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ABSTRACT: The paper describes a distributed scheme for
finding the most likely diagnosis of systems with multiple
faults, The scheme uses the independencies embedded in a
systern to decompose the task of finding a best overall in-
terpretation into smaller sub-tasks of finding the best interpre-
tations for subparts of the net, then combining them together.
This decomposition yields a globaily-optimum diagnosis by
local and concurrent computations using a message-passing
algorithm. The proposed scheme offers a drastic reduction in
complexity compared with other methods: attaining linear
time in singly-connected nerworks and, at worst,
exp( | cycle—cutser 1) time in multiply-connected networks.

1. Introduction

The diagnosis problem is to determine those com-
ponents of a system which, when assumed to be functioning
abnormally, will *‘best’” explain the discrepancy between the
observed and correct system behavior. Diagnostic reasoning
systems appear to adopt one of the following two
approaches: empirical reasoning and model-based reasoning
(sometimes called *‘reasoning from first principles’”). In the
first approach, typified by the MYCIN system [Buchanan &
Shortliffe 1984], we codify the behavior of a human diagnos-
rician, while the structure of the real world system being diag-
nosed is only weakly represented. In the second approach the
only available information is the system descriprion, i.e., its
design or structure, together with some observadons of the
system’s behavior and an incomplete, often statistical, charac-
terization of the type of failures one shouid anticipate or their
relative likelihood. Notable examples of model-based ap-
proaches are [Davis 1984, Genesereth 1984, Cooper 1984,
Reiter 1985 and de Kleer & Williams 1986a].

This paper adopts the latter approach and is based on
[Pearl 1986b]; causal knowledge of system behavior is
represented in belief networks, and diagnosis is performed us-
ing Bayesian inference. However, while previous work on be-
lief networks focused on computing a numerical degree of be-
lief in individual propositions [Pearl 1986a], this paper uses
the same formalism to generate a categorical, muli-
hypotheses description constituting the best global explana-
tion of the observed behavior.

In principle, the task of diagnosing systems with mul-
tiple faults seems intractable because enumerating and rating
all possible fault combinations is computationally prohibitive.
even in sysiems of moderate size. Itis not surprising, there-
fore, that the problem has been reated with a variety of
neuristics and search-pruning techniques. Ben-Bassat {19801
and Pople [1982] have used heuristics to assemnble a subop-
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timal set of hypotheses based on how they rank individuauy.
Reggia et al. {1983], de Kleer et al. [1986a] and Reiter [ 1985]
have developed techniques for identifying those diagnoses
which are ‘‘minimal,” i.¢., they contain no proper subset of
faults which equally explains the symptoms observed. de
Kleer & Williams [1986b] also extended these techniques t©
include probabilistic information about device fatlure rates.

The computational problem is further aggravated in
cases where the system description itself is non-deterministic.
¢.2., in medical diagnosis. The notion of “‘minimality”’ is no
longer helpful because the extent to which a diagnosis ex-
plains or *‘covers’’ a set of symptoms is a master of degree;
so. it is no longer obvious to decide that a given diagnosis
cannot be improved by postulating a larger set of faults. To
our knowledge, the systems of Cooper [1984] and Peng &
Reggia [1986] are the only ones which take into account both
probabilistic information about fault likelihood and uncertain-
ty about system behavior and still return an optimal, 1.e., most
likely, diagnosis. However, these systems employ a branch-
and-bound search algorithm which often runs in expenentiai
time and often misses those structural properues of the diag-
nosed system which could make the search significantly fas-
ter, if not superflucus. [n addition, although the outcome of
the search is giobally optimal, it is hard to justify in meaning-
ful terms because the global process of searching for that out-
come is very different from the local mentai process exercised
by human diagnosticians.

This paper departs from previous work by basing the
diagnostic process on a local and distributed mechanism of
belief revision, while still guaranteeing a globally-opumal
solution [Pear] 1986b]. The impact of each new piece of evi-
dence is viewed as a perturbation that propagates through
network via local communication among neighboring varni-
ables. with minimum external supervision. At equiliboium,
each variable has a definite vaiue which, together with all oth-
er value assignments, is the best globai interpretation of the
evidence. The main reason for adopting this distributed
message-passing paradigm is that it provides 1 natural
mechanism for exploiting the independencies embodied in the
system's description and translating them (by sub-task decomn-
position) into an order of magnitude reduction of complexity.
Another reason is that it leads to a *‘wansparent’’ belief revi-
sion process in which the intermedijate steps are conducted at
the device level of description and. thus, are conceptually
meaningful, instilling confidence in the final conclusion. Ad-
ditionally, the method lends itself naturally to object-onented
specification. Finally, the method facilitates the generation of
qualitative justifications by tracing the sequence of operations
along the activated pathways and then, using their causal or



diagnostic semantics. translating them into appropriate verbal
expressions.

