry the disease, knowing the truth of f
ought not to change our belief in f él). This conditional independence information reflects a model
whereby the disease spreads only by direct sexual contact. Note that the links in this network are undirect-
ed, namely, either parmer may be the originator of the disease. This does not exclude asymmetric interac-
tions, e.g., if the disease is more easily transferable from males to females than the other way around.
Such information, if available, will be contained in the numerical parameters which will eventually
characterize the links in the network and will be described in a later section.

In summary, the semantic of the graph topology is defined by the meaning of the missing links
which specify what other elements mediate the interaction between non-adjacent elements. This process
of meditation will now be compared to the probabilistic relation of conditional independence I (x, z,y),
Eq. (1), which formalizes the intuitive statement: ‘‘Knowing y would tell me nothing new about x if I
already know z."’

Q) Tmis assumes, of course, that we are dealing with a known disease, whose spreading mechanism is well
understood. Otherwise, when we are still in the stage of learning the disease characteristic, knowledge of f | may
help decide the more basic question of whether the disease is at all contagious, and this information will and should
have an effecton f 5.
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M2

Figure !

3.1 Graph Separation and Conditional Independence

Let U = {a, B,...} be a finite set of elements (e.g., propositions, variables, etc.), and let x, y and
z stand for three disjoint subsets of elements in U. Let M be a dependency model which assigns truth
values to the 3-place predicate [ (x, z, y ) or, in other words, M determines a suuvcet I of triplets (x, z, y)
for which the assertion '‘x is independent of y given z'’ is true. Any probability distribution P consti-
tutes such a model because, for any triplet (x, z, ¥ ), we can test the validity of "(x, z, y ) using Eq. (1).
Our task is to characterize the set of models capturable by graphs, assuming that the model does not pro-
vide direct tests for ‘‘adjacency’’. In other words, we are given the means to test whether any given subset
S of elements intervenes in a relation between elements x and ¥, but it remains up to us to decide how to
connect the elements together in a graph that encodes these interventions.

Ideally, we would like to require that if the removal of some subset S of nodes from the graph G
renders nodes x and y disconnected (writen<x | § | y > ), then this separation should correspond to
conditional independence between x and y given S, namely,

<x|Sly>g=1(x,8,y)
and, conversely,
[(x,S,y)=<x 1§ 1y>g

This would provide a clear graphical representation for the notion that x does not affecty directly, that its
influence is mediated by the variables in §. Unfortunately, we shall next see that these two requirements
are too strong; there is often no way of using vertex separation in a graph to display ail dependencies and
independencies embodied in some probabilistic models, even those portraying simple, everyday experi-
ences.

Definition:  An undirected graph G is a dependency map (D -map) of M if there is a one-to-one
correspondence between the elements of U and the nodes of G, such that for all disjoint subsets, x, y, z,
of elements we have:
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Tx,z,y)y @ <xlzly>qg (7

Similarly, G is an /ndependency map (I-map) of M if:

[ (x,z2,y)y &=<xlzly>g (8)
G said to be a perfect map of M if it is both a D -map and / -map.

A D -map guarantees that vertices found to be connected are, indeed, dependent; however, it may occa-
sionally display dependent variables as separated vertices. An /-map works the opposite way: it guaran-
tees that vertices found to be separated always correspond to genuinely independent variables but does not
guarantee that all those shown to be connected are, in fact, dependent. Empty graphs are trivial D -maps,
while complete graphs are trivial / -maps.

It is not hard to see that many reasonable models of dependency have no perfect maps. This oc-
curs, for example, in models where /(x, z, y ) exhibits nonmonotonic behavior, totally unrelated proposi-
tions become relevant to each other upon learning new facts. A nonmonotonic model M, implying both
I(x,2,,y)y and ~J(x, 2\ 22, ¥))s cannot have a graph representation which is both an / -map and
a D -map, because graph separation always satisfies <x |z |y >g = <x lz;yz, 1y > for
any two subsets z ) and z ; of vertices. Thus, D -mapness forces & to display z | as a cutset separating x
and y, while [ -mapness prevents z | |\ ) 7 from separating x and y. No graph can satisfy these two re-
quirements simultaneously.

This weakness in the expressive power of undirected graphs severely limits the'- ability to
represent probabilistic dependencies. A simple example illustrating this point is an experiment with two
coins and a bell that rings whenever the outcomes of the two coins are the same. If we ignore the bell, the
coin outcomes, x and y, are mutually independent, i.e., / (x, &, y). However, if we notice the bell (z),
then learning the outcome of one coin should change our opinion about the other coin, namely,
—-[(x,z,y).

How can we graphically represent these simple dependencies between the coins and the bell or, in
general, between a set of multiple causes leading to a common consequence? If we take the naive ap-
proach and assign links to (z, x) and (z, ¥ ), leaving x and y unlinked, we get the graph x—z—y . This
graph is not an / -map because it asserts that x and y are independent given z, which is wrong. If we add
a link between x and y as well, we get the trivial / -map of a complete graph, which no longer alerts us to
the obvious fact that the two coins are genuinely independent since the bell is merely a passive device
which does not affect their interaction. In Section 4, we will show that such dependencies can be
represented completely by using the richer language of directed graph. In this section, however, we will
continue to examine the representational capabilities of undirected graphs.

Being unable to provide graphical representations to some (e.g., nonmonotonic) models of depen-
dency, raises the question of whether we can formaily delineate the class of models which do lend them-
selves to graphical representation. This is accomplished in the following subsection by establishing an ax-
iomatic characterization of the family of relations which are isomorphic to vertex separation in graphs.
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3.2 Axiomatic Characterization of Graph-Isomorph Dependencies
Definition: A dependency model M is said to be a graph-isomorph if there exists a graph G = (U, E)
which is a perfect map of M, i.e., for every three disjoint subsets x, y and z of U/, we have:
Ix,z,y)y <=><xlz1ly>g (9)

Theorem 2: [Pearl & Paz, 1985] A necessary and sufficient condition for a dependency model M to be
graph-isomorph is that /(x, z, y ) satisfies the following five independent axioms (the subscript M
dropped for clarity):

(symmetry)

Ix,z,y)<=> I(y,z,x) (10.a)
(decomposition)

Ix,z,y gw) =1x,z,y)& I(x,z,w) (10.b)
(intersection)

Ix,z gw, )& I,z Yy, w) =21kx,z,y Uw) (10.c)
(strong union)

I(x,z,y) =21x,z yw,y) VwgU-xuzuy (10.d)
(transitivity)

Ix,z,y) =21(x,z,y) or I(Y,z,y) V yex Uz Yy (10.e)

Remark-1: The axioms in (10) are clearly satisfied for vertex separation in graphs. (10.e) is the counter-
positive form of connectedness transitivity, stating that, if x is connected to ¥y and 7y is connected to y, then
x must also be connected to y. (10.d) states that, if z is a vertex cutset separating x from y, then remov-
ing additional vertices w from the graph still leaves x and y separated. (10.c) claims that, if x is separat-
ed from w with y removed and, simultaneously, x is separated from y with w removed, then x must be
separated from both y and w.

Remark-2: (10.c) and (10.d) imply the converse of (10.b), which makes / completely defined by the set
of triplets (x, z, y) in which x and y are individual elements of /. Equivalently, we an express the ax-
ioms in (10) in terms of such triplets. Note, also, that the union axiom (10.d) is unconditional and, there-
fore, stronger than (10.d), the one required for probabilistic dependencies. It provides a simple method of
constructing the unique graph G , which is a perfect map of M -- starting with a complete graph, we sim-
ply delete every edge (a, ) for which a triplet of the form (o, z, B) appearsin/.

Proof:

1. The necessary part follows from the observation that all five properties are satisfied by vertex
separation in graphs. The logical independence of the five axioms can be demonstrated by letting
U contain four elements and showing that it is always possible to contrive a subset / of triplets
(from the subsets of I/} which violates one axiom and satisfies the other four.

