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ABSTRACT

The purpose of this note is to draw attention to certain aspects of causal reasoning which are pervasive in ordi-
nary discourse yet, based on the author’s scan of the literature, have not received due treatment by logical for-
malisms of common-sense reasoning. In a nutshell, it appears that almost every default rule falls into one of two
categories: expectation-evoking or explanation-evoking. The former describes association among events in the
outside world (e.g., Fire is typically accompanied by smoke.); the latter describes how we reason about the
world (e.g., Smoke normally suggests fire.). This distinction is consistently recognized by people and serves as
a tool for controlling the invocation of new default rules. This note questicns the ability of formal systems 0
reflect common-sense inferences without acknowledging such distinction and outlines a way in which the flow

of causation can be summoned within the formal framework of default logic.
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I. HOW OLD BELIEFS WERE ESTABLISHED DETERMINES WHICH NEW BE-

LIEFS ARE EVOKED

Let A and B stand for the following propositions:

A --Joe is over 7 years old.

B -- Joe can read and write.

Case 1: Consider a reasoning system with the default rule
defg: B—A.
A new fact now becomes available,
€1 -~ Joe can recites passages from Shakespeare,

together with a new default rule:

def ;1 e—B.

Case 2: Consider a reasoning system with the same default rule,
def B: B oA,
A new fact now becomes available,

e, -- Joe’s father is a Professor of English,

together with a new default rule,

def 2 €,-B.

(To make def , more plausible, one might add that Joe is known to be over 6 years old and is not

a moron.)



Joe’s father is
Joe is over 7 years old. Joe is over 7 years old. an English professor.

Joe recites Shakespeare. @ Joe can read and write.

Case 1 Case 2
Figure 1

Common sense dictates that Case 1 should lead to conclusions opposite to those of Case
2. Leaming that Joe can recite Shakespeare should evoke belief in Joe’s reading ability (B ) and,
consequently, a correspondingly mature age (A ). Learning of his father’s profession, on the oth-
er hand, while still inspiring belief in Joe’s reading ability, should NOT trigger the default rule
B —A because it does not support the hypothesis that Joe is over 7. On the contrary; whatever
evidence we had of Joe's literary skills could now be partially attributed to the specialty of his
father rather than to Joe’s natural state of development. Thus, if a belief were previously com-
mitted to A, and if measures of belief were permitted, it would not seem unreasonable that e,
would somewhat weaken the belief in A.

From a purely syntactic viewpoint, Case 1 is identical to Case 2. In both cases we have a
new fact triggering B by default. Yet, in Case 1 we wish to encourage the invocation of B —A
while, in Case 2, we wish to inhibit it. Can a default-based reasoning system distinguish
between the two cases?

The advocates of existing systems may argue that the proper way of inhibiting A in Case
2 would be to employ a more elaborate default rule, where more exceptions are stated explicitly
[Reiter & Cricuolo, 1983]. For example, rather than B —A, the proper default rule should
read: B —A |UNLESS e,.

Unfortunately, this cure is inadequate on two grounds. First, it requires that every default
rule be burdened with an unmanageably large number of conceivable exceptions. Second, it
misses the intent of the default rule defz: B —A, the primary aim of which was to evoke belief
in A whenever the truth of B can be ascertained. Unfortunately, while correctly inhibiting A in
Case 2, the UNLESS cure would also inhibit A in many other cases where it should be en-
couraged. For example, suppose we actually test Joe’s reading ability and find out that it is at
the level of a 10-year old child, unequivocally establishing the truth of B. Are we to suppress



the natural conclusion that Joe is over 7 on the basis of his father being an English professor?
There are many other conditions under which even a 5-year-old boy can be expected to acquire
reading abilities, yet, these should not be treated as exceptions in the default-logical sense be-
cause those same conducive conditions are also available to a seven-year old; and, consequently,
they ought not to preclude the natural conclusion that a child with reading ability is, typically,
over 7. They may lower, somewhat, our confidence in the conclusion but should not be allowed
to totally and permanently suppress it.

To summarize, what we want is a mechanism that is sensitive to how B was established.
If B is established by direct observation or by strong evidence supporting it (Case 1), the default
rule B —»A should be invoked. If, on the other hand, B was established by EXPECTATION,
ANTICIPATION or PREDICTION (Case 2), then B —A should not be invoked, no matter how
strong the expectation.

