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1. INTRODUCTION

The primary focus of theoretical studies of database dependencies has, thus far, been on the formal
charactenzation of dependencies in categorical relations, i.e., relations defined by categorical exclusion of
subsets of tuples. Statstical databases are often of an entirely different nature: every tuple (representing
some combination of events) may, in principle, be part of the database with some small, but non-zero, pro-
bability. This paper extends the scope of previous work by investigating the formal properties of proba-
bilistic dependencies of the type **x is independent of y, given z."” It is the existence of such dependen-
cies that enables us to encode staristical databases in computationally manageable and conceptually mean-
ingful representational schemes. Among such schemes, the most notable are graphical representations
employing either undirected graphs (e.g., Markov fields [Darroch, 1980]) or directed, acyclic graphs (e.g.,
causal models [Blalock, 1971], inference networks {Dmda, Hart and Nilsson, 1978)).

The formal basis underlying the correspondence between probabil.stic dependencies and undirect-
ed graphs is described in [Pearl and Paz 1985], while this paper focuses on directed-acyclic graphs (dia-
graphs). We define a criterion for detecting conditional independencies in dia-graphs and show that any
minimal dia-graph constructed recursively from some probability dismibution P never displays a
conditional-independence relationship which is not in . The paper then defines the class of dependencies
capturable by dia-graphs and compares it to that capturable by undirected graphs. Allowing the introduc-
tion of auxiliary vertices, dia-graphs are shown to be more expressive than undirected graphs, i.e., they are
capable of displaying a wider variety of probabilistic dependencies.

2. NOMENCLATURE AND OVERVIEW OF PREVIOUS WORK
2.1 Probabilistic Dependencies

Definition: Let U ={a, B, ...} be a finite set of discrete variables (i.e., partitions or attributes) character-
ized by a joint probability function P (-), and let x, y and z stand for any three subsets of variables in /. x
and y are said to be conditionally independent given z if

P(x,ylz)=P(xiz)P(ylz) whenP(z)>0 (N

i.e., for any instantiation z, of the variables in z and for any instantiations x; and y; of x and y , we have
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We use the notation / (x,z,y Jp orsimply /(x z ¥ ) to denote the independence of x and ¥ given z;
thus,

I(x,z,y)p Q?'P(x,yJZ)=P(IiZ)P(vlz} 3
Unconditional independence (also called marginal independence) will be denoted byl(x,D.y).ie.,
I(x.D,y)p iff Px.y)=P(x)P(y)

Theorem 1:[Pearl & Paz, 1985 ] Letx,y and z be thres disjoint subsets of variables from ¢/, and let
f(x.z,y) stand for the relation *‘x is independent of y, given z*' in some probabilistic model P, then /
must satisfy the following set of five independent conditions:

Symmerry I(x,z,y)<==>{(y,2,x) (4.2)
Decomposition i(x.z.yw)-_-al(x.z.y) & I(x,z,w) (4.b)
Intersection I(x,zw,y) & l(x.zy.w):l(x.z.yw) 4.0)
Weak Union I(x.z,yw):al(x.zw,y) (4.d)
Contraction fx.zy, w)&l(x.z.y)—al(x.z,yw) {4.e)

Remarks: The concatenation yw stands for the conjunction of events asserted by instantiating the set un-
iony (yw. Once/ is defined on the set of disjoint triplets x. y, z it is also defined on the set of ail tri-
pletsviaf(x,z,y) <=>[(x-2,2,y)

The intuitive interpretation of Egs. (4.c) through (4.¢) follows. (4.c) states that, if y does not af-
fect x when w is held constant and if, simultaneously, w does not affect x when y is held constant, then

after learning some irrelevant facts Y, then w must have been irrelevant before leamning y. Together, the
weak union and contraction properties mean that leamning irrelevant facts should not alter the relevance
status of other propositions in the system; whatever was relevant remains relevant, and what was ir-
relevant remains irrelevant.

Axioms (4.a) through (4.e), with the exception of (4.c), are also satisfied by Embedded Mulsi-
Valued Dependencies (EMVD) (Fagin, 1977)ifI(x,z,y) is interpreted as z ——y with respect to the pro-
Jjection on the set X\ _y\z of auributes. Axiom (4.c) is unique to probabilistic dependencies and stems
from the assumption P(+) > Q. It guarantees that every y has a unique minimal set z such that Z9—y
(see Theorem 3 below), thus rendering these dependencies amenable to graphical representation. The
question of completeness remains an open problem as it is not clear whether the restriction introduced by
axiom (4.c) is sufficient to render EMVD axiomatizable [Sagiv & Walecka, 1982).