In section 2, we shall present a brief review of belief-
network formalisms, followed by an operational account of
the distributed revision method established in Pearl [1986b].
in section 3, we shall demonstrate the applicability of the
method to circuit diagnosis problems and illustrate the propa-
gation process by working in detail an exammple discussed in
Davis [1984], Genesereth [1984] and de Kleer [1986]. Sec-
tion 4 discusses the problem of degeneracy {multiple best ex-
planations) and offers a working solution.

2. Review of Belief Revision in Bayesian Networks

Bayesian belief networks are directed acyclic graphs in
which the nodes represent propositional variables, the arcs
signify the existence of direct causal influences between the
linked propositions, and the strength of these influences are
quantified by the conditional probability of each variable,
given the state of its parents [Pear] 1986a}.

A Bayesian network {e.g., Figure 1) provides a clear
graphical representation for the essential independence rela-
tionships embedded in the underlying causal model. These 1n-
dependencies can be detected by the following di-graph
separation criterion: if all paths between X, and X, are
“‘blocked”” by a subset § of variables, then X, is independent
of X;, given the values of the vanables in S. A path is
“‘blocked™ by § if it contains a member of § between two
diverging or two cascaded arrows or, alternatively, if it con-
1ains two arrows converging at node X, and neither X, nor any
of its descendants is in §. In particular, each variable ¥, is in-
dependent of both its grandparents and its non-descendant si-
blings, given the values of its parents. In Figure 1, for exam-
ple, X and X5 are independent, given either /X j or /X | X4/,

because the two paths between X, and X, are blocked by ei-
" ther one of these sets. However, X, and X; may not be in-
tependent given /X . X4} because X4, as a descendant of X,
“unblocks’’ the head-to-head connection at X, thus opening
a pathway between X - and X 5.

Once a Bavesian network is constructed, it can be used
4$ un interpretation enging, narely, newly amving informa-
tion will set up a parallel constraint-propagation process
which ripples muoltidirectionally through the network until. at
equilibrium, every variable is assigned a value corresponding
to the most likely interpretation of the datra. Incoming infor-
mation corresponds to direct observations which unequivocal-
ly determine the values of some variables in the network.

Let variable names be denoted by capital letters, e.g..
L.V, X, Y. Z and their associated values by lower case letters.
e.g. u,v,x.v.z. Incoming informarion will be denoted by e
to connote evidence and witl be represented by nodes whose
vitlues are held constant. Let W stand for the set of all van-
sbles considered. including those in e. Any assignment of
values 10 the variables in W consistent with ¢ will be cailed an
extension or an interpretation of e. Qur problem is to find an
extension w* which maximizes the conditional probability
Piwle). In other words, W =w* is the most likely interpreta-
tion of the evidence at hand if

Piw* lg)=max P{wle} 2)

t'a

Figure l

The task of finding w* will be executed locally. by leuing
each variable X compute the function

BEL‘(I)=mwax Pix,wyle) (3)

where W’y = W=-X. Thus, BEL*(x) stands for the probability
of the most likely extension of e which is also consistent with
the hypothetical assignment X =x.

The propagation scheme presented below 1s bused on
the following philosophy: For every value x of a singleton
variable X, there is a best extension of the complementary
variables W'y, Due to the many independence relationships
¢mbedded in the network, the problem of finding the best ex-
tension of X =x ¢an often be decomposed 1ntw that of finding
the best complementary extension to each of the neighboring
variables. then using this information to choose the best value
of X. This process of decomposition (resembling the princi-
ple of oprimality in dynamic programming) can be upplied re-
cursively until, at the network’s periphery. we meet evidence
variables whose values are predetermined. and the pro¢ess
halts.