2. To prove sufficiency, we need to show that, for any set I of triplets (x, z, y) satisfying (10.a)

through (10.e), there exists a graph G such that x, z, y isin/ iff Z is acutset G that separates
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x from y. We show that Gy = (U, E) is such a graph, where (&, B)¢ E iff I(x,z,B). In
view of remark-2 above, it is sufficient to show that

I(a,5,P) = <alSiB>;, o BeU,S,gU
This is proved by finite induction:

i For 1S | = n-2, the theorem holds automaticalty, due to the way G g is constructed.

ii. Assume the theorem holds for and § with size 1S | =k =< n-2. Let S’ be any set of
size 1§'1 = k—1. For k =< n-2, there exists an element Y outside S’ y & P and,
using (10.d), we have: I(a, S, B) = I{(c, " U Y. B

ii. By (10.¢) we have either I (ot, 7, V) or I (v, S”, B).

iv. Choosing the first altemative in (iv) (the latter giving an identical result), and applying
(10.d), gives I (&, ") B, V).

V. The middle arguments in (iii) and (v) are both of size £; so, by (the?) induction hy-
pothesis, we have <a|S " YIB>g,and <aIS” ) Bly>g, -

vi. By the intersection property (10.c) for vertex-separation in graphs, these two assertions
imply <a|S’I1B>g,. Q.ED.

Having a complete charactenization for vertex separation in graphs makes it easy to test whether a
given model of dependency lends itself to graphical representation. In fact, it is now easy to show that
probabilistic models may violate each of the last two axioms. Axiom (10.d) is clearly violated in the
non-monotonic coins-and-bell example of the preceding subsection. Transitivity (10.e) is violated by that
same example because, if one of the coins is not fair, then the bell’s response is dependent on the outcome
of each coin separately; yet, the two coins are independent of each other. Finally, (10.c) is violated in con-
texts where the propositions y and w logically constrain one another, as in the earlier example of the wa-
ter temperature.

Having failed to provide isomorphic graphical representations for even the most elementary
models of informational dependency, we settle for the following compromise: Instead of complete
graph isomorphism, we will consider only [ -maps, i.e., graphs which faithfully display each and every
dependency. However, acknowledging the fact that some independencies will escape representation, we
shall insist that their number be kept at a minimum or, in other words, that the graphs in those maps con-
tain no superfluous edges.

3.3 Markov Net: the Minimal I-Map of P

Whenever a correspondence is defined between such seemingly unrelated objects as probability
distributions and graphs, it it natural to raise the following three questions:

1. Given a graph &, can we construct a probability distribution P such that G is a perfect map of
P?
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2. Given a pair (P, G ), can we test if & is an [ -map of P ?
3. Given a probability distribution P, can we construct an / -map G of P which has the minimum
number of edges?

The first two problems have been given satisfactory answers by the theory of Markov Fields {Isham,
1981], {Lauritzen, 1982] and [Geman & Geman, 1984]. This treatment is rather complex and relies heavi-
ly on the numerical representation of probabilities. We shall focus on the third problem and show that:

. Problem 3 has a simple unique solution.
. The solution to 2 follows directly from the solution to Problem 3.
o The solutions are obtained by non-numeric analysis,

based solely on axioms (6.a) through (6.d) of Section 2.
Question 1 will be treated in Section 4.
3.1 Basic Definitions and Properties

Definition: A graph G is a minimal [ -map of dependency model M if no edge of G can be deleted
without destroying its / -mapness. We call such a graph a Markov-Netof M .

Theorem 3: [Pearl & Paz, 1985]. Every dependency model M satisfying (6.a)-(6.c) has a (unique)
minimal [/-map G¢=(U,Ey) produced by connecting only pairs (o, ) for which
Ho,U — o =B, B)y is FALSE, ie.,

(o,B)e Ey iff I(a,U-a-B, By (11)

The proof is given in Section 5.

Definition: A relevance blanket R;(0) of a variable & € U is any subset S of variables for which

Ia,S,U-S~a) and ¢ S (12)
Let R; (o) stand for the set of all relevance blankets of ¢t. A set is called a relevance boundary of o,
denoted B, (o), if it is in R, (o) and if, in addition, none of its proper subsets are in R, (a)

B (o) is to be interpreted as the smallest set of variables that *‘shields’” o from the influence of
all other variables. Note that R;(t) is non-empty because / (x, z, J) guarantees that the set S = U -«
satisfies (12).

Theorem 4: [Pearl & Paz 1985]. Every variable ¢ € U in a probabilistic model P has a unique

relevance boundary B;(cr) called the Markov boundary of .. By(ot) coincides with the set of vertices
B (o) adjacent to o in the Markov net G .

The proof of Theorem 3 (See Section 5.) also makes use of the weak-union property (6.d).

Corollar_y 1: The set of Markov boundaries B;(a) forms a neighbor system, i.e., a collection
By = (B;(e) : e U} of subsets of U such that

) ¢ B(x),and
i) xe B;(B) iff Pe By(x), a,BelU
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Corollary 2:  The Markov net G ; can be constructed by connecting each « to all members of its Mar-
kov boundary B, (cx).

The usefulness of this corollary lies in the fact that, in many cases, it is the Markov boundaries
B; (o) that define the organizational structure of human memory. People find it natural to identify the im-
mediate consequences and/or justifications of each action or event [Doyle, 1979], and these relationships
constitute the neighborhood semantics for inference nets used in expert systems [Duda et al., 1976]. The
fact that By(ct) coincides with B (o) guarantees that many global independence relationships can be

validated by separation tests on graphs constructed from local information.

We are now in a position to answer the [ -map recognition question mentioned at the beginning of
this subsection (question 2), i.e., can we test whether a given graph & is an [ -map of a distribution P .

Theorem 5: Given a probability distribution P on U and a graph G = (U, E), the following three con-
ditions are equivalent:

i G isan/-mapof P

ii. ( is a supergraph of the Markov net Ggof P, i.e.,
(a, )€ E  onlyif I, U-a-B,B)

iii. G is locally-Markov with respect to P, ie., for every variable xe U/ we have
I(a, Bg(o), U — o — B (), where B (¢t) are the set of vertices adjacentto o in & .

Proof: The implicaton (ii) => (i) follows from the /-mapness of Gg. (i) => (iii) follows from the
definition of /-mapness. It remains to show (iii) => (ii), but this follows from the uniqueness and
minimality of G g (Theorem 3). Q.E.D.

Properties (ii) and (iii) provide procedures for testing / -mapness without exhaustively examining
every cutset in &. They still require, though, tests which involve all the variables in U and, therefore,
may lead to exponential complexity, especially when P is given as a table. Fortunately, in most practical
applications, it is the graph representation (& that we start with; the probability model P is used merely as
a theoretical abstraction used to justify the operations conductedon G .

Thus we see that the major graphical properties of probabilistic independencies are consequences
of the intersection and union axioms (6.c) and (6.d). Axioms (6.a) through (6.d) were chosen, therefore, as
the definition of a general class of dependency models called Graphoids [Pearl, Paz 1985], which possess
graphical representations similar to those of Markov nets (See Section 5.). The contraction axiom (6.e) is
necessary for constructing directed-graph representations (to be treated in Section 4).

3.2 Illustration 1 (abstract)

To illustrate the role of the conditional-independence axioms (Eq.6), consider a set of four in-
tegers I/ = {(1, 2, 3, 4)}, and let / be the set of twelve triplets listed below:
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1={(1,2,3),(1,3,4,(2,3,4),({1,2},3,4),(1, (2,3}, 4), (2, {1, 3}, 4) + symmetrical images }

All other triplets are assumed to be dependent, i.e., outside /. It is easy to see that [ satisfies (6.2) through
(6.d) but not (6.¢), because it does not contain (1, 2, 4). Thus, (from Theorem 1) there is no probability
model supporting / ; yet, from Theorem 3, it has a unique minimal / -map G o, shown in Figure 2.

1

4
Figure2: TheMinimall-Map, G, of [

This graph can be constructed either by deleting the edges (1, 4) and (2, 4) from the complete
graph or by computing, from 7, the relevance boundary of each element, i.e.,

BI(1)={2’ 3}5 B[(2)={1, 3}3 B[(3)={1’ 2’ 4}’ BI(4)={3}

Suppose that the list contained only the last two triplets (and their symmetrical images):
I'={(1,{2,3},4), 2, {1, 3}, 4) + symmetrical images }

I is clearly not a probabilistic independence relation because the absence of the triplets (1, 3, 4) and (2, 3,
4) violates the intersection axiom (6.c). Indeed, if we try to construct G o by the usual criterion of edge
deletion, the graph in Figure 2 ensues, but it is no longer an /-map of / ; it shows 3 separating 1 from 4,
while (1, 3, 4) is not in [ . In fact, the only /-maps of I are the three graphs in Figure 3, and the edge-
minimum graph is clearly not unique.

