EVIDENTIAL REASONING USING STOCHASTIC SIMULATION
OF CAUSAL MODELS

Judea Pearl October 1986
CSD-860021

16

REFERENCES

Barbosa, V. C., “‘Concurrency in Systems with Neighborhood Constraints,”” Ph.D. Dissertation,
Computer Science Dept., UCLA, Los Angeles, CA., 1986.

Bundy, A., “‘Incidence Calculus: a Mechanism for Probabilistic Reasoning,”” L. N. Kanal & J.
Lemmer (Eds.), Uncertainty in Artificial Intetligence, Amsterdam, North-
Holland, 1986.

Chandy, K. M. & Misra, J., ‘“The Drinking Philosophers Problem,”’” ACM Trans. on Program-
ming Languages and Systems, Vol. G, No. 4, October 1984, pp. 632-646.

Cooper, G. F., ““‘NESTOR: a Computer-Based Medical Diagnostic Aid that Integrates Causal
and Probabilistic Knowledge,”” Ph.D. Dissertation, Department of Computer
Science, Stanford University, Stanford, CA., 1984

Dijkstra, E. W., ‘‘Hierarchical Ordering of Sequential Processes,”” Operating Systems Tech-
niques, C.A.R. Hoare and R. H. Perrott, Eds. Academic Press, New York,
1972,

Gafni, E. M. & Bertsekas, D. P, ‘‘Distributed Algorithms for Generating Loop-Free Routes in
Networks with Frequently Changing Topology,”” IEEE Trans. on Communi-
cations, Vol. COM-29, No. 1, January 1981, pp. 11-18.

Geman & Geman, ‘ ‘Stochastic Relaxations, Gibbs Distributions and the Bayesian Restoration of
Images,”’ IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-6, No. 6, 721-742, November 1984,

Henrion M., ‘‘Propagating Uncertainty by Logic Sampling in Bayes’ Networks,’’ Proceedings,
Workshop on Uncertainty in Al, Philadelphia, PA, August 7-10, 1986.

Hinton, G.E., Sejnowski, T.J., and Ackley, D.H., ‘‘Boltzman Machines: Constraint Satisfaction
' Networks that Learn,”” Technical Report CMU-CS-84-119, Department of
Computer Science, Carnegie-Mellon University, 1984.

Pearl, J., ‘‘Fusion, Propagation and Structuring in Belief Networks,”” Artificial Intelligence, Vol.
29, No. 3, September 1986, pp. 241-288.

Spiegelhalter, D. J., ‘‘Probabilistic Reasoning in Predictive Expert Systems,’” to appear in Ka-
nal, L. N. & Lemmer, J., (Eds.), Uncertainty in Artificial Intelligence,
North-Holland, Amsterdam, 1986.

14

This problem is a version of the ‘‘dining philosophers™ dilemma originally posed by
Dijkstra [1972] and later solved independently by Gafni & Bertsekas [1981] and Chandy & Mis-
ra [1984]. The solution is a distributed control policy called ‘‘edge reversal’’ and involves the
following steps:

L. Initially, the links of the network are assigned arbitrary acyclic orientation of arrows.
(This orientation bears no relation to the causal ordering governing the construction of
Bayesian networks.)

2. Each processor inspects the orientation of the arrows on its incident links and waits until
all arrows point inward, i.e., until the processor becomes a sink.

3. Once a processor becomes a sink, it is activated and, when it completes the computation,
reverses the direction of all its incident arrows {i.e., it becomes a source).

It is easily seen that no two neighbors can be activated at the same time. What is more
remarkable about this edge reversal policy, though, is that no processor ever gets ‘‘deprived;’”’
every processor fires at least once before the orientation returns to its initial state and the cycle
repeats itself. This feature is important because it constitutes a necessary condition for the con-
vergence of the entire process [Geman and Geman, 1984]. As time progresses, the system is
guaranteed to reach a steady state in the sense that, regardless of the initial instantiation, the pro-
bability that the system will enter any global state w is given by the joint distribution specified
by the link matrices.