The objective of achieving a globally-optimal solution
bv such recursive local computations can be reatized if the
network is singly-connected, namely, if there is only one un-
directed path between any pair of nodes. These include causal
rees, where each node has a single parent, as well as net-
works with rmulti-parent nodes, representing events with
several causal factors. We shall first review the propagation
scheme in singly-connected  -tworks and then discuss how it
can be applied to gener . nerworks containing loops.

Consider an arbitrary variable X having a parents,
Uy U, and m children. ¥, Y. .. ¥,. and imagine that
node X receives from its parents the messages
A=l and Ay %), y=1...m. from is children
tSee Figure 2).

Assume thart these messages were precalculated to convey the
tellowing informanon:

=¢=iw,) stands for the probability of the most likely sub-
extension of the proposition {/, =u, comprised of
variables in the subnetwork on the 1ail side of the
link /,——X . This subextension is sometimes called
an ‘‘explanation,’’ or a ‘‘causal argument.”’

iy *ix) stands for the probability of the most likely subex-
tension of the proposition X =x comprised of van-
ables in the subnetwork on the head side of the link
X-—Y, This subextension is somenmes called a
**prognosis’’ or a "forecast.”
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Using these n+m messages together with the fixed
probability P (x 'uy, .., 4,). X can identify its best value and
further propagate these messages using the following compu-
tations:

Step 1: When node X is activated to update its parameters,
it simultaneously inspects the me*(u;) and Ay * (x) messages
communicated by each of its parents and children and forms
the product

Fx, iy, . lg}= l'[l lyj"'(x)P(xlu,.....u,) _l'!l Ty * (W) . 4
j= im

This F function enables X to compute its B£L*(x) function

and, simultaneousiy, identify the best vaiue x* from the

domain of X :

x* =max"! BEL*(x) 5

where ¥
BEL*(x) =@ max F(x,u) .. U,) = o A* (xOr* (x)

u:isksn N
and

A {x)= _ﬂ] Ay *(x)
j=
n*(x)= max P{x .4 [T ™) (6)
| SkSn =1

o is a normalizing constant, rendering ¥8EL*{x) =1, which

need not be computed in practice.t

Step 2: Using the BEL*(x} function computed in step 1,
nade X computes the children-bound messages:
"
ny}'(x)=aM )

Ay *(x)
and posts theseon the links to ¥ ... ¥,,,.

Siep 3: Using the F functon computed in step 1, node X
computes the parent-bound messages by performing n vector
maximizations, one for each parent:

lx*(uf)=ITE‘E?#[F(x.ul.,...u,,)fnx*(u,)} i=1l..n @®
This concurrent message-passing process is both ini-

iiated and terminated at the peripherat nodes of the network,
subject 10 the following boundary conditions:

+ Note that X* may not be the value which maximizes the posterior distribudon

P (x | e) of the individusal variable X and cannot be computed from the later.

For cxampie, in diagnosing faulty circuits, each component 18 individually more
likely to be operational, while the X* assignment will categorically identify same
components as faulty.

1. Anficipatory Node:  representing an uninstantated
variable with no successors. For such a node, X, we set
A *O=(1 1D

t2

Evidence Node: representing a variable with insian-
tiated value. If variable X assumes the value x’, we ino-
duce a dummy child z with

)t oifx=x
k'Z*(‘t)-{ﬂ otherwise

This implies that, if X has children, ¥y,..Ya, each child
should receive the same message Ty * (x)=Az*(x) from
X.

3. Root Node: representing a variable with no parents.
For each root variable X, we permanently replace
L]

Pix,ty, ....uy) .['11 fig* {4;) in Eq.(4) with the prior proba-
bility of X, P(x).

In [Pearl 1986bl, it is shown that, in singly-connected
networks, the semantics of the messages produced via Eqgs. (7
& 8) are preserved. Further, the propagation process can be
activated concurrently, it subsides in time proportional to the
network diameter and, at equilibrium, the c* values chosen
via Eq.(5) constitutes the optimal extension w* .

If the network is multiply-connected, the loops can be
broken by the method of conditioning, also called reasoning
by assumptions:

13 A set of nodes (called a cycle cutset) is instantiated, which
renders the network singly-connected.

2) The propagation scheme is riggered to find the best ex-
tension of that instantiation and to merit it accordingly.

3) Another instantiation of the cycle cutset is assumed. and
the process is repeated until the assumption with the
best extension is identified.

The identification process can be performed either by
enumeration or, better vet, by invoking branch-and-bound or
heuristic search in the space of cutset assumptions. Note that,
in the worst case. the search space is only exponential in the
size of the cycle cutset and, in sparse networks, would be fair-
ly low.