1 1 1

4 4 4
Figure 3: The Threel-Maps of [’

Now consider the list
I” = {(1’ 2v 3): (19 3, 4): (21 3, 4)! ({1, 2}, 3, 4) + images}
I”" satisfies the first three axioms, (6.a) through (6.c) but not the union axiom (6.d). Since no triplet of the



18

form (o, U — o — B, B) appears in /”, the only / -map for this list is the complete graph. Moreover, the
relevance boundaries of /” do not form a neighbor set; e.g., B;~(4) =3, B;«(2)={1, 3, 4}; so,
2 ¢ By+(4) while 4 € B;(2).

Note that / does not possess the contraction property (6.e); therefore, there is no probabilistic
model capable of inducing this set of independence relationships unless we also add the triplet (1, 2, 4) to
I. Had [ been a list of inputs given by a domain expert, it would be simple to invoke axioms (6.a)
through (6.e) to alert the expert to inconsistency in the data, pointing to the absence of (1, 2, 4). Howeyv-
er, the discrepancies in /” and /" would be easier to detect because they interfere with the formation of
G ¢ and so could be identified by a system which attempts to construct it.

3.3 Illustration 2 (application)
Consider the task of constructing a Markov net to represent the belief whether or not an agent A is

about to be late for a meeting. Assume that the agent identifies the following variables as having influence
on the main question of being late to a meeting:

1. the time shown on the watch of passerby-1;

2, the time shown on the watch of passerby-2;

3. the correct current ime;

4, the time A will show up at the meeting place;

5. the time A 's parmer plans to show up;

6. the time A 's partner will actually show up;

1. whether A will be late for the meeting (i.e., will arrive after his partner).

The construction of G  can proceed by two methods:
1. the complementary set method; and
2, the relevance-boundary method.

The first method requires that, for every pair of variables (¢, ), we determine whether fixing the value of
all other variables in the system will render our belief in ¢ sensitive to the value of f. We know, for ex-
ample, that the reading on passerby-1's watch (1) will vary with the actuai time (3), even if all other vari-
ables are held constant. On that basis, we may connect node 1 to node 3 and, proceeding in that fashion
through all pairs of variables, the graph of Figure 4 may be constructed.

The relevance-boundary method is more direct; for every variable o in the system we identify the
minimal set of variables sufficient to render the belief in ¢ insensitive to all other variables in the system.
It is a common-sense task, for instance, to decide that, once we know the current time (3), no other vari-
able may affect what we expect to read on passerby-1's watch (1). Similarly, to estimate our arrival time
(4), it is sufficient that we know the current time (3), whether we are determined to be late (7) and when
our partner will actually show up (6), independent of our partner’s intentions (5). On the basis of these
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Figure 4

considerations, we may connect 110 3; 4 to 6, 7 to 3; and so on. After finding the immediate neighbors of
any six variables in the system, the graph G ¢ will emerge, identical to that of Figure 4.

Once established, G o can be used as an inference instrument. For example, the fact that knowing
A’'s arrival time (4) renders the time on passerby-1’s watch (1) irrelevant for deciding whether A will be
late (7) (i.e., 1(1,4.7Y) need not be stated explicitly; it can be inferred from the fact that 4 is a cutset in G g,
separating 1 from 7. Deriving this conclusion by syntactic manipulations of axioms (6.a) through (6.e)
would probably be more complicated. Additionally, the graphical representation can be used to help
maintain consistency an<' ~ompleteness during the knowledge-building phase. One need ascertain only
that the relevance boundaries identified by the knowledge provider (e.g., the expert) form a neighbor sys-
tem.

3.4 Summary

We have shown that the essential qualities characterizing the probabilistic notion of conditional
independence are captured by five logical axioms: symmetry (6.a), decomposition (6.b), intersection (6.c),
weak union (6.d) and contraction (6.¢). The first three axioms enable us to construct an edge-minimum
graph in which every cutset corresponds to a genuine independence condition. The fourth axiom is need-
ed to guarantee that the set of neighbors which G ; assigns to each variable  is actually the smallest set
required to shield & from the effects of all other variables.

The graphical representation associated with conditional independence offers an effective infer-
ence mechanism for deducing, at any given state of knowledge, which propositional variables are relevant
to each other. If we identify the relevance boundaries associated with each proposition in the system and
treat them as neighborhood relations defining a graph G g, then we can correctly deduce independence re-
lationships by testing whether the set of currently known propositions constitutes a cutset in G .

The probabilistic relation of conditional independence is shown to possess a rather plausible set of
qualitative properties, consistent with our intuitive notion of *‘x being irrelevant to y, once we leam z."”
Reducing these properties to a set of logical axioms permits us to test whether other calculi of uncertainty
also yield facilities for connecting relevance t0 knowledge. Moreover, the axioms established can be
viewed as inference rules for deriving new independencies from some initial set.
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Not all properties of probabilistic dependence can be captured by undirected graphs. For example,
the former is non-monotonic and non-transitive (see ‘coins and bell’ example after proof of lemma), while
graph separation is both monotonic and transitive. It is for these reasons that directed graphs such as
inference nets [Duda et al., 1976, influence diagrams [Howard & Matheson 1984] and Bayesian belief
nets [Pearl, 1986] are finding a wider application in reasoning systems. A systematic treatment of these
graphical representations is given in Section 4.
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4. MARKOV NET AS A KNOWLEDGE BASE
4.1 Quantifying the Links

So far, we have established the semantics of Markov networks in terms of the purely qualitative
relationships, that is, a variable is proclaimed independent of all its non-neighbors, once we know the
values of its neighbors. However, if the network is to convey information useful for decisions and infer-
ence, we must also provide quantitative assessments of the strength of the links. In Figure 1, for example,
we may know for a fact that the couple (M , F ;) meet less frequently than the couple (M, F ); so, the
former link should be weaker than the latter, implying weaker dependency between the propositions m ,

andfz.

The task of assigning weights to the links of the graph must be handled with caution. If the
weights are to be used in translating evidential data into meaningful probabilistic inferences, we must first
attend to two problems: consistency and completeness. Consistency guarantees that we do not overload
the graph with an excessive number of parameters; overspecification may lead to contradictory conclu-
sions, depending on which parameter is consulted first. Completeness protects us from underspecifying
the graph dependencies and guarantees that our conclusion-generating routine will not get deadlocked for
lack of information.

One of the attractive features of the traditional joint-distribution representation of probabilities is
the transparency by which one can synthesize consistent probability models or detect inconsistencies
therein. In this representation, to create a complete wodel, free of inconsistencies, one need only assign to
the atomic events in the space (i.e., conjunctions of propositions) non-negative weights summing to one.
By contrast, the synthesis process in the graph re,. .sentation is more hazardous. For example, assume
that in Figure 1 we want to express the dependencies between the variables {M , M 5, F |, F 5} by speci-
fying the four pairwise probabilities P (M, F ), P(F, M), P(M,, F,), P(F,, M ). It ums out
that this, normally, will lead to inconsistencies; unless the parameters given satisfy some non-obvious re-
lationship, there exists no probability model that will support all four inputs. Moreover, it is not at all
clear how to put all numerical inputs together without violating the qualitative dependence relationships
shown in the graph. By contrast, if we specify the marginal probabilities on only three pairs, incomplete-
ness results; many models exist which conform to the input specification, and we will not be able to pro-
vide answers to many useful queries.

The theory of Markov Fields [Isham, 1981] {Lauritzen, 1982] provides a safe method (called
“‘Gibb’s potential®’) for constructing a complete and consistent quantitative model while preserving the
dependency structure asserted by an arbitrary graph G . The method consists of four steps:

1. Identify the cliques* of G, namely, the largest subgraphs in which the nodes are all adjacent to
' each other.
2. For each clique C;, assign a non-negative compatibility function g; (C;), which measures the rela-

tive compatibility of all possible value assignments to the variables included in C;.

