THE CYCLE-CUTSET METHOD FOR IMPROVING SEARCH
PERFORMANCE IN Al APPLICATIONS

Rina Dechter October 1986
Judea Pearl CSD-860022

CUISET/BACKTRACK

No. of consistency-checks in Backiruck with cutser

1.8 -
1.7 -
16 ~
1,51—
1.4 L-
13-
12—
‘I.‘I%—

RANDCM PROBLEMS

10
03 —
28 —
2.7 —
26 -
95 -
04 —
03 =

I
0.2 -

01
L

100 600 =

0 Go0 —

0102030405060.7038

CUTSET/n

Figure 6

PLANAR PROBLEMS

100

*200 1.200 *0.000

No. of consistency-checks in Backtrack

Figure 7

100 9c0

PLANAR PROBLEMS

CINSET/BACK TRACK

06 - ' .
05 - .

04 — .

0.3 -

02+ .

0.1[‘

Q.1 0.2 0.3 04 05 08

CUTSET/a

Figure 8

6. Conclusions

The cycle-cutset method provides a promusing
approach for improving a wide range of search algorithms.
The experiments presented demonstrate that the effectiveness
of this method depends on the size of the cutset. This provides
an a-priori criterion for deciding whether or not the method
should be utilized in any specific instance.

The effectiveness of this method also depends on the
efficiency of the tree-algorithm employed and on the amount
of adjustment required while swirching tw a oee-
representation. The development of an algorithm that exploits
the topology of tree-structured problems without intennonal
pre-processing would be very beneficial.

References

m Bruynooghe, Maurice, *‘Solving combina-
torial search problems by intelligent back-
tracidng,"’ Information Processing
Leners, Vol. 12, No. 1, 1981,

Figure 1; An example CSP

The search space associated with a2 CSP has states
being consistent assignments of values to subsets of variables.
A state (X =x,,...,X;=x,) can be extended by any consistent
assignment to any of the remaining variables. The sates in
depth a which are consistent represent solutions to the prob-
lem, namely n-tuples satisfying ail the constraints. If the order
by which variables are instantiated is fixed, then the search
space is limited to contain only states in that specific order.
The efficiency of various search algonthms is determined by
the size of the search space they visit and the amount of com-
putation invested in the generaton of each state, It is common
10 evaluate the performance of such algorithms by the number
of consistency checks they make rather than the size of the
search space they explicate. where a consistency check occurs
each time the algorithm query about the consistency of any
two values.

3. The cycle-cutset method

The cycle-cutset method is based on the fact that van-
able insantanon changes the effective connectivity of the
constraint graph. in Figure 1, for exampie, instantadng Xy to
some value, say a, renders the choices of X| and X indepen-
dent of cach other as if the pathway X, - X3 — Xy were
“blocked" at X;. Similarly, this instantianon "blocks” the
pathways X - X3 - Xs, X2 -X3-Xq, Xa-X3-Xs and
others, leaving oniy one path between any (wo vanables. The
constraint graph for the rest of the variables is shown in Figure
Za. where the instannated variable. Xy is duplicated for each
of its neighbors,

x x1 x2 x1 x2
X

1 x2
S) J; x3 x3
%3 x3
f i 5
x4 x4 §-1
x4 x5 x4

(a) {® (©)

Figure 2: An instantiated variable cuts its own cycles.

When the group of instantated vanables constwute 3
cycle-cutset. the remaining network 1is cycle-free. and the
cfficient algorithm for solving wee-<consmaint problems is
applicable. In the example above, X3 cuts the single cycle
X3 -X4-Xs in the graph. and the graph in Figure 2a s
cycle-free. Of course, the same effect would be achieved by
instantating either X4 or X5, resulung in the consgrant-wees
shown in Figure 2b and 2c. In most pracucal cases it wouid

take more than a single vanable to cut all the cycles in the
graph (see Figure 3).

A
B o E
D
E
[
c D D

Figure 3: A constraint graph and a constraint-tree generated by
the cutset {C.D}

A general way of exploiting the simplicity inherent in
wee-structured problems works as follows: To solve a problem
whose constraint graph contains cycles, instannate the vari-
ables in a cycle-cutset in a consistent way and solve the
rernaining tree-squcmired probiem. If a solution to the res-
mcied problem is found, then a solution to the enture problem
is at hand. If not, consider another instannaton of the cycle-
cutset variables and continue. Thus, if we wish to solve the
problem in Figure 1, we first assume X; =a and solve the
remaining problem. If no soludon is found, then assume
X3 = band try again.

This version of the cutset method is practcal only
when the cycle-cutset is very small because, in the worst case.
we may examine all consistent instandarions of the cycle-
curset variables, the number of which grows exponentially
with the size of the cutser

A more general version of the cycle-cutset method
would be to keep the ordering of variables unchanged. but to
enhance performance once a (ree-sguctured problem is
encountered. Since all backmacking algorithms work by pro-
gressively instantiating sets of variables, all one needs o do ts
to keep wack of the connectiviry status of the constraint graph.
Whenever the set of instantiated variables constitutes a cycle-
cutset, the search algorithm is switched to a specialized mee-
solving algorithm on the remaining problem, 1e. either
finding a consistent instantation for the remaining vanables
tthus, finding a solution to the entire problem) or concluding
that no consistent instandadon for the remaining vanables
exists (in which case backtracking must take place).