3. Example

To illustrate the scheme just described. we will consid-
er in detail an example eated in [de Kleer 861, [Davis 34]
and [Genesereth 84]. The problem is, given the digital circuit
depicted in Figure 3. to find the set of malfunctioning com-
ponents which most likely would have caused the observed
behavior: F=10, G=12. The blocks named M ,. M, and M,
are multipliers, while M, and M ¢ are adders. The inputs ap-
pear on the left, the ourputs on the right The numbers in
brackets are the expected values at potentially-observable
points under no-fault conditions.

The Bayesian net corresponding to this circuit is
shown in Fig.4. The nodes of this net represent both observ-
able points and status of components. The circuit components
appear as root variables consmaining the relationship between
input and output.
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The tink probabilities for the mapped circuit fragments
depicted in Figure 5 will be given by:

1 ifM =good & x=f{.1)
Px1l IpM)=40 if M =good & x=f{ .1y

1 if M =bad & x any value
Ry

where R, stands for a large constant representing the range of
possible X 's values, and f () stands for the function computed
by M. This mapping conforms to the assumption normally
made in circuit diagnosis: ‘‘good’” behavior does not guaran-
tee “‘good’’ components [de Kleer 1986b].

fy 14
g fs
mapped to

. \\% M € fgood. bad)

| X

X=fll1.02)

Figure 5

Initialization

Inidally, the value of the input is known, and no other
observation has been made. Therefore, for every input,
IefA 8, C.D, E], we have:

n*{{ = measured value)=1
n* (I + measured value)=0.

The stams of the components, however, is not known, but we
assume a priori:

n*(M; =bad)=P,,
ﬂ*{Ml =g00d)=Q“ =1 —P,'
where P, is some small value standing for the prior probabili-

ty of failure of the i-th component, and @Q; is simply an abbre-
viation for 1 - P,.

For the purpose of this example, we shall make the
reasonable assumption that the prior probability of failure for
components of a certain type is the same, while the probabili-
ty of failure for mulripliers is greater than for adders. in other
words, we assume:

. P1=P1=P3>P4=P5

and Ry =Ry =R, =Rp=Rg . L]
We start by propagating down the effects of the priors.
For example, n* (x) is computed from Eq.(6) of section 2:

u*(x):dnéaj PxIA,C. M) ae* (A) myp* (CYmy* (M)

Since A and C are fixed at (4 =3, C =2), #’ (x) can be rewnt-
ten as:

rt"(x):n}faxP(xlA =3, Cs2 MDA =3 (C ="M,

where we have replaced the my* () with n* (). Forx =6, and
assuming Q> > P,/ Ry, the maximum will be achieved with
M, =good. For x =6, the maximum is achieved with
M | = bad because, according to the link probabilities, it is 1m-
possible to have a multiplier working correcty with inputs 3

and 2 and ourput different from 6.
Using similar arguments, we compute the following
parameters: 0
1 x=6
wx) = {lex x#6
. Q2 y=6
TSP, iRy y 26
. Qs z=6
R =P iR, 126

The rest of the messages are computed as follows.
Since £ and G are anticipatory nodes, we have:

A (F)=A*(Go=1,

where F, and G, range over all the possible values of £ and
G . respectively.

The message Ag* (v) can be computed from Eq.(8):
A.G“(y)=Gma‘a PIGly 2, M)ms* (M) ms*(z).

o i
Independently of the value of y, the maximum will always be
achieved by choosing G =y +z,z =6 and M=good. This
vields

ha*(r)=0s525.
which is equivalent to
i'(7=‘|(.)’|')= L,

for v; ranging over all the possible values of y. The same
holds for Ag*(z), Ag* (y) and Ag* (x).

Returning to the top-down propagation, we can now
compute mt* {(F):

*(F=12)= ma; P(F=121xy M) Rp*x}ng*(y) mp* (M)
xyMa
max P(F=121xy MY a*x)x* (y)Ag*(y) n* (M),

ry M,
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Figure 7. Pantern of messages at component-nodes.

. For completeness, the rightmost column shows the
A’’s resulting from the additional observations x =6, y =4
and z =6. The n"'s messages do not change. The reader may
verify that with the new information, the best diagnosis estab-
lishes that components M , and M  are faulty with certainty.