3. Form the product IT g; (C;) of the compatibility functions over all the cliques.
i

* We use the term ‘‘clique’” to denote what is termed in most of the literature ‘‘maximal clique.”’
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4, Normalize the product over all possibie value combinations of the variables in the system
P(xl’“"xn)zKl;Igi(Ci) (13)

where
-1

K= % Il&C]

Xyttt Xy

The normalized product P in Eq.(13) constitutes a joint distribution which embodies all the con-
ditional independencies portrayed by the graph G ,i.e., G isan/-map of P.

To illustrate the mechanics of this method, let us return to the example of Figure 1 and assume
that for the i -th couple the likelihood that the two members end up with the same state of disease is meas-
ured by a compatibility parameter @; while the likelihood that exactly one partner of the couple remains
unaffected by the disease (while the other carries it} is assigned a compatibility parameter [3;. The depen-
dency graph in this case has four cliques, corresponding to the four edges:

Ci=(M,Fyj Ca={M,, Fy)
C3={My F} Ca={Mj Fy}
and the compatibility functions g; are given by

o; if i~ i,
gk, x;)= B, if x #x (14)

where x; and X; are, respectively, the states of the disease associated with the male and female of couple
C;. The overall probability distribution function is given by the normalized product:

PM M3, F\,F)=K g\(My,F)g,(My,Fpgs(M,, F)g,M,, Fy) (15)

=K n Bl_lxi.—-xi,lail — lxi,— xi,l
i
where K is a constant making P sum to unity over all states of the system, i.e.,

—-l'I(a +B,)+1’Ia2B—+HB, (16)

0.

o; B

For example, the state in which only the males carry the disease, (m y, —f 1, m4, —f 2), will have a pro-

bability measure K B,B,8;B, because the members in every couple are in unequal states of the disease.

The state (m 1, f 1, =M, —f ), on the other hand, has the probability X o, 3,304, because couples C
and C 4 are both homogeneous.
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To show that P is consistent with the dependency structure of G we note that any product of the
form (15) can be expressed ecither as the product f(M, F,F,)g(F.Fy M3 or as
fF,M,M,) g’ (M, M4, F,). Thus, invoking Eq.(4.c), we conclude: [ (M |, F\ Fq My)p
andI(Fl,Ml UM2,F2)F.

It is easy to prove the generality of this construction method:

Theorem 6: A probability function P formed by the product of functions on the cliques of G is a Mar-
kov field relativeto G ,i.e., G isan/-mapof P.

Proof: The [ -mapness of & would be guaranteed if P is locally-Markov relative to G (Theorem 5). It
is sufficient, therefore, to show that the G -neighbors of each variable ¢ constitute a Markov blanket of ¢
relative to P, i.e., that{ (o, B (o), U — a — B (o)) or, using Eq.(4.c), that

P(a, Bg(o), U —a—Bg(a)) = f (e, Bg(o) f (U — o) (17)

Let J o stand for the set of indices marking those cliques in G which include &,/ = {j:a € C;}. Since
P is in product form, we can write

P,B-) = Kl?gj(cj) = Kj gjugj(cj)j chgj(cj) (18)

The first product in (18) involves only variables which are adjacent to & in (&, or else the C ; would not be
cliques. The second product, according to the definition of J,, does iw: involve & Thus, (17) is esta-
blished. Q.E.D.

4.2 Interpreting the Link Parameters

The preceding method of modeling, while guaranteeing consistency and completeness, leaves
much to be desired. Its main deficiency lies in the difficulty of assigning meaningful semantics to the
parameters of the compatibility functions. If a model’s parameters are to lead to meaningful inferences or
decisions, they must be obtained either from direct measurements or from an expert who can relate them
to actual human experience. Both options encounter difficulties in the Markov nets formulation.

Assuming we have a huge record of medical tests conducted on homogeneous population of sub-
jects, including a full account of their sexual habits, can we extract from such record the desired compati-
bility functions g;(M, F)? The difficulty is that whatever disease pattern we observe on any given cou-
ple, that pattern is a function not only of the relations between this couple but also of interaction between
this couple and the rest of the population. In other words, we are invariably limited to measurements tak-
en in a noisy environment which, in our case, amounts to having a large network of interactions surround-
ing the one under test.

To appreciate the difficulties associated with context-dependent measurements, let us take an ideal
case and assume that our record is based solely on groups of four interacting individuals (as in Figure 1)
isolated from the rest of the world, all groups having the same sexual pattem. In other words, we are actu-
ally given the joint probability P (M |, F 1, F o, M 5) or a close approximation to it, and we are asked to
infer the compatibility functions g;. Clearly, this is not an easy task, even in such an ideal case; it in-
volves solving a set of simultaneous nonlinear equations for g;, in terms of data provided by P . If, in ad-
dition to this difficulty, we also face the problem that whatever solution we obtain for g; will not be appli-
cable to new situations, say where the frequency of interaction is different, we realize that it is no mere
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coincidence that the compatibility parameters cannot be given meaningful experiential interpretation.

For a parameter t0 be meaningful, it must be an abstraction of some invariant property of one’s
experience. In our example, a meaningful invariant would be the relation between the frequency of sexual
contact and the transference of the disease from one partner to another under conditions of perfect isola-
tion from the rest of the world. In probabilistic terminology, the quantities P (f {1m, = m,) and
P(f | = my, = m3) and their relations to the frequency of interaction of couple {M {, F} is what we
perceive to be an invariant characteristic of the disease, generalizable across contexts. It is with these
quantities, therefore, that an expert would choose to encode experiential knowledge and which he/she
would find most comfortable to assess. Moreover, were we to conduct a clean scientific experiment, these
are precisely the types of quantities we would choose to measure.

Unfortunately, the Markov net formulation does not allow the direct acquisition of such judgmen-
tal input. The compatibility parameters appear totally meaningless to the expert, while judgments about
low-order conditional probabilities (e.g., P (m | f 1, = m5)) can be taken only as constraints over the
joint probability distribution with which one hopes to obtain the actual values of the compatibility param-
eters. This is a rather tedious computational procedure, especially if the number of variables is large (e.g.,
imagine a ring of » interacting couples) and one which must be performed at the knowledge-acquisition
phase in order 1o ensure that the expert provides a consistent and complete set of constraints.

4.3 Decomposable Models

Some dependency models do not encounter the quantification difficulty described in the preceding
section. Rather, the compatibility functions are directly related to the low-order marginal probabilities on
the variables in each clique. Such models are called decomposable and have the useful property that the
cliques of their Markov nets form a tree.

To understand why tree topologies have this desired feature, let us again consider the example of
Figure 1 and assume that the interaction between the couple {M 5, F ,} is non-existent, namely, the Mar-
kov net consists of the chain F \—M —F —M ,.

>From the chain-rule of basic probability theory we know that every distribution function
P(x,,... x,) can be represented as a product:
Pxy, . x))=Px ) Pxglxy), . Pxplxy, o x, ) 1%
Thus, if we order our four variables along the chain by (F ;, M |, F 5, M ,), we can write:
P{F{,M\,Fy, M))=P(F)P(M{IF\)P(Fy|F\ M) P(MyIF{,M,F,)
and, using the conditional independencies encoded in the chain, we obtain:
P(Fy\,M,Foy,M))=P(F)PMIF)P(F,M,)P(M,I|F,)

Clearly, then, the joint probability P is expressible in terms of a product of three functions, each involving
a pair of adjacent variables. Moreover, the functions are none other than the pairwise conditional proba-
bilities of the interacting variables which, following our earlier argument, should carry conceptual mean-
ing,
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This scheme leaves ampie flexibility as to the choice of ordering. For example, if we take the ord-
er(Fo, M, M4, F ), weget

P(Fy, MMy F)=P(F)PM{IF)PM,IFy, M)P(FIFy M\, My)

=P(F)) P(M||F3) P(MIF ) P(F|IM,),

again yielding a product of edge probabilities. The only requirement is that, as we order the variables
from left to right, every variable (except the leftmost) should have at least one of its graph-neighbors to its
left. The ordering (F y, M ,, M, F ;). for example, would not yield the desired product-form because
M , is positioned to the left of its two neighbors.

i 5
3 4
* 6
2 7
Figure 5(a)

Given a tree-structured Markov net, there are two ways by which one can write down its product-
form distribution by inspection: directed trees and product division.