2.2 Graph Separation and Conditional [ndependence

Let U ={c, B,...} be a finite set of elements (e.g., propositions, variables, etc.). let x, ¥ and = stand
for three disjoint subsets of elements in U and let M be a model which assigns truth values to the 3-place
predicate / (x, z, y ). We next define the conditions under which every dependency / (x, z, y )y induced by
M can be represented as a cutset condition <x 1z !y>; in some graph G, where <x |z |y > stands for 'z
is a vertex cutset of G, separating x fromy."’

Definirion:  An undirected graph G is a dependency map (D -map) of M if there is a one-to-one
correspondence between the elements of U/ and the nodes of G, such that for all disjoint subsets, x,y.z.
of elements we have:

I {(x,2,y)y = <xlzly>g &)

Similarly, G is an /ndependency map (I -map) of M if:

I (x,z,y)y =<xlzly>g (6)

G said to be a perfect map of M if it is both a D -map and /[ -map.

A D -map guarantees that vertices found to be connected are, indeed, dependent; however, it may occa-
sionally display dependent variables as separated vertices. An /-map works the opposite way: it guaran-
tees that vertices found to be separated always correspond 10 genuinely independent variables but does not
guarantee that all those shown to be connected are, in fact, dependent. Empty graphs are trivial D -maps,
while complete graphs are trivial / -maps.

Theorem 2: [Peard & Paz, 1985] A necessary and sufficient condition for a dependency model M to
have a perfect map is that [ (x,z,y )y sausf. e following five independent axioms (the subscript M
dropped for clarity):

(symmetry) I(x,z,y)<=> I(y,2,x) (7.a)
(decomposition) I(x,2,yw) =I(x,2,y)& I(x,z,w) (7.b)
{intersection) Ix, 2w, y) & I(x,zy,w) =1{x,2,yw) (7.0
(strong union) I(x,2,y) =21, w.y) Vwgl 7.4
(transitivity) Ix,z,y) =iGx,z,orl(y2.y) ¥V Yex U2z Y 7.e)

Remark I: (7.c) claims that, if x is separated from w with y removed and, simultaneously, x is separated
from y with w removed, then x must be separated from both y and w. (7.d) states that, if z is a veriex
cutset separating x from y, then removing additional vertices w from the graph still leaves x and y
separated. (7.e) is the counter-positive form of connectedness transitivity, stating that, if x is connected to
v and v is connected to y , then x must also be connected to y .

Remark 2: (7.c) and (7.d) imply the converse of (7.b), which makes / completely defined by the set of
triplets (x.z,y) in which x and y are individual elements of U. Note, also, that the union axiom (7.d) is
unconditional and, therefore, stronger than (4.d), the one required for probabilistic dependencies. [t pro-
vides a simple method of constructing the unique graph G ¢ Which is isomorphic to / -- starting with 2
complete graph, we simply delete every edge (&t B) for which a triplet of the form (a. 2z, ) appearsin/.
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2.3 Markov Networks

Definition: A graph G is a minimal [ -map of dependency model M if no edge of G can be deleted
without destroying its / -mapness. We call such a graph a Markov-Netof M .

Theorem 3: [Pearl & Paz, 1985]. Every probability model P has a (unique) minimal /-map
G o= (U, Ey) produced by connecting only pairs (ct, B) for which /(ax - U -~ B)p is FALSE i e.,

(B¢ Ey iff I U~a=-B,P) (8)
The proof uses only the symmetry and intersection propertes of /.

Definition: A relevance blanket R;(c) of a variable e U is any subset § of variables for which
o, S, U~-S -~ and a¢ § )

Let R/ (o) stand for the set of all relevance blankets of & A set is called a relevance boundary of a,
denoted 8,(a), if it is in R/ (o) and if, in addition, none of its proper subsets in R/ (a). B,(c) is to be in-
terpreted as a minimal set of variables that **shields’* « from the influence of all other variabies.

Theorem 4: [Pearl & Paz 1985]. Every variable a e U in a probabilistic model P has a unique
relevance boundary B,(o) called the Markov boundary of a. B,(a) coincides with the set of vertices
B (@) adjacent 1o & in the Markov net G o. (The proof of Theorem 4 also makes use of the weak-union

property (4.d).)

Corollary 1:  The Markov net G o can be constructed by connecting each « to all members of its Max--
kov boundary 8, ().

Corollary 2:  Given a probability distribution P on U and a graph G =(U, E), the following three con-
ditons are equivalent:

(i) G isan/-mapof P

(ii) G is a supergraph of the Markov net Goof P,ie.,
(B¢ E onyf [(@aU-a-B.p)

(iif) G is locally-Markov with respectto P, i.e., for every variable @ € U/ we have
I(0, Bg(a), U — o~ Bg (), where B () are the set of vertices adjacent to « in G .