The asymmetry between expectation-evoking and explanation-evoking rules is not mere-
ly that of temporal ordering, but is more a product of human memory organization. For example,
age evokes expectations of certain abilities not because it precedes them in time (in many cases
it does not) but because the concept called "child of age 7" was chosen by the culture to warrant
a name for a bona-fide frame, while those abilities were chosen as expectational slots in that
frame. Similar asymmetries can be found in object-property, class-subclass and action-
consequence relationships.

II. MORE ON THE DISTINCTION BETWEEN CAUSAL VS. EVIDENTIAL SUPPORT
Consider the following two sentences:

1. Joe seemed unable to stand up; so, I believed he was injured.
2. Harry seemed injured; so, I believed he would be unable to stand up.

Any reasoning system that does not take into account the direction of causality or, at least, the
source and mode by which beliefs are established is bound to conclude that Harry is as likely to
be drunk as Joe. Our intuition, however, dictates that Joe is more likely to be drunk than Harry
because Harry’s inability to stand up, the only indication for drunkenness mentioned in his case,
is portrayed as an expectation-based property emanating from injury, and injury is a perfectly ac-
ceptable alternative to drunkenness. In Joe’s case, on the other hand, not-standing-up is
described as a primary property supported by direct observations, while injury is brought up as
an explanatory property, inferred by default.

Note that the difference between Joe and Harry is not attributed to a difference in our
confidence in their abilities to stand up. Harry will still appear less likely to be drunk than Joe
when we rephrase the sentences to read:



1. Joe showed slight difficulties standing up; so, I believed he was injured.
2. Harry seemed injured, so, I was sure he would be unable to stand up.

Notice the important role played by the word "so." It clearly designates the preceding proposi-
tion as the primary source of belief in the proposition that follows. Natural languages contain
many connectives for indicating how conclusions are reached (e.g., therefore, thus, on the other
hand, nevertheless, etc.). Classical logic, as well as known versions of default logic, appears to
stubbornly ignore this vital information by treating all believed facts and facts derived from oth-
er believed facts on equal footing. Whether beliefs are established by external means (e.g., noisy
observations), by presumptuous expectations or by quest for explanation does not matter.

But even if we are convinced of the importance of the sources of one’s belief; the ques-
tion remains how to store and use such information. In the Bayesian analysis of belief networks
[Pearl 1986], this is accomplished using numerical parameters; each proposition is assigned two
parameters, & and A, one measuring its accrued causal support and the other its accrued eviden-
tial support. These parameters then play decisive roles in routing the impacts of new evidence
throughout the network. For example, Harry’s inability to stand up will accrue some causal sup-
port, emanating from injury, and zero evidential support, while Joe’s story will entail the oppo-
site support profile. As a result, having observed blood stains on the floor would contribute to a
reduction in the overall belief that Joe is drunk but would not have any impact on the belief that
Harry is drunk. Similarly, having found a whiskey bottle nearby would weaken the belief in
Joe’s injury but leave no impact on Harry’s.

These inferences are in harmony with intuition. Harry’s inability to stand up was a purely
conjectural expectation based on his perceived injury, but it is unsupported by a confirmation of
any of its own, distinct predictions. As such, it ought not to pass information between the frame
of injury and the frame of drunkenness. The mental act of imagining the likely consequences of
an hypothesis does not activate other, remotely related, hypotheses just because the latter could
also cause the imagined consequence. For an extreme example, we would not interject the pos-
sibility of a lung cancer in the context of a car accident just because the two (accidents and canc-
er) could lead to the same eventual consequence -- death.

Can a non-numeric logic capture and exploit these nuances? I think, to some degree, it
can. True, it can not accommodate the notions of "weak" and "strong" expectations, nor the no-
tion of ‘‘accrued’’ support, but this limitation may not be too severe in some applications, e.g.,
one in which belief or disbelief in a proposition is triggered by just a few decisive justfications.
What we can still maintain, though, is an indication of how a given belief was established -- by
expectational or evidential considerations, or both, and use these indications for deciding which
default rules can be activated in any given state of knowledge.

III. THE C-E SYSTEM: A COURSE LOGICAL ABSTRACTION OF CAUSAL
DIRECTIONALITY.

Let each default rule in the system be labeled as either C —def (connoting ‘‘causal’”) or E ~def



(connoting ‘‘evidential’’). The former will be distinguished by the symbol —,, as in
“FIRE —, SMOKE,” meaning “‘FIRE causes SMOKE,’ and the latter by —,, as in
““SMOKE —, FIRE,” meaning ‘‘SMOKE is evidence for FIRE.” Correspondingly, let each
believed proposition be labeled by a distinguishing symbol, ““E’’ or ““‘C.”” A proposition P is
E ~believed , written E P, if it is a direct consequence of some E —def rule. Otherwise, if P can
be established as a direct consequence of only C —def rules, it is said to be C —believed , written
C (P), supported solely by expectation or anticipation. The semantics of the C—E distinction are
captured by the following three inference rules:

(a) P-o.0 (b) P-.0Q (c) P-,0
C(P) EP) E(P)
C(Q) () E@Q)
Note that we purposely precluded the inference rule:
P-,0
C(P)
Q

which led to counter-intuitive conclusions in Case 2 of Joe’s story.