A A A
B C B C 8 C
D E D 3 D E
(@) (b) () d)=(a)

Figure 3

Technical Report
R-68-1

CSD #8600##
October 1986

EVIDENTIAL REASONING USING STOCHASTIC SIMULATION OF CAUSAL MODELS*

Judea Pearl
Cognitive Systems Laboratory
UCLA Computer Science Department
Los Angeles, California 90024
(judea@LOCUS.UCLA.EDU)

ABSTRACT

Stochastic simulation is a method of computing probabilities by recording the fraction of time
that events occur in a random series of scenarios generated from some causal model. This paper
presents an efficient, concurrent method of conducting the simulation which guarantees that all
generated scenarios will be consistent with the observed data. It is shown that the probabilities
necessary for the simulation can be performed by purely local computations, involving products
of parameters given with the initial specification of the model. Thus, the method proposed
renders stochastic simulation a powerful technique of coherent inferencing, especially suited for
tasks involving complex, non-decomposable models where *‘ballpark’” estimates of probabili-
ties will suffice.

*This work was supported in part by the National Science Foundation, Grant #DSR 83-13875.

4. DISTRIBUTED CONTROL OF CONCURRENT ACTIVATION

The simulation process can also be executed in parallel but requires some scheduling to
keep neighboring processors from operating at the same time. To see why this is necessary, im-
agine two neighboring processors X and Y entering the computation phase at the same time 7.
X observes the value y, of ¥ and calculates P (x ly) while, at the same time, ¥ observes the
value x; of X and calculates P (y 1x;). At a later time, 5, they enter the simulation phase with
X instantiated to a sample x, drawn from P (x |y;) and Y to a sample y, drawn from P (y ix).
The new values x, and y , are not compatible with the distribution . P was consulted to match
y, with x (and x, with y) but, now that X has changed its value to x;, ¥ no longer represents
a proper probabilistic match to it.

To formalize this notion, note that a prerequisite to coherent relaxation is the stationarity
of the distribution of X and Y. In other words, we require that if at time ¢, X and Y are distri-
buted by P (x, y) then the new values of X and Y must also be distributed by P (x, y). This re-
quirement is met when only one variable changes at any given time, because (assuming Y is the
changing variable) we can write:

P(Xz'—'X, Y2=_)7)-_-— ;;P(X2=x,}’2=yIX1=x',Y1=y')P(x',y')

=P(Y1=y|X1=X)P(X1=X)

=PX =x,Y,=y)=PXx,y))

which implies stationarity. If, however, both X and ¥ change their values simuitaneously, we
have

PX,=x,Y,=y)=P{¥=y1X,=x)P((X;,=x)
= ;’P(X2=X,Y2=y|Xl=x',Y'=y')P(x”y’)
x’y
=X PX,=x1Y=y)P(¥ =y X =x)P&"y)
x’y

_y P&x,y) P&LY)
@y PG P&H

Px’,y") (5)

which does not represent stationarity except in the pathological case where X, and Y, are in-

EVIDENTIAL REASONING USING STOCHASTIC SIMULATION OF CAUSAL MODELS
Judea Pearl

1. INTRODUCTION

Stochastic simulation is a method of computing probabilities by counting the fraction of
time that events occur in a series of simulation runs. If a quantitative causal model of a domain
is available, the model can be used to generate random samples of hypothetical scenarios which
are likely to develop in the domain. The probability of any event or combination of events can
then be computed by recording the fraction of time it registers ‘‘true’’ in the samples generated.

Stochastic simulation shows considerable potential as a probabilistic inference engine
that combines evidence correctly and is still computationally tractable. Unlike numerical
schemes, the computational effort is unaffected by the presence of dependencies within the
causal model; simulating the occurrence of an event under a given set of conditions requires the
same computational effort regardless of whether the conditions are correlated or not. Stochastic
simulation carries a special appeal to Al researchers in that it develops probabilistic reasoning as
a direct extension of deterministic logical inference [Bundy, 1986]. It explicitly represents pro-
babilities as ‘‘frequencies’” in a sample of truth values which, unlike numerical probabilities,
can be derived by familiar theorem-proving techniques and combined by standard logical con-
nectives. Neither is the technique foreign to human reasoning; assessing uncertainties by mental
sampling of possible scenarios seems a very natural heuristic and has, no doubt, been proposed
by some psychologists as the cornerstone of human judgment.