4 The Degenerate Case

When there are several optimal extensions, the follow-
ing problem may develop. Consider the circuit shown in Fig-
ure 8 below, comprised of two buffers, D, and D;. When
operating properly, the output reproduces the input. When
malfunctioning, the output can be of any value, each with very
low probability.

X

[s1—> E 0 D2 >mO
Dq
=1 22
X
o

Figure 8. The Circuit and its Bayesian Net Representation

~ Suppose the output O is found to be of value 2, indi-
cating at leastl one faulty component. Executing the propaga-
tion scheme yields the following set of final messages:

W (D, =good) =P Ry n* (D, =good)=\ =P,

AS(D =bad) =1-Py Ry 7 (D, =bad) =P,

A*(Dy=good)=F Ry n*(D,=good)=1~F;

A.‘(D2=bad) =I"P1."Ro ﬂ*(D2=bad) =P2

Assuming P =P,=P and Ry =Ro =R, we obtain:

BEL* (D =good)=BEL*(D =bad)=
BEL* (D, =good) = BEL* (Dy=bad)=0 - P (1= P),

where o is a constant. What, then, are the values correspond-
ing to D,* and D;*? In other words, what is the best interpre-
tation? The fact that there are two equally-likely interpreta-
tions, (D* =good ,D* =bad)} and
{(D,* =bad .D,* =good }, makes it impossible to unequivo-
cally assign a label to either D \* or Dy*. Breaking the ties ar-
bitrarily might result in a wrong exiension being chosen, ¢.g.,
(D * =good ,Dy* =good} of (D,* =bad ,Dy* =bad}. In
general, by “breaking the ties” arbitrarily, we may end up
choosing instantiatons that, while belonging to equally-
meritorious extensions, do not belong to the same one!

To avoid such bad choices, we must devise a mechan-
ism to enforce a selection of values within the same optimal
extension; tie-breaking should also take into account all in-
stantiations made previously. Recalling that

BEL®*(x)=a i*{x)m*(x)
A*(x)=max P(wylx),

r* (z) =max P{x. W)

where wy and wy are the subextensions including X 's parents
and children, respectively, we see that it is only necessary to
uncover the wy and wj involved in the computations of * (x)
and = (x). This can be achieved by saving, for each node X in
the net, only those neighbors’ values at which the maximiza-
tion is achieved. In other words, if node / has 2 neighbor-
hood as the one depicted in Fig.9 (a), and

(b) The Pointer Structure Saved

A () =mmax P{x1v,u;) T ™ (V) A*(x)
v

=P Iv W) me (v A (x)



where al} the parameters are known. The maximum is at the
nominal values of X, Y and M4 :

n*(F=12)=
= P(F=121x=6y=6M ;=good) * (x=6) 1* (y=6) n* (M y=good)

=QQ:0Q,
For F = 12 we get:
Py Py Py
% (F = 12)=max [, —= Q4.5 020421025
Ry Ry Rg

where the three alternatives correspond to the failure of M,
M| and M ,, respectively. Since we are assuming P, <P =P
and Ry =Ry =Rg, we can eliminate the third alternative. A
similar procedure is used to compute n*(G). To find out
which extension is the best at this point, we compute BEL* (V)
for each node N and select for it the value N* at which
BEL*(N) peaks.? Of course, the answer, under no observed
failure, will be that all components are operating property.

Fault Interpretation

When the first two tests arc made, finding F =10 and
G =12, new messages begin to propagate concurrently along
the links. For simplicity, we will follow only those messages
that will affect the optimal label for M, ie., those passing
through the path darkened in Figure 6.

Ar s (My) F=i0 G=12

Fig. 6. Messages affeciing the label of M 4, after G and F are observed.

The message Ag* (y) is computed from:
Aot =max PG =121y, 2. M5 g™ (1) 7g* (M)
oy 2

For y =6, the maximum is achieved at z =6 and M s =good.
resulting in

Ag*(y=0)=01 Q5.

The case y#6 requires :#6 or Mc=bad. Since
AG*¥(1 26)= Py, Ap*(Ms=bad)=Fyand Py>P s, we get:

Ag*(y26)=P3 Q5.

Now ¥ computes messages for its neighbors and sends to F
the message ng* (¥ ) computed as

ner =R A )
The message that M , receives is computed from:
he*(My) =n;la;( P(F=101x,y, My te®(x)npe*(y)
=m‘ax PIF=101x,¥y.M,) ~*(x)R*(¥) Ag*(¥)

Xy

+ = For ways of dealing with multiple selutions, see section 4.