3. BAYESIAN NETWORKS: Recursive Minimal Dia-graphs

The main weakness of Markov nets stems from their inability to represent nonmonotonic depen-
dencies; two independent variables must be directly connected by an edge, merely because there exists
some other variable that depends on both. As a result, many useful independencies remain unrepresented
in the network. To overcome this deficiency, Bayesian networks make use of the richer language of
directed graphs, where the arrow direction allows distinction between dependencies in various contexts.
For instance, if the sound of a bell is functionally determined by the outcomes of two coins, we will use
the network coin 1 — bell « coin 2, without connecting coin 1 to coin 2. This pattem of converging ar-
rows should be interpreted as stating that the outcomes of the two coins are marginally independent but
may become dependent upon knowing the outcome of the bell (or any external evidence bearing on that
outcome).
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Definition: Given a probability distribution P (x,... x,) and an ordering d on the variables. the Bayesian
network associated with the pair (P, d) is a directed acyclic graph (*'dia-graph’") constructed recursively
by assigning to each node X; a set of parent nodes §; < (X |... X;_;/, which is the smallest set satisfving
the condition '

Px1S)=P(x;1x;,_y,... X 1) (10)

In other words, §; is the Markov boundary of X; relative to the set U, =(X . X ..., X;} of variables.
Since Markov boundaries are unique (Theorem 4), the set of parents S; assigned to each variable is
unique, and the structure of the dia-graph is weil defined.

3.1 Dia-Graph Separation and Conditional Independence

In Markov nets, the correspondence between dependencies and the topology of the network was
based on a simpie graph separation criterion. In Bayes networks, it is based on a slightly more compiex
criterion of separation, one which takes into consideration the directionality of the arrows in the graph.
This criterion distinguishes between the three possible ways that a pair of arrows may join at some verex
X,

(1) tail-to-tail, X | €=~ X, > X,
2) head-to-tail, X, —> X, > X, or X, ¢ X, X,
3) head-to-head, X | —> X, € X,

Definition:

a Two arrows meeting head-to-tail or tail-to-tail at node o are said to be blocked by a set S of ver-
tices S ifaisin§.

b. Two armrows meeting head-to-head at node & are blocked by § if neither a nor any of its descen-

dantsisin §.

Definition:

a. An undirected path P in a dia-graph G, is said to be d-separated by a subset S of verdces if at
least one pair of successive arrows along P is blockedby S .

b. Letx,y,and S be three disjoint sets of vertices in a dia-graph G,4. S is said to d-separate x from
y if all paths between x and y are d-separated by S. Such separation will be denoted by
<xISly>g,

This modified definition of separation provides a graphical criterion for testing conditional independence,
in dia-graphs:

Theorem S: (Verma, 1986] Let G, be a dia-graph recursively constructed from distribution P in some
orderd. If x,y and z are three disjoint subsets of vertices in G, such that z d-separates x from y, then x
and y are conditionally independent given z, in P. In other words, G, is an /-map of P relative to d-
separation: <xlzly>g, =1(x,z,¥)p

The proof of theorem $ uses the contraction axiom (4.¢).



3.2 How Expressive are Dia-Graphs? 2

One would normally expect that the introduction of directionality into the language of graphs
would render them more expressive, capable of portraying a more refined set of dependencies, e.g.. non-
monotonic and non-transitive. Thus, it is natural to ask:

1. Are all dependencies representable by Markov nets also representable by a Bayesian net?
2. How well can Bayesian nets represent the type of dependencies induced by probabilistic models?

The answer to the first question is, clearly, negative. For instance, the dependency structure of a
diamond-shaped Markov net with edges (AB), (AC), (CD) and (BD) assents the two independencies:
I{A,BC,D)and /(B,AD,C). No Bayesian net can express these two relationships simultaneously and
exclusively. If we direct the arrows from A to D, we get /(A,BC,D)butnot / (B, AD, C); if we direct
the arrows from B to C, we get the latter but not the former. This limitation will always be encountered
in nonchordal graphs (Tarjan & Yannakakis, 1984); no matter how we direct the arrows, there will always
be a pair of non-adjacent parents sharing a common child, a configuration which yields independence in
Markov nets but dependence in Bayes nets.

The inability of dia-graphs to display some common probabilistic dependencies is also obvious.
It is hampered by the failure of every graphical representation 1o distinguish connectivity between sets
from connectivity among their elements. Despite these limitations, we will see that the dia-graph
representation is far more flexible than its undirected graph counterpart and, in addition, captures the great
majority of probabilistic independencies, especially those which are conceptually meaningful. To this
end, we offer an axiomatic characterization of dia-graphs dependencies which clearly indicates where they
differ from those of undirected graphs as well as probabilistic dependencies.