Another feature offered by simulation techniques is their inherent parallelism. If we as-
sociate a processor with each propositional variable in the model, then the simultaneous oc-
currence of events within each scenario can be generated by concurrently activating the proces-
sors responsible for these events. For example, the occurrence of the event *‘Joe entered the res-
taurant’’ could, in one run, trigger the simultaneous events A -*‘Joe liked the food,”” B -*‘Joe hat-
ed the noise,”” and C-*“The prices were reasonable,’”’ while in a different run, the combination
of (=4, B, =C) may occur. Although parallel techniques have also been developed for numeri-
cal computation of probabilities {Pear], 1986], the simulation approach embodies the added ad-
vantage of message simplicity. Instead of relaying probability distributions, the messages pass-
ing between processors are the actual values assigned to their corresponding variables. This
conforms to the connectionist paradigm of reasoning, where processors are presumed to com-
municate merely by relaying their levels of activity.

10

Figure 2
Pxiw)=a P (xlu) IIPLy;If;(x)] 2)
i

where « is a normalizing constant, independent of x , and x, w,, u,,y ; and f;(x) denote any
consistent instantiations of X, W, U,, ¥; and F;, respectively.

Thus, P (x |w,) can be computed by simply taking the product of the instantiated link
matrix stored at node X times those stored at X 's children. In Figure 2, for example, we have:

Pxiw)=aPxlu,upy Py lx,m)P(yslx,usy;,mq)

Proof: First note that the acyclicity of Bayesian networks dictates that U, n ¥, =0 and, for
al j=1,..m,X e F;. Let (Z,,Z,,..,Z;,..) be an ordering of the variables of Y, UM,,
which is consistent with the orientation of the arrows in the network; that is, each Z, is either a
son or a mate of X, and Z; is not a descendant of Z; if k| > k,. For example, in the network

of Figure 2, we have (Z |, 25,23, Z) = (M, Y, M5, Y>).

Using the standard chain-rule formula on the variables in X UY, UM, , we write:

Pxlw,)=Pxlb)=aP(x,b)=a"Px,z(,2,..2;,... 1uy)

= {I'P (x iux) 1;[P(zklux,x, 29, Zz,...,Zk_l)

=a'P(xluy) IT Plzlug,x,.,zey) I Pzlug, x,zq,.., Zx_y)
2y € k:Z,

ey x Ly € M,

This paper offers a solution which involves a two-phase cycle: local numerical compu-
tation followed by logical sampling. The first step involves computing, for some vartable X , its
conditional distribution, given the states of all its neighbors variables. The second phase in-
volves sampling the distribution computed in step 1 and instantiating X to the state selected by
the sampling. The cycle then repeats itself by sequentially scanning through all the variables in
the system. B

Section 2 illustrates the proposed scheme using a simple example taken from medical di-
agnosis. Section 3 proves the correctness of the formula used in these computations, and Sec-
tion 4 discusses methods for implementing the sampling scheme in parallel.

2. ILLUSTRATING THE PROPOSED SCHEME

We shall illustrate the operation of the proposed scheme with a simple example bor-
rowed from [Spiegelhalter, 1986], originally given by [Cooper, 1984]:

‘‘Metastatic cancer is a possible cause of a brain tumor and is also
an explanation for increased total serum calcium. In turn, either of
these could explain a patient falling into a coma. Severe headache
is also possibly associated with a brain tumor.”’