Inference rules (a), (b) and (c) imply that E ~believed conclusions can only attain
E —believed status by a chain of purely E—def rules. C—believed conclusions, on the other
hand, may be obtained from a mix of C ~def and E—def rules. For example, a E—def rule may
(viz., (c)) yield an E -believed conclusion which can feed into a C —def rule (viz., (b)) and yield
a C —believed conclusion. Note, also, that the three inference rules above would license the use
of A—B and B —A without falling into the circular reasoning trap. Iterative application of
these two rules would never cause an C —believed proposition to become E —believed because at
least one of the rules must be of type C.

The distinction between the two types of rules can be demonstrated using the following
example. (See Figure 2).



P -- "It rained last night" P, --"The sprinkler was on

last night"

Q--"The grass is wet"

N

R --"The grass is cold and shiny" R ,--"My shoes are wet"

Figure 2

LetP,, P4, Q,R,, and R, stand for the propositions:

P ,-- "It rained last night"

P 5--"The sprinkler was on last night"
Q -- "The grass is wet"

R ,--"The grass is cold and shiny”

R ;--"My shoes are wet"

The causal relationships between these propositions would be written:

Pl_)cQ Q_)epl
P2—>CQ Q—)ePZ
Q - Ry Ri—-. 0
Q_)CR2 RZ"')eQ

If Q is established by an E—def rule such as R; —, Q then it can trigger both P, as explana-
tion, and R, as prediction. However, if Q is established merely by a C—def rule , say
P, >, Q. then it can trigger R, (and R ) but not P ;.

The essence of the causal assymmetry stems from the fact that two causes of a common
consequence interact differently than two consequences of a common cause; the former COM-
PETE with each other, the latter SUPPORT each other. Moreover, the former interact when their
connecting proposition is CONFIRMED, the latter interact only when their connecting proposi-
tion is UNCONFIRMED. In our example, the state of the sprinkler would influence our belief in
rain only when the grass wetness is confirmed by observation. However, knowing whether the
shoes are wet or dry can influence the prediction ‘‘the grass is cold’’ only prior to confirming the
wetness of the grass. A logic of causal dependencies is given in [Pearl and Verma, 1987].



Let us see how this C—E system resolves the problem of Joe’s age (See Fig.1.). defy
and def | will be classified as E—def rules, while def , will be proclaimed a C ~def rule. All
provided facts (e.g., €¢; and e,) will naturally be E-believed. In Case 1, B will become
E—believed (via rule (c)) and, subsequently, after invoking def g inrule (c), A, too, will be-
come E —believed. In case 2, however, B will only become C ~believed (via rule (b)) and, as
such, cannot invoke def p, leaving A undetermined, as expected.

To handle retraction we can employ a mechanism of *‘justification maintenance,”’ simi-
lar to that used in truth maintenance systems [Doyle, 1979]. We define an extension to be an as-
signment of C/E /OUT status to the propositions in the system that is closed under rules (a), (b)
and (c). An extension X is said to be well-founded if all its labels could be justified by the three
inference rules above. In other words, every E —believed proposition Q in X is either given as a
fact or is a conclusion of some E—def rule P —, Q where P is labeled E; every C —believed
proposition £ in X is a conclusion of some C —def rule P —_. Q where P is labeled either E or
C. Newly added facts propagate their impact on the beliefs of other propositions by maintaining
the well-foundedness of the extension. For example, if in Joe’s story we first learn facts ¢, and
e then the only well-founded extension is X | = {E (e1), E (e3), E(B), E (A )}, namely all propo-
sitions are E -believed. If we later learn a new fact that causes the default def , to be censored
(e.g., €3 - Joe is blind and always repeats what he hears), then extension X, gives place to
X,={E(e;), E(ey), E{e3), C(B), OUT(A)}. Thus, the censorship of def ; causes B to become
C ~believed (justified by the truth of e,) which further censors the rule def g, and retracts the be-
lief in A ~Joes’s being over 7 years old.