Consider the tree of Figure 5(a) where the variables X y,..., X 7 are marked 1, ... 7, for short. If we
arbitrarily choose node 3 as a root and assign arrows to the links pointing ‘‘away’’ from the root, the
directed tree of Figure 5(b) ensues, where every non-root node has a single incoming arrow designating its
unique parent. We can now write the product distribution by inspection, going from parents to children:

P(,..,D=PBYPARIHPQ2IZHPMAIZP(5I4)P(6I4)P(TI4) 20

The conditioning (right) variable in each term of the product is a direct parent of the conditioned (eft)
variable,

The second method for expressing the joint distribution is to divide two products -- the product of
the marginal distributions on the edges (cliques) divided by the product of the distributions of the inter-
mediate nodes (the intersection of the cliques). The distribution corresponding to the tree of Figure 5(a)
will be written
_PULLHPRIHPB,HPAHPUAOOPET

PQor T P(3) P(3) P4 P# P& |

21

which is identical to that of EqQ.(20).
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Figure 5(b)

Distributions amenable to product forms are not limited to trees. Consider, for example, the struc-
ture of Figure 6. Applying the chain rule in the order (A, B, C, D, E) and using the structural indepen-
dencies of the graph, we obtain

PA,B,C,D,EY=P(AYPB |A)P(C|A,B)P(D |A,B,C)P(E | A,B,C,D)
=PAYPB |A)P(C1A,BYPD IB,CYPE IC)

_P@A,B,C)P(B,C,D) P(CE) (22)
PB,C) P(C)

A ¢ o

DD
8 c Ca Co C3

DICORC

’ E Csa

@ ®) (c)

Figure 6

Eq. (22) again displays the same pattern as in Eq.(21); the numerator is a product of the distributions of
the cliques and the denominator is a product of the distributions of their intersections. Note that C is a
node common to all three cliques, {A,B,C} {B,C,D} and {C, E}; yet, it appears only once in the
denominator. The reason for this will become clear in the ensuing discussion, where we shall justify the
general formula for clique-trees.
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The unique feature of the graph in Figure 6(a), which enables us to obtain a product form distribu-
tion, is the fact that the cliques in this graph can be joined to form a tree as in Figure 6(b) and 6(c). More
precisely, there is a tree with vertices corresponding to the cliques of G which is an / -map of P. Indeed,
writing ¢ ={A,B,C},cy={B,C,D} and c3={C, E}, we see that ¢ and ¢ are independent,
given c,, which yields the f-map ¢ —¢ y—¢ 3 of Figure 6(b). Alternatively, since ¢3 and ¢, are in-
dependent given ¢y, we can also use the /-map ¢ — ;— 3 of Figure 6(c). This non-uniqueness of the
minimal /-maps, an apparent contradiction to Theorem 3, stems from the non-disjointedness of ¢ {, ¢
and ¢ 3 which, unlike dependencies among disjoint sets of variables, occasionally leads to violation of ax-
iom (6.¢).

The concept of a clique-tree is made more precise by the following Theorem [Beeri et al., 1981];
(Tarjan & Yannakakis, 1984] about chordal graphs:

Theorem 7: Let G be an undirected graph G = (V, E') and let C be the set of maximal cliques of G .
G is chordal if, and only if, either one of the following equivalent conditions holds:

1. Every cycle of length at least four has a chord, i.e., an edge joining two nonconsecutive vertices
on the cycle.
2. The edges of G can be directed acyclically so that every pair of converging arrows emanates from

two adjacent vertices.
3. All cliques of G can be deleted by repeatedly applying the following two operations:

i) delete a vertex that occurs in only one clique;
ii) delete a clique that is contained in another clique.

4, There is atree T (called a join tree) with the cliques of G as vertices, such that for every vertex v
of G, if we remove (from T') all cliques not containing v, the remaining subtree stays connected.
In other words, any two cliques containing v are either adjacent in T or there is a path between
them made entirely of cliques that also contain v .

The four conditions of the Theorem are clearly satisfied in the graph of Figure 6(a), and none is
satisfied in that of Figure 1. (The diamond is the smallest nonchordal graph). Tarjan & Yannakakis [1984)
offer an efficient algorithm for both testing chordality of graphs and for ‘**filling out’” the missing links
that would turm non chordal graphs into chordal.

Definition: A probability model P is said to be decomposable if its Markov net is chordal. P is said to
be decomposable relative 10 a graph G if

i) Gisan/-mapofP;and
i)  is chordal.

Lemma 1: 1f P is decomposable relative to G, then any join tree T of the cliques of G is an [ -map rela-
tive to P. In other words, if C,, Cy and C, are three disjoint sets of vertices in T, and x, y, z their
corresponding sets of variables in G, then / (x, z, y )p whenever C, separates C; from C, in T (written
<Gt G 1 Cy>7).

Proof: Since (x,z,y)p may not be disjoint, we will prove I/(x,z,y)p by showing that
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[(x-z,z,y—-z)p holds -- the two assertions are equivalent, according to Egs. (5.a) and (5.b). Moreover,
since G is an /-map of P, it is enough to show that z is a cutset in G, separating X~z from y-z, i..,
<x-zl z| y=z > ;. Thus, we need to show

<GICGICG>r=2<x-zlzly-z>¢ (23)

which we shall prove by contradiction:

If the right-hand side of (23) is false, then there exists a path ¢, Y, Ya,..., Y, B in G from some element
o € x — z to some element B € y — z which does not intersect z , namely,

((1,“{1)& E (YE:Y£+1)E E, ('Ym B)E E anin &z
foralli =1,2,...,n.

Let C, denote the set of all cliques which contain some vertex v, and consider the set of cliques

S$=({C4 U Cy 1 Cp— C;}. We now argue that those vertices of T corresponding to the elements of

:

S form a connected sub-tree. Indeed, T was constructed in such a way that, pulling out the variables in
C, would leave the vertices of every C, connected and, moreover, the existence of anedge Y;, ¥, in G

guarantees that every clique containing 7; shares an element (Y;) with each clique containing both
(Y:» ¥i+1) and the latter, in tum, shares an element (; ) with every clique containing *y; ;. Consequent-
ly the vertices corresponding to the elements of C - and C y.., are connected in T, even after deleting the
variables in C,. Q.E.D. This asserts the existence of a path in T, between some vertex in C , ¢ C, and
some vertex in C BS Cy , which bypasses all vertices of C,, thus contradicting the antecedent part of (20).
QED.

We are now in a position to demonstrate that decomposable models have a joint distribution func-
tion expressible in product form. Essentially, the demonstration relies on property 4 of Theorem 7, which
allows us to arrange the cliques of G in a tree-consistent ordering, and apply to them the chain-rule for-
mula (19), as we have done to the individual variables in Eq.(20).

Theorem 8: If P is decomposable relative to (&, then the joint distribution of P can be written as a pro-
duct of the distributions of the cligues of G divided by a product of the distributions of their intersections.

Proof: Let T be the join tree of the cliques in & and let (C, C4,... C;...) be an ordering of the cliques
which is consistent with T, i.e., for every i > j we have a predecessor j (i) < for which C};, is adja-
cent to C; in T and which separates C; from Cy, C,,... C;_;. Applying the chain-rule formula to the
cliques of &, we obtain:

P(xl, x2... x,,) = HP(C; f CI,..., Ci—l) = H P(Cl ! Cj(;)) (24)
=I-_.[P(Ci | C; ﬂCj(")) (25)

P .
=11 ) (26)

Eq.(24) follows from the / -mapness of T (Lemma 1), and Eq.(25) follows from the / -mapness of G since
the variables which C} ; does not share with C; are separated from those in C; by the variables common
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to both C; and Cj(;y. In Figure 6(a), for example, A is separated from D by {B, C}.