Observe thar the applicability of this idea is entrely
independent on the particular rype of backtacking algonthm
used (e.g., naive backwracking, backjumping, backmacking
with learning, ¢t%.). Let 8 be any algorithm for solving CSPs
and let B, be its enhanced version. Suppose the vanables are
instandaed in a fixed order (d=X,,....X,) and that
c={Xy.....X;} is the first cutset reached. Both algonthms
will explore the search space up to depth / in precisely the
same manner (dictated by the specifics of algorithm 8), with

which is superior to all other aigonthms for all oees; so, the
wee-algorithm used in the ¢cycle-Cutset method may occasion-
ally perform worse then the originai backtrack aigonthm.

§. Experimental evaluation

We compared the performance of the cycle-cutset
approach to that of naive backmoack on several CSPs, Back-
rack works by provisionally assigning consistent values to a
subset of variables and attemptng to append o it a new
instantanon such that the whole set is consistent. An assign-
ment of values to a subset of the variables is consistent o it
satisfies all the constraints applicable to this subset

Variables were instantated in a fixed order, non-
increasing with the variables’ degrees, This is a reasonabie
heuristic since it estimates the nonon of width of the graph as
descnibed by [10]. Whenever Backtrack, reaches the first
cutset in this ordering it switches to a oee-algorithm. If a solu-
don is found, the algorithm stops and returns the soludon, oth-
erwise, bacirrack, finds a new consistent cutset-stare and
proceeds with the mee algorithm untl either a soludon is
found or there is no soludon. ‘

The tee algorithm was the one presented in [5), is
optimal for wee-CSPs. The algorithm performs directional
arc-consistency (DAC) from leaves to root, i.e.. a child always
precedes its parent. If, in the course of the DAC algorithm, a
variable becomes empty of values, the algorithm conciudes
immediately that no solution exists. Many orderings will
sansfy the pardal order above (e.g. child precede its parent)
and the choice may have a substantal effect on the average
performance. The ordering we implemented is the reverse of
“in-order” waversal of wees [9]. This orderings had the poten-
tal of realizing empty-valued variables early in the DAC
algorithm and thus concluding that no solution £xist as soon as
possible. This ordering compared favourably with other order-
wngs tried. When a solugon #xists, the mee-algorithm assigns
values (0 the variables in a backtrack-free manner, going from
the root to the ieaves. For completeness we present the ree-
algortthm next.

Tree-backtrack (d =X, Xa)

1. begin

2. call DAC(d)

3, If completed then find-solution(d)
4. else { return. no solution exist)

5. end

DAC- d-arc-consistency
(the order d is assumed)
begin
Fori=nto 1 by -1 do
For each arc (X;,X,):j<ido
REVISEX,. X)) '
If X, is empty, return (no solution exit)
end
end
end

Saln bt

~ The procedure find-solution is 2 simple backmack-
algorithm on the order d which, in this case, 15 expected o
find a soludon with no backmackings and therefore its corn-
plexiry is O(ak). The algorithm REVISE(X,.X,) (13] deletes
values from the domain of X, unul the directed arc (X, X} 15
arc-consistent, i.e., each value of X, is consistent with at least
one value of X;. The complexity of REVISE is O(k).

We compared Backtrack 1o Backtrack, on two classes
of problems, randomly generated CSPs, and Planar probiems.
Two probabilisdc parameters were used in the generadon of
each class; For the random CSPs, p determines the probabil-
ity that any two variables are directly connected and p;, the
probability that any two values in an existing constraint are
permitted. Two other parameters are a. the number of van-
ables, and k, the number of values for each vanable. The
Planar problems are CSPs whose constraint-graph is planar.
These problems were generated from an inital maximally
connected planar constraint-graph with 16 variables. In this
case, the parameter p, determines the probability that an arc
will be deleted from the graph, while p; conTols the genera-
don of each constraint as in the case of random C35Ps.

We tested the algorithms on random-C35Ps with 10 and
15 variables, having 5 or 9 values. Tables 1.2, and 3 present
the results. Each row in a table describes the performance on
one problem instance, i.e., it gives the size of the cutser, the
ratio between the cutset size and the number of variables, the
number of consistency checks performed by cach algorithm,
and the ratio between the performance of the two algorithms.
We see that in most cases Backrrack, outperformed Back-
track, but not in all cases. This indicates that, for some CSPs,
the wee-algorithm was less efficient than regular bacmc!.
Indeed. while no algorithm for rees can do better then O{nk “)
in the worst case, the pfrt'onnance of such algorithms ranges
between O(nk) w0 O(nk*) when there is a solution, and it can
be as good as Ok°) when no soludon exists. [t depends
mainly on the order of visiting variables. either for establish-
ing arc-consistency or for instantianon. Regular backtrack
may unintenconally step in the nght order and, since it avoids
the preparation work required for switcgking 10 a et represen-
taton (which may cost as much as O(a “k)), it may outperform
Backtrack,.

On the average, the curset method improved backmrack
by 20%. for this class of problems. When the size of the
cutset is relatively small. Backrrack, ourperforms Backtrack
more often. Also, the superiority of Backtrack, ts more pro-
nounced when the number of values is smaller (see the com-
parisons between tables 2 and 3). We conjecture that, since
the worstcase performance increases quadratically with the
number of values, the mee-algorithm exhibit its worst perfor-
mance more often, while the performance of regular backtrack
remains cioser to the average. Notice that, in some instances,
the performance of the two algorithms is exactly the same.
This happens when the search goes no deeper then cycle-
cutset states; so the ree-aigorithm is not invoked.

The planar problems were tested with 16 variables and
9 values. The results on this class differ only slightly from the
results on random CSPs. An average :mprovement of 25% is
observed for this class of CSPs.

In Figure § and Figure 6 we compare the two algo-
rithms graphically on the random CSPs, and in Figure 7 and
Figure 8 we do the same for the planar CSPS (due to space
considerations the tables for this class are omitted). [n Figures