Figure 1 shows the Bayes Network representing these relationships. We use capital
letters to represent propositional variables (i.e., dichotomies) and lower case letters for their as-
sociated propositions. For example, C € {1, 0} represents the dichotomy between having or not
having brain tumor, ¢ stands for the assertion C =1 or ‘*brain tumor is present’’ and —¢ stands
for the negation of ¢, i.e.,, C =0.

The table below expresses the influences in terms of conditional probability distributions.
Each variable is characterized by a distribution, called a link matrix, that specifies the probability
of that variable, given the state of its parents. The root variable, having no parent, is character-
ized by its prior distribution.

To illustrate, the value of P (A = 11w,) computed in the next activation of A would be

PA=11B=0,C=0)=aP(a)(—-bla)P(—cla)
=0 .20 (1 -.80) (1~ .20)
=o 032

P(A=01B=0,C=0=aP(—a)P(—=bl-a)P{(—cl-a)
=qa .80(1-.20)(1-.05)
=qa .608

o= (.032 + .608)~! = 1.5625 P(A=11B=0,C=0)= .05 P{A=01B=0,C=0)= 95

In case a query ““P{al—d,e)=7"" arrives at this point, A would sample the distribution
P (a) = .05 and upon selecting a value 0, would provide the estimate

Plal~d,e)= 1;’0 =5
The second method would give:
F(al—.d,e)z'—s-(-)-zt-'9-§-=.425

The exact value of P (a |—d, ¢) happens to be 0.097, and it takes about 100 runs to approximate
this value to within 1% accuracy. Our choice of initial state A =B = C =1 was an especially
bad one; more reasonable starting states can be obtained by simulating the uninstantiated model
in the forward direction, i.e., (using P (A), draw a value A | for A, using P (B |A), draw a value
for B and so on.

This simulation scheme can also be used to find the most likely interpretation of the ob-
served data, i.e., a joint assignment w of values to all variables in the system which has the
highest posterior probability, given the evidence. It is well-known, e.g., [Pearl 1986], that the
joint posterior probability is proportional to the product

P (w| evidence) =a Tl P (x;If})
'

where i ranges over all variables in the system (including the data) and f; is the state of X;’s
parents, consistent with the assignment w. Thus, the probability of any global state w entered
by the simulation can be calculated by the product above and, by keeping local records of the
highest probability achieved with each value selection, the best state reached so far can be easily
retrieved.

In section 3, we shall show that P (X | wy), the distribution of each variable X condi-
tioned on the values wy of all other variables in the system, can be calculated by purely local
computations. It is given simply as the product of the link matrix of X times the link matrices
of its children:

P(Alw,)=P@AIB,C,D.EY=cP(A)P(BIA)P(CIA) (La)
P(Blwg)=P@BIA,C,D,E)=aPBIAYPDIB,C) (Lb)
P(Clwe)=P(CIA,B,D,E)=aP(CIA)P{DIB,C)P(EIC) (1.0)

where the as are normalizing constants that render the respective probabilities’ sum to unity.
The probabilities associated with D, and £ are not needed because these variables are assumed
to be fixed at D =0 and E = 1. Note that a variable X may determine its transition probability
P (X |wy) by inspecting only some neighboring variables. For example, A needs to inspect
only B and C, while B needs to inspectonly A, C and D.

For demonstration purposes, we will activate the variables sequentially, in the order
A, B, C, keeping in mind that any other schedule would be equally adequate.

Activating A

Step 1: Node A inspects its children B, C and, finding both at 1, computes (using Eq.(1.a)):

PA=llwy)=P(A=1IB=1,C=1)=0aP(a)P(bla)P(cla)
=0 x.20 x .80x.20
=0 x.032

PA=0lwy)=PA=01B=1,C=1)=0P(—a)P(i-a)P(cl-a)
=0 x.80 x .20 x .05
= x 008

a=[.032+.008"! =25
yielding

P(A=11w,) =25 x .032= 80
P(A=0lw,)=25 x .008 =.20

Step 2: Node A consults a random number generator that issues 1s with probability 80% and
0Os with 20%. Assuming the value sampled is 1, A adopts this value A =1, and control shifts to
node B.