The advantage of this definition of well-foundedness becomes most apparent in schemes
based on truth maintenance. Morris [1987] has demonstrated that the Yale Shooting problem
[Hanks & McDermott, 1986] disappears when formulated in terms of truth maintenance systems,
where the notion of "justification” is a basic primitive. Briefly, if one insists on accepting only
"well founded” extensions then anomalous extensions are ruled out by virtue of the fact that they
contain propositions which are not the conclusion of any justification. The intended extension,
on the other hand, 1s well-founded because every proposition accepted in that extension either
has a justification in the same extension or is IN by virtue of being not abnormal. Thus, Morris
has replaced criteria based on temporal precedence by a criterion based on ‘‘justifications’’
which, in turn, are determined by the directionality of the default rules.

The weakness of this approach is that it relies on the rule-author to carefully phrase the
rules in a sensible way, so as to provide a causally coherent set of justifications. For example,
consider a simple system with two default rules and one fact:

dy: shoot & —ab (Shoot y—dead
d,: shoot & ab (Shoot )—alive

fact: shoot



This system has one ‘‘well-founded’’ extension: {shoot, — ab (shoot), dead }. The anomalous
extension {shoot, ab (shoot), alive } is not well-founded because ab (shoot) is not a conclusion
of any justification in the extension, nor is it true by default, because it is abnormal by name.
Now imagine that the knowledge provider decides to add a third default rule to the system:

d3: shoot & alive — ab (Shoot).

d3 is just one contrapositive version of d; and might be useful for diagnostic purposes. Lo and
behold, the anomalous extension suddenly becomes well-founded, because the cycle
alive — ab (shoot) — alive now provides the reinforcement necessary for rendering all the
predicates in the extension "well justified”. To prevent such anomalous extensions we must ei-
ther forbid the knowledge provider from using a mixture of causal and evidential rules or, alter-
natively, classify each rule as either causal or evidential and use the C —E definition of ‘“‘well-
foundedness’’ given above.

With this definition, the normal extension X, = {E (shoot), E ( = ab (shoot)), C (dead by;
will be qualified as well-founded, because the beliefs in "shoot" and "— ab (shoot)" are esta-
blished externally, while that of "dead" by the C-def rule d,. The anomalous extension
X, = {shoot, ab (shoot), alive }, however, is not well-founded because there is no consistent way
of labeling the predicates in X, as either C—believed or E-believed: ab(shoot) can only be
justified by rule d3 which is an E—def rule, so, the antecedent "alive" must be labeled
E —believed . But, this cannot be justified because the system contains no E—def rule with
“"alive" as a consequence. Note, however, that if "alive" is actually observed, then it receives an
E —believed status externally, and then extension X, makes a perfect sense and will, in fact, be
the only extension that prevails.

IV. CAN WE ASSEMBLE A MORE REFINED NON-NUMERIC ABSTRACTION?

E—believed status is clearly more powerful than C-believed status. The former can invoke
both C—def and E-def rules, while the latter, no matter how strong the belief, invokes only
C—def rules. The question may be raised whether one shouldn’t dispose of this inferior, “‘C-
rated”’ form of belief altogcthf:r and restrict a reasoning system to deal with beliefs based only
on genuine evidential support™. The answer is that C—def rules, as weak as they sound, serve
two functions essential for common-sensical reasoning: predictive planning and implicit censor-
Ship.

The role of C—def rules is straightforward -- to generate predictions so that actions lead-
ing to desirable consequences could be selected. For example, if we consider buying Joe a birth-
day gift and we must decide between a book or a TV game, it would obviously be worth asking
if we believe Joe can read. Such belief will affect our decision even if it is based on inferior,
“‘C -rated”” default rules, such as “*If person Z is over 7 years old, then Z can read"” or, even the

1 In Mycin [Shortiffe, 1976], for example, rules are actually restricted in this way, leading always from evidence
to hypotheses.
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weaker one yet: “‘If Z’s father is an English professor, then Z can read.”” Such prediction facili-
ties could be adequately served by the C —FE system proposed earlier.

However, the prospect of using C—def rules as implicit censors of E—def rules is more
intriguing because it is pervasive even in purely inferential tasks (e.g., diagnosis), involving no
actions or planning agents whatsoever. Consider the "frame problem" in the context of car-
failure diagnosis with the E—def rule: ‘'If the car does not start, the battery is probably dead.”’
Obviously, there are many exceptions to this rule, e.g., *‘... unless the starter is burned,” “‘... un-
less someone pulled the spark plugs,”” *‘... unless the gas tank is empty,”’ etc., and , if any of
these conditions is believed to be true, people would censor the invocation of alternative expla-
nations for having a car-starting problem. What is equally obvious is that people do not store all
these hypothetical conditions explicitly with each conceivable explanation of car-starting prob-
lems but treat them as unattached, implicit censors, namely, conditions which exert their
influence only upon becoming actively believed and, when they do, would uniformly inhibit
every E —def rule having "car not starting” as its sole antecedent.