Note that, to render P decomposable relative to some graph G, it is enough that G be any / -map
of P, not necessarily minimal. That means that, if we desire to express P as a product of marginal distri-
butions of clusters of variables and it so happened that the Markov net G g of P is nonchordal, it is possi-
ble to make G chordal by ‘“filling in"* the missing chords and then expressing P as product of the
cliques of the augmented graph. For example, if the Markov net of a certain model is given by the graph
of Figure 6(a) with edge (BC ) missing (e.g., as in Figure 1), G, is not chordal, and we cannot express P
as a product of the pairwise distributions P(A,B),P(A,C),P(C,D),P(D,B) and P(E, D).
However, by “‘filling in"’ the link (B, C') we create a chordal / -map G of P (Theorem 5), and we can ex-
press P as a product of the cliques of G, as in Eq. (22). It is true that the independence / (B, AD , C) is
not explicit in the expression of (22) and can be encoded only by careful numerical crafting of the distribu-
tions P(A,B,C)and P(B, C, D). Once encoded, however, the tree structure of the cliques of G facil-
itates convenient, propagation-like updating of probabilities in response t0 new observations
[Spiegelhalter, 1986]. Moreover, in situations where the cluster distributions are obtained by statistical
measurements, the “‘filling in'’ method is useful in directing the experimenter toward selecting the right
variable aggregates for measurement [Goldman & Rivest, 1986]. For example, in the model depicted by
Figure 1, the **filling in’’ method would advise the experimenter to tabulate measurements of variable tri-
plets (e.g., {M |, F |, F o} and {M 5, F 1, F 5}, not merely of variable pairs.

4. BAYESIAN BELIEF NETWORKS

The main weakness of Markov nets stems from their inability to represent nonmonotonic depen-
dencies; two independent variables must be directly connected by an edge, merely because there exists
some other variable that depends on both. As a result, many useful independencies remain unrepresented
in the network. To overcome this deficiency, Bayesian networks make use of the richer language of
directed graphs, where the directions of the arrows permit us to distinguish genuine dependencies from
spurious dependencies induced by hypothetical future observations. For instance, the coins-and-bell ex-
ample of Section 3 will be represented by the network coin 1 — bell « coin2, which more naturally
reflects the common perception of causal influences; the arrows clearly indicate that the sound of the bell
is determined by the outcomes of the coins, not the other way around.

These arrows endow special status to the path between coin 1 and coin 2, reflecting the nonmono-
tonic dependency between the three variables. This path traverses two adjacent arrows converging head-
to-head on a variable z = ‘‘bell sound.”” Such a path should not be interpreted as forming a connection
between the variables at the tails of the arrows; the connection should be considered nonexistent until the
variable z (or any of its descendents) is instantiated. This special criterion of direction-conditional con-
nectivity perfectly matches the nonmonotonic dependency relationship among the three variables; the out-
comes of the two coins are marginally independent but become dependent upon knowing the outcome of
the bell (or any external evidence bearing on that outcome). The connectivity criterion reverts back to the
usual cutset criterion of Markov nets whenever the arrows are either diverging e.g.,

height « age — reading ability
or cascaded, e.g.,

weather — wheat crop — wheat price.
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A detailed discussion of this criterion in the context of general networks and an examination of its
power of expression are contained in Section 4.2 and 4.3, respectively. First we introduce a definition of
Bayesian networks and their methods of construction.

4.1 Constructing a Bayesian Network

Bayesian Belief networks are directed acyclic graphs (*‘dia-graphs’’) in which the nodes represent
variables, the arcs signify the existence of direct causal influences between the linked variables and the
strength of these influences are quantified by forward conditional probabilities.

Informally, if the nodes in the graph represent the variables X 4, X 5... X,,, the structure of a Baye-
sian network can be determined by a simple procedure: we assign each variable to a vertex in a graph
and draw arrows toward each vertex X; from a set S; of vertices perceived to be **direct causes’’ of X;.
More formally, the notion of *‘direct cause’” can be defined in terms of a probability distribution
P (x... x,) and an ordering d on the variables. (In practice, the ordering d will not be arbitrary but will
reflect one’s perceived flow of causation, i.e., no variable should be preceded by any of its consequences).
Given P and d, the direct causes of X; are the smallest set of variables S; < {X ;... X;_,} satisfying the
condition

P (xl' |S‘) =P (x,- lx,--l,..., X 1) @n

In other words, S; is the Markov boundary of X; relative to the set U ;= {X |, X 5,..., X; } of variables,
narely, the smallest set of variables that *‘shields’’ X; from all its other predecessors. Since Markov
boundaries are unique (Theorem 4), the set of parents S; assigned to each variable is unique and the struc-
ture of the dia-graph is well defined.

This leads to a simple method of constructing a dia-graph representation, given any joint distribu-
tion P (xy ... x,,) and an order d on the variables in /. We start by choosing X ; as a root of the graph
and assign to it the marginal probability P (x,) dictated by P (x,..x,). Next, we form a node to
represent X o; if X ; is dependent on X |, a link from X, to X , is established and quantified by P (x5 (x ).
Otherwise, we leave X | and X 5 unconnected and assign the prior P (x ;) to node X ,. At the i -th stage,
we form the node X; and establish a group of directed links to X; from the set S; defined by Eq.(1), and
quantify this group of arrows by the conditional probability P (x;!S;). Thus, the distribution,
P (x,..., x,), together with the order 4 uniquely identify a directed acyclic graph which represents many
of the independencies embedded in P (x 4,..., X,,).

The conditional probabilities P (x; |.S;) on the links of the dia-graph contain all the information
necessary for reconstructing the original distribution function. Writing the chain-rule formula in the order-
ing d and using Eq.(27) leads to the product:

P(xy, X9, %) =P, 1x,_4... x1) P(Xy_q | Xp_3.. X1)e0 P(x31x2,x1) P(x5lx{) P(xy)
=IIP(x,-|S,—) 28)

So, for example, the distribution corresponding to the dia-graph of Figure 7 can be written by inspection:
P(X{,X7, X3, X4, X5, Xg) =P (x61x5) P(x51X2,X3) P(x41x1,x9) P(x3lx () P(xplx) P(x{) (29
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In expert-systems applications where, instead of a numerical representation for P (x ¢,....x,, ), we
have only intuitive understanding of the major constraints in the domain, the graph can still be configured
as before by a local method, except that the parent set S; must be selected judgmentally. The addition to
the network of any new node X; requires only that the expert identify a set S; of variables which *“directly
bear’’ on X, locaiiy #5:~ss the strength of this relationship and make no commitment regarding the effect
of X; on other variables outside S;. We shall next see that, even though each judgment is performed lo-
cally, their sum total is gua.anteed to be complete and consistent.

Suppose we are given a directed acyclic graph G in which the arrows pointing to each node X;
emanate from a set S; of parent nodes, and we wish to quantify the strengths of these influences in a com-
plete and consistent fashion. Since, by direct parents we mean a set of variables which, once we fix their
values, would shield X; from the influence of all other predecessors of X; (e,
P(x;18;)=P{x;1xy,..., x;_1)). the chain-rule formula (28) states that a separate assessment of each
child-parents’ relationship should suffice. We need only assess the conditional probabilities, P (x; | S;),
by some functions, F;(x;, 5;), and make sure these assessments satisfy

ZF.’(X,’,S,')=1 OSFI-(I",Si)Sl (30)
X;
where the summation ranges over all values of x;. This specification is complete and consistent because
the product form
P,,(xl... x,,)=I'_IF,-(x,-, S,) (31
I

constitutes a joint probability distribution that supports the assessed quantities. In other words, if we com-
pute the conditional probabilities P,(x;|S;) dictated by P, (x;, ... x,), the original assessments
F;(x;, S;) will be recovered:
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Pa(xl,...,x,,)
P,(x;, 5 _ XS

P, (S Y P(xy,., X,)
de S;

Pax;18;) = =F; (x;, 5p) (32)

Contrasted with the difficulties of quantifying Markov-nets, this model-building process offers a
significant advantage. The parameters requesied from the model builder are exactly the forward condi-
tional probabilities which quantify stable conceptual relationships in one’s memory; they are both psycho-
logically meaningful and can be obtained by direct measurements. The mental activity required for as-
sessing the parameters of P (x; |S;) involves estimating the likelihood that x; will occur, given a condi-
tion specified by any instantiation of the variables in S;. (For example, the likelihood that a patient will
develop a certain symptom, assuming that he/she suffers from a given combination of disorders.) These
kinds of assessments are natural because they relate to the primitive relationships people use to encode
empirical knowledge.