Definition: A dependency model M is said to be a dia-graph isomorph if there is a dia-graph G, which
is a perfect map of M relative to 4 -separation, 1.c.,

I{x,z,y)y <=> <xizly >,

Theorem 6: A necessary condition for a dependency model M to be a dia-graph isomorph is that
I(x,z,y)y satisfies the following independent axioms (the subscript M dropped for clarity):

Symmetry I(x.2,y) <=> [(y.2,x) (11.2)
Composition - Decomposition 7(x,z,yw) <=> I(x,z,y)& I(x,z,w) (11.b)
[ntersection Ix,ow. y)& I(x,zy,w) =1(x,z,yw) (11.¢)
Weak Union Ix,z,.yw) =21(x,.w.y) (11.d)
Contraction 1x,zy,w)& Ix,z,y) =1(x,.z2,yw) {1l.e)
Weak Transitivity Ix,z,y)& I{x,zv.y) =1(x,z,Y) or I(y.2,y) (11.0)
Chordality I(x, 2w, y)& I(z,xy,w) =/(x,2,y) or I(x,w,y) (1l.g)

Remarks: Axioms (11.2) and (11.c-¢) are identical to those governing probabilistic dependencies (Eq.
(4)). The left implication of (11.b) and the last two axioms, namely, composition, weak-transitivity and
chordality, represent additional constraints over the system of Eq.(4). Thus, every dependency model
which is a dia-graph isomorph also has a probabilistic representation but not vice-versa. The composition



axiom (left implicaton of (11.b)) assents that separation between sets is completely defined in terms of
separauon between singletons. Therefore, there will be no loss of generality in treating the first and third
arguments of each triplet as individual elements of /.

Comparing (11) to the axioms defining separation in undirected graphs (7), we note that (7) im-
plies all axioms in (11) except chordality (11.g). In particular, weak-union is implied by strong union.
composition and contraction are implied by (7.c) and (7.d) and, of course, weak transitivity is implied by
transitivity (7.e).

Weak transitivity asserts that, if two variables, x and y, are both unconditonaltly independent and
conditionally independent given a third variable ¥, then it is impossible for both x and ¥ to be dependent
on Y. This restriction remains in effect when we associate independence with separation in dia-graphs but
may be violated in some probability models which may allow for the co-occurrence of four conditions:

. I(x, @, y)p 2.1 x,7y)p 3. ~I(x. D, Y 4. ~I(y. D,V

Thus, although dia-graphs seem better capable of displaying non-transitive dependencies than undirected
graphs, even they require some weak form of transitivity and fall short of capturing totally non-transitive
probabilistic dependencies. However, it can be shown that, if all variables in U/ are binary, then all proba-
bilistic dependencies must be weakly transitive,

The purpose of the chordality axiom (11.f) is to exclude dependence models whose Markov nets
are non-chordal since these cannot be completely captured by dia-graphs. Non-chordal graphs represent
the one class of dependencies where undirected graphs exhibit expressiveness superior to that of dia-
graphs. However, this superiority can be eliminated by the introduction of auxiliary variables.

Consider the diamond-shaped graph ot Figure 1(a), which asserts the two independence reiation-
ships: f(A.BC.D)and /(B,AD,C).

(a) . "b) A (&) R
8 c B c 8 ¢
¥ ¥
0 0 > o~ T,

Figure |

Introducing an ayxiliary variable E in the manner shown in Figure 1(b) creates a dia-graph model on five
variables whose dependencies are represented by the joint distribution function,

Pla.b,c,d,e)=P(e'd,c)PIb)P(cla)P(bla)P(a)

If we ‘‘clamp’’ the auxiliary variable £ at some fixed value £ = ¢, as in Figure 1(c), the dependency
structure projected on A, 8, C, D is identical to the original structure of Figure 1(a), i.e., /(A,BC.D)
and/(8,AD,C).



3

In conclusion, we see that the introduction of auxiliary variables permits us to dispose of the chor-
dality restriction of (11.f) and renders the dia-graph representation superior to that of undirected graphs;
that is, every dependency model expressible by the latter is also expressible by the former.

Another method of improving the expressive power of Bayesian networks (without inroducing
auxiliary nodes) is to permit both directed and undirected links but no directed cycles. Such hybnd-
acyclic graphs (ha -graphs) can capture both non-chordal and non-weakly-transitive dependencies. Formal
properties of dependencies expressible by ha -graphs, together with algorithms for their construction, will
be presented in the full paper.
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