But if the list of censors is not prepared in advance, how do people distinguish a genuine
censor from one in disguise (e.g., ‘‘I hear no motor sound’’)? I submit that it is the causal direc-
tionality of the censor-censored relationship which provides the identification criterion. By what
other criterion could people discriminate between the censor ‘“The starter is burned’’ and the
candidate censor ‘‘My wife testifies, ‘“The car won’t start’ 7’ Either of these two inspires strong
belief in ‘‘the car won’t start’” and “‘I’ll be late for the meeting;’” yet, the burned-out starter is
licensed to censor the conclusion ‘‘the battery is dead,”’ while my wife’s testimony is licensed to
evoke it. It is hard to see how implicit censorship could be realized, had people not been blessed
with clear distinction between explanation-evoking and expectation-evoking rules. So, why stifle
this distinction in formal reasoning systems? Formally, implicit censorship can be defined in
terms of a meta-rule that qualifies every E —def rule P —, Q in the system:

P —,Q | UNLESS 3(Q":(Q’ -, P)and [E(Q") or C(Q")]

The rule says that the default rule P — , Q can be invoked only when no altemative explana-
tion Q' of P is believed.

The main benefit of this censorship scheme is that we no longer need to prepare the name
of each potential censor next to that of a would-be censored; the connection between the two
will be formed “‘on the fly,”” once the censor becomes actively believed. The mere fact that a
belief in a proposition P can be justified by some explanation Q” would automatically and pre-
cisely block all the rules we wished censored. More ambitiously, it should also lead to retract-
ing all conclusions drawn from premature activation of such rules as is demonstrated in Section
II. This is one of the computational benefits offered by the organizational instrument called
causation and is fully realizable using Bayesian inference. Can it be mimicked in non-numeric
systems as well?
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Unfortunately the benefit of implicit censorship is hindered by some fundamental issue,
and it is not clear how it might be realized in purely categorical systems which preclude any
representation for the degree of support that a premise imparts to a conclusion. Treating all
C —def rules as implicit censors would be inappropriate, as was demonstrated in the starting
theme of this note. In case-1 of Joe’s story, we correctly felt uncomfortable letting his father’s
profession inhibit the E —def rule CAN-READ(JOE) —>, OVER-7(JOE), while now we claim
that certain facts (e.g., burned starter), by virtue of having such compelling predictive influence
over other facts (e.g., car not starting), should be allowed to inhibit all E—def rules emanating
from the realization of such predictions (e.g., dead battery). Apparently there is a sharp qualita-
tive difference between strong C —def rules such as

NOT-IN (Z, SPARKPLUGS) —, WON’T-START (Z)
and weak C —def tules such as

ENGLISH-PROFESSOR (father (Z)) —. CAN-READ (Z)

or
IN (Z, OLD-SPARKPLUGS) -, WON'T-START (Z).

Strong C~def rules, if invoked, should inhibit all E—def rules emanating from their conse-
quences. On the other hand, weak C—def rules should allow these E—def rules to fire (via rule

(€)).

This distinction is exactly the role played by the parameter m which, in Bayesian infer-
ence, measures the accrued strength of causal support, and serves to distribute the impact of
newly-observed facts among those propositions which had predicted the observations. Normal-
ly, those propositions which generated strong prior expectations of the facts observed would re-
ceive the major share of the evidential support imparted by the observation [Pearl, 1986]. It is
primarily due to this strong vs. weak distinction that Bayesian inference rarely leads to counter-
intuitive conclusions, and this is also why it is advisable to consult Bayes analysis as a standard
for abstracting more refined logical systems. However, the purpose of this note is not to advocate
the merits of numerical schemes but, rather, to emphasize the benefits we can draw from the dis-
tinction between causal and evidential default rules. It is quite feasible that with just a rough
quantization of rule strength, the major computational benefits of causal reasoning could be
tapped.

CONCLUSION

The distinction between C —believed and E —believed propositions allows us to properly
discriminate between rules that should be invoked (e.g., case 1 of Joe’s story) and those that
should not (e.g., case 2 of Joe’s story), without violating the original intention of the rule provid-
er. While the full power of this distinction can, admittedly, be unleashed only in systems that
are sensitive to the relative strength of the default rules, there is still a lot that causality can offer
to systems lacking this sensitivity.
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