Aside from supporting a consistent set of assessments, another dia-graph advantage is that it per-
mits people to qualitatively express the essential causal relationships in the domain; the network augments
these input relationships with additional independencies implied by the inputs and preserves them, despite
sloppy assignments of numerical estimates. In Fig. 1, for example, the fact that X 4 can tell us nothing
new about X ; once we know X 5 and X 3 was not stated explicitly by the model builder. Yet, it is logical-
ly implied by other inputs and v.i!' remain part of the model, independent of how the numbers are as-
signed to the links.

Dia-graphs constructed by ttds method will be called ‘‘Bayesian Belief Networks'' or *‘Influence
Networks'’ interchangeably, the former to emphasize the judgmental origin and probabilistic nature of the
quantifiers, the latter to reflect the directionality of the links. When the nature of the interactions is per-
ceived to be causal, then the term ‘‘Causal Network’' may also be appropriate. In general, however, an
influence network may also represent associative or inferential dependencies, in which case the direc-
tionality of the arrows mainly provides computational convenience [Howard & Matheson, 1984].

In the strictest sense, Bayesian belief networks are not graphs but hypergraphs because to describe
the dependency of a given node on its £ parents requires a function of k+1 arguments which, in general,
could not be specified by k two-place functions on the individual links. However, both the directionality
of the arrows and the fact that many parents remain unlinked convey important information that would be
lost, had we used the standard hypergraph representation specifying merely the list of dependent subsets.

If the number of parents & is large, estimating P (x; | S;) may be troublesome because, in princi-
ple, it requires a table of size 2*. In practice, however, people conceptualize causal relationships by form-
ing hierarchies of small clusters of variables and, moreover, the interactions among the factors in each
cluster are normally perceived to fall into one of a few prestored, prototypical structures, each requiring
about & parameters. Common examples of such prototypical structures are: noisy OR gates (i.e., any one
of the factors is likely to trigger the effect), noisy AND gates and various enabling mechanisms (i.e., fac-
tors identified as having no influence of their own except enabling other influences to become effective).
Detailed analysis of the noisy OR-gate model is given in [Pearl, 1986(a)).
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Note that the topology of a Bayesian network can be extremely sensitive to the node ordering 4 ; a
network with a tree structure in one ordering may tum into a complete graph if that ordering is reversed.
For example, if X1, ..., X, stands for the outcomes of n independent coins, and x,, .., represents the output
of a detector triggered if any of the coins comes up HEADS, then the influence network will be an inverted
tree of n arrows pointing from each of the variables x, ..., x,, toward x,,,. On the other hand, if the
detector’s outcome is chosen to be the first variable, say x g, then the underlying influence network will be
a complete graph.

This order sensitivity may seem paradoxical at first; d can be arbitrarily chosen, whereas people
have fairly uniform conceptual structures, e.g., they agree on whether a pair of propositions are directly or
indirectly related. The consensus about the structure of influence networks is indicative of the dominant
role causality plays in the formation of these networks. In other words, the standard ordering imposed by
the direction of causation indirectly induces identical topologies on the networks that people adopt for en-
coding experiential knowledge. It is tempting to speculate that, were it not for the social convention of
adopting a standard ordering of events conforming to the flow of time and causation, human communica-
tion (as we now know it) would be impossible. It also raises the philosophical question of whether causal-
ity is not but psychological illusion created by computational needs, i.e., that the flow of causation we at-
tribute to the external world is no other but an ordering found to lead to the most parsimonious and effec-
tive encoding of our experience. More on this subject can be found in [Pearl, 1986(b)).

4.2 Dia-Graph Separation and Conditional Independence

To facilitate the verification of dependencies among the variables in a Bayes network, we need to
establish a clear correspondence between the topclogy of the network and the dependence relationships
portrayed by it. In Markov nets this correspond-..ce was based on a simple graph separation criterion:
Should the removal of some subset S of nodes from the network render nodes X; and X j disconnected, X
and X; were proclaimed to be independent given S, i.e.,

<X, $,X;>5 =I1(X;,5,X;)

To serve as / -maps for nonmonotonic dependencies, Bayes networks are based on a slightly more
complex criterion of separability, one which takes into consideration the directionality of the arrows in the
graph. This criterion distinguishes between the three possible ways that a pair of arrows may join at some
vertex X 5:

(1) tail-to-tail,Xl ('_ X2 _> X3
(2) head-to—tail,Xl——)Xz—)Xg, or Xl(_XZ(_X'_i
3) head-to-head.Xl — X-z «— X3

If we assume that X , X 5, X 4 are the only variables involved, it is clear from the method of constructing
the network that, in cases (1) and (2), X | and X 5 are conditionally independent, given X 5, while in case
(3), X and X 4 are marginally independent (i.e., P (X 31X ;) = P (X 3)) but may become dependent, given
the value of X 5. Moreover, if X, in case (3) has descendants X 4, X 5 ..., then X | and X 3 may also be-
come dependent if any one of those descendant variables is instantiated. These considerations motivate
the definition of a qualified version of path connectivity, applicable to paths with directed links and sensi-
tive to all the variables for which values are known at a given time.
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Definition:

a. Two arrows meeting head-to-tail or tail-to-tail at node o are said to be blocked by a set § of ver-
ices § ifaxisin §.

b. Two arrows meeting head-to-head at node o are blocked by S if neither o nor any of its descen-
dantsisin S.

Definition:

a. An undirected path P in a dia-graph G is said to be d -separated by a subset S of vertices if at

least one pair of successive arrows along P is blocked by S .

b. Let x,y, and S be three disjoint sets of vertices in a dia-graph G,4. § is said to d-separate x
from y if all paths between x and y are d-separated by S. Such separation will be denoted by
<xI§ly >g,

This modified definition of separation provides a valid test for conditional independence in dia-graphs:

Theorem 9: [Verma, 1986]: Let G, be a dia-graph constructed from distribution P in some order d . If
X,y and z are three disjoint subsets of vertices in G4 such that z d-separates x from y, thenx and y are
conditionally independent given z, in P . In other words, G4 is an / -map of P relative to d -separation:

<xlzly>g, =1(x,2,y)p
The proof of Theorem 9 uses the contraction axiom (4.¢e)

The procedure involved in testing d -separation is only slightly more complicated than the con-
ventional test for cutset separation in undirected graphs and can be handled by visual inspection. In Fig-
ure I, for exampie, one can easily verify that variables X, and X ; are d-separated by S, ={X} or
S, ={X, X 4/ because the two paths between X , and X ; are blocked by either one of these subsets.
However, X, and X 5 are not separated by S3 ={X, X ¢/ because X4, as a descendant of X 5, ‘‘un-
blocks’’ the head-to-head connection at X s, thus opening a pathway between X 5 and X 5.

The d -separation criterion is used routinely by technicians involved in electronic troubleshooting.
This is so because the functional dependencies between the inputs and output of electronic devices match
the dependencies portrayed by dia-graphs -- two inputs of a logic gate are presumed independent, but if
the output becomes known, what we learn about one input has bearing on the other.

Although the structure of Bayes networks, together with the directonality of its links, depends
strongly on the node ordering used in the network construction, conditional independence is a property of
the underlying distribution and is, therefore, order-invariant. Thus, if we succeed in finding an ordering d
in which a given conditional independence relationship becomes graphically transparent, that relationship
remains valid even though it may not induce a graph-separation pattemn in networks corresponding to oth-
er orderings. This permits the use of Bayes networks for identifying, by inspection, a Markov blanket for
any given node, namely, a set S of variables that renders a given variable independent of all variables not
in §. The intersection of the Markov blankets induced by all possible orderings gives, of course, the Mar-
kov boundaries. The d -separation criterion for Bayes networks guarantees that the union of the following
three types of neighbors is sufficient for forming a Markov blanket: direct parents, direct successors and
all direct parents of the latter. Thus, if the network consists of a single path (traditionally called a Markov
chain), the Markov blanket of any non-terminal node consists of its two immediate neighbors while, in
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trees, the Markov blanket consists of the (unique) father and the immediate successors. In Figure 1, how-
ever, the Markov blanket of X 3 is {X 1, X 5, X 5}.