For M, = good. the maximum must occur when either x =4
andy =6,0rx =6and v =4, 1e.,

Le* (M, =good)y=max (R*{x =4 " (y =6 Ag* (v =6),
*x =0y =M ig*y =4}
Py PPy
=max {E‘QzQaQs'Ql'R_yEQs}
which, under the assumptions in (9), becomes:

P
"\F*(M4=8004)=R—;ngaQs»

This reflects the fact that the most likely interpretation con-
strained by M = good singles out M| as the only faulty com-
ponent.

For M,=bad, the maximum is achieved with

1 =y =6, resulting in: |
7‘-F'{M4=bad)='R_Q1Q2Q3Q5 .
£

since M , = bad alone explains the observed behaviot.

At this point, we can compute BEL* (M) 10 find M,*,
i.e., the believed starus of M, :
BEL* (M) = [ BEL*(M ,=good), BEL*(M 4= bad)}

= [ A* (M, =good) r* (M 4= good),
A* (M (=bad ) n* (M = bad ) ).

therefore, M ,* is obtained as:

M > m:.'x" BEL*(M )

Py
Ry Q:Q3Q4Qs if My=good
1

max”
M. |Pa .
E‘;QanQ}Qs if M,=bad

= good

since P, was assumed to be greater than P .

It is remarkable to note that, even at this early stage of
the propagation, we can already label M, as good, and be
confident that this label will remain part of the globally-
optimal diaghosis. Apparently, the A* message amiving at M,
already contains a summary of global information (gathered
during the initialization phase) which is sufficient 1o alert M,
10 the existence of a more likely culprit -- the muluplier M .

Pursuing the propagation through the rest of the net-
work, the optimal status of all the other components is deter-
mined. The resulting pattern of messages for all component-
nodes is depicted in the three leftmost columns of Figure 7.

The optimal status of any compornent-node can be
determined by simply comparing the A" n’ product for each
of its possible status. For example, to determine the optimal

P
status of M|, we compare the product R—4Q:Q3Q5Q1 with
F
TQI—QzQ3Q4Q5P1, and conclude that the optimal status of
X

M. M}, is bad, since the first term is greater than the second
under the current assumptions involving P 's and R 's values.



R* (x;) =max P (5. 8) g™ () mp* (1)
4 . ) )
=Pgtst )y mp* (D) mp*

we would save the pointer structure depicted in Figure 9 (b),
where the arrows ¢; — b, mean that b; participates 1f the best
extension constrained by a =4;. Since Ay® (4) i§ not comput-
ed at node & but at node X, to keep the computations local, X
will additionally send to U the message [(x'.v)) = u;] for
cach state u; of U.

Having this local information available at every node
not only solves the ambiguity problem, but also provides a
mechanism for refrieving an optimal extension constrained by
any instantiation of the individual variables. In particular, to
get the overall oprimal extension, we need solve only a singie
maximization for BEL* (x) for some X and then recursively
follow the pointers attached to x* . It is also possible to obtain,
without extra effort, the second-best overall extension
[Geffner & Pearl 1986].

A second ‘‘plus’” of this mechanism is facilitating sen-
sitivity analysis; to analyze the merit of observing an unk-
nown variable, we can simply follow the links attached to
each of its possible instantiations and examine its impact on
other propositions in the system.

& Conclusions

We have illustrated the applicability of the scheme
proposed in [Pearl 1986b] to the problem of diagnosing muld-
ple faults. The scheme uses the conditional independence
properties embedded in the system to decompose the task of
finding a best overall interpretation into smaller sub-tasks of
finding the best interpretations for subparts of the net, then
combining them together. This decomposition yields a global
optimal diagnosis by local and concurrent computations using
a message-passing scheme. Contrasting the exponential com-
plexiry associated with unaided diagnostic methods, the pro-
posed scheme offers a drastic reduction to linear complexiry
for singly-connected networks and exp( ! cycle—curset | ) in
multiply-connected nerworks.

In this paper we do not address ways in which the pro-
posed scheme can be used effectively in the sclection of tests
or to determine when an acceptable diagnosis has been found.
For these and related topics, the reader might refer to [Geffner
& Pearl 1986].
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