4.3 How Expressive are Dia-Graphs?

One would normmally expect that the introduction of directionality into the ianguage of graphs
would render them more expressive, capable of portraying a greater number of conditional independen-
cies. We saw, indeed, that the d -separation criterion permits us to display both nonmonotonic and non-
transitive dependencies that were excluded from the Markov net vocabulary. Thus, it is natural to ask how
the expressive power of dia-graphs compares with that of undirected graphs and numerical representations
of probability. This brings up two questions:

1. Are all dependencies representable by Markov nets also representable by a Bayesian net?
2, How well can Bayesian nets represent the type of dependencies induced by probabilistic models?

The answer to the first question is, clearly, negative. For instance, the dependency structure of a
diamond-shaped Markov net (e.g., Figure 1) with edges (AB ), (AC), (CD ) and (BD ) asserts the two in-
dependence relatonships: / (A, BC,D)and I (B, AD, C). No Bayesian net can express these two rela-
tionships simultaneously and exclusively. If we direct the arrows from A to D, we get (A, BC, D ) but
not I (B, AD, C); if we direct the arrows from B to C, we get the latter but not the former. In view of
property (4) of Theorem (7), it is clear that this difficulty will always be encountered in nonchordal
graphs. No matter how we direct the arrows, there will always be a pair of non-adjacent parents sharing a
common child, a configuration which yields independence in Markov nets bur dependence in Bayes nets.

The inability of dia-graphs to display some common probabilistic dependencies is also obvious.
It is hampered by the failure of every graphical representation to distinguish connectivity between sets
from connectivity among their elements. In other words, in graphs (directed as well as undirected) separa-
tion between two sets of vertices is defined in terms of pairwise separation between their corresponding
individual elements. In probability theory, on the other hand, pairwise independence does not imply joint
independence (see Eq.(6.b)) as demonstrated in the coins-and-bell example. When the coins are both fair,
all three pairs of variables are mutually independent; yet, every variable is dependent (deterministically)
on the other two.

Despite these shortcomings, we will see that the dia-graph representation is far more flexible than
its undirected graph counterpart and, in addition, captures the great majority of probabilistic independen-
cies, especially those which are conceptually meaningful. To this end, we offer an axiomatic characteriza-
tion of dia-graph dependencies, which clearly indicates where they differ from those of undirect graphs
(10) as well as probabilistic dependencies (6).

Definition: A dependency model M is said to be a dia-graph isomorph if there is a dia-graph Gy
which is a perfect map of M relative to d -separation, i.e.,

I(x,z,y)y <=> <xlzly >3,

Theorem 10: A necessary condition for a dependency model M to be a dia-graph isomorph is that
1 (x, z, y )y satisfies the following independent axioms (the subscript M dropped for clarity):
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Symmetry

Ix,z,y) <=> I{y,z,x) (34.2)
Composition - Decomposition

Ix,z,y yw) <=>Ix,z,y)& I(x,z,w) (34.b)
Intersection

Ix,z gw. )& I(x,z yy,w) =2Ix,z,y yw) (34.¢)
Weak Union

Ix,z,y gw) =1x,z yw,y) (34.d)
Contraction

x,z y,w)& I(x,z,y) =21x,z,y Uw) (34.e)
Weak Transitivity

I(x,z,y)& I(x,z \yv.y) =1x,z2,7) or I(y,2,y) (34.1)
Chordality

Ix,z gw, )& 1z, x Yy, w) =21kx,z,y) or I(x,w,y) (34.g)

Remarks: Axioms (34.a) and (34.c-e) are identical to those govemning probabilistic dependencies (Eq.
(6)). The left implication of (34.b) and the last two axioms, namely, composition, weak-transitivity and
chordality, represent additional constraints over the system of Eq.(6). Thus, every der ~ndency model
which is a dia-graph isomorph also has a probabilistic representation but not vice-versa. The composition
axiom (left implication of (34.b)) asserts that separation between sets is completely defined in terms of
separation between singletons. Therefore, there will be no loss of generality in treating the first and third
arguments of each triplet as individual elements of U/,

Comparing (34) to the axioms defining separation in undirected graphs (10), we note that (10) im-
plies all axioms in (34) except chordality (34.g). In particular, weak-union is implied by strong union,
composition and contraction are implied by (10.c) and (10.d) and, of course, weak transitivity is implied
by transitivity (10.e).

Weak transitivity asserts that, if two variables, x and y, are both unconditionally independent and
conditionally independent given a third variable v, then it is impossible for both x and y to be dependent
on Y. This restriction, which may be violated in some probability models, remains in effect when we asso-
ciate independence with separation in dia-graphs. Indeed, if both x and y are d-connected to Y in some
dia-graph, then there must be an unblocked path from x to Y and an unblocked path from y to y. These
two form at least one path from x to y via ¥. Now, if that path traverses 7 along converging arrows, it
should get unblocked by instantiating ¥; so, x and y could not be d -separated given y. Conversely, if the
arrows meeting at 7y are non-converging, x and y could not be d -separated by any set not containing Yy
(i.e., Y uninstantiated).

Probability theory, on the other hand, does not insist on weak transitivity, as it allows for the co-
occurrence of the following four conditions:

LI(x,3,y)p 2. I(x, % y)p 3. =l (x, B, V)p 4. =, D, Yp
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For example, if both x and y are binary variables x,y e {true, false} and ¥ is a temary variable
ve {1, 2, 3}, we may have x dependent on ¥ via:

P(x =true Iy) = (1/2, 1/4, 1/8),
and y dependent on y via:
P(yly =true)=(1/3, 1/3, 1/3)

Pyly = false) = (1/2, 1/2, 0).
Yet, x and y are mutually independent both conditionally (given ) and unconditionally.

Thus, although dia-graphs seem better capable of displaying non-transitive dependencies than un-
directed graphs, even they require some weak form of transitivity and fall short of capturing totally non-
transitive probabilistic dependencies. It can be shown, however, that if all variables in U are binary, then
all probabilistic dependencies must be weakly transitive.

The purpose of the chordality axiom (34.f) is to exclude dependence models whose Markov nets
are non-chordal (such as the one in Figure 1) since these cannot be completely captured by dia-graphs.
Axiom (34.f), in essence, insists on either adding the appropriate chords to any long cycle (length 2 4),
thus falsifying the antecedent of (34.f), or nullifying some of its links, thus satisfying the consequent part
of (34.£).

Non-chordal graphs represent the one class of dependencies where undirected graphs exhibit ex-
pressiveness superior to that of dia-graphs. As we shall see next, this superiority can be eliminated by the
introduction of auxiliary variables.

Consider the diamond-shaped graph of Figure 8(a), which asserts the two independence relation-
ships: [(A,BC,D)and /(B,AD, C). Introducing an auxiliary variable £ in the manner shown in
Figure 8(b) creates a dia-graph model of five variables whose dependencies are represented by the joint
distribution function,

PA,B,C,D,E)=PEID,CYPWDIBYP(CIA)PBIA)P(A)

Now imagine that we *‘clamp’” the auxiliary variable £ at some fixed value E = ¢, as in Figure 8(c).
The dependency structure induced by the clamped dia-graphon A, B, C, D is identical to the original
structure of Figure 8(a). Indeed, applying the d-separation criterion to Figure 8(c) recreates exactly the
two original independencies: [(A,BC,D)and/(B,AD, C). The marginal distribution of the origi-
nal variables conditioned upon £ = e is given by

P(AvB’Co-Dyel)
P(ey)

PA,B,C,DIE=ep)=

=K P(e;|D,C)P(D|B)P(CIA)P(BIA) P(A)
=81(D,C)g:D,B)g5A.C)g4A,B)

and, using the analysis of Section 4.1, we see that this distribution is equivalent to the one portrayed by
Figure 8(a).
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In conclusion, we see that the introduction of auxiliary variables permits us to dispose of the chor-
dality restriction of (34.f) and renders the dia-graph representation superior to that of undirected graphs;
that is, every dependency model expressible by the latter is also expressible by the former.
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