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ABSTRACT

- In a register-oriented architecture, the sequence of instructions corresponding to the function call
construct has been identified as consuming a significant fraction of the execution time of typical programs
written in high-level languages such as C. A large reduction in this time is obtained by the use of
multiple-window register files. However, this approach has as disadvantages the cost of the large number
of registers (in chips in a MSI/LSI implementation and in area in the VLSI case), the increase in cycle time
in a VLSI implementation due to longer data buses, and the increase of the time for context switching.
These disadvantages can be reduced by the use of multi-size windows and the implementation of the file
as a set of shift registers. However, due to these disadvantages, the multiple-window approach might not
be suitable for all situations. Consequently, it is interesting to develop architectures and compilers that
reduce the cost of function call for the single-window case. In this paper we present schemes that permit
the reduction of the memory traffic due to register saving and restoring, which is one of the major com-
ponents of the execution time of function call/return. We also consider the implementation of the selected
scheme and conclude that the implementation is feasible and might be a good use of resources to increase
execution speed.

"This paper has been submitted for presentation at the 13th Annual International Symposium on Computer
Architecture (June 1986).

M'This research is partially supported by a scholarship from CIRIT (Generalitat de Catalunya).



1. Introduction

In a register-oriented architecture, the sequence of instructions corresponding to the function call
construct has been identified as consuming a significant fraction of the execution time of typical programs
written in high-level languages such as C [LUND77, PATT82]. A large reduction in this time is obtained
by the use of multiple-window register files [PATT82]. However, this approach has as disadvantages the
cost of the large number of registers (in chips in a MSI/LSI implementation and in area in the VL.SI case),
the increase in cycle time in a VLSI implementation due to longer data buses, and the increase of the time
for context switching [HENN84]. These disadvantages can be reduced by the use of multi-size windows
[KATES3, HUGUS85a, FURHS85] and the implementation of the file as a set of shift registers [HUGU85b].
However, due to these disadvantages, the multiple-window approach might not be suitable for all situa-
tions. Consequently, it is interesting to develop architectures and compilers that reduce the cost of func-
tion call for the single-window case.

In this paper we present schemes that permit the reduction of the memory traffic due to register
saving and restoring, which is one of the major components of the execution time of function call/return.
We performed measurements on the programs described bellow, and determined that for one of the pro-
posed schemes the traffic is reduced by 86% with respect to the conventional scheme of saving during the
call the registers defined by the callee and restoring them upon return. We also consider the implementa-
tion of the selected scheme and conclude that the implementation is feasible and might be a good use of
resources to increase execution speed.

Cost of Function Call/Return

The execution time of function call/return can be measured in terms of the number of instructions
that have to be executed and of the data memory traffic involved. The subfunctions that contribute to this
time are [HITCB8S5]: i) the passing of parameters, ii) the saving and restoring of environment registers, iii)
the saving and restoring of registers for local simple variables and temporaries preserved across function
calls, iv) the creation and destruction of a new activation record, and v) the access in memory of those lo-
cal variables that are not ailocated to registers.

To reduce the execution time of the function call/return all these components should be con-
sidered. In this paper we concentrate on the saving and restoring of registers for local simple variables,
which is a major component of the time [PATTS82].

Measurements for Performance Evaluation

To evaluate the performance of the schemes proposed we have measured three relatively large
programs: the UNIX text formatting program (NROFF), processing one third of the FORTRAN 77
manual; the UNIX sorting program (SORT), sorting 2250 numbers; and the Portable C Compiler for the
vax-11" (VPCC), compiling one of its machine independent modules (allo.c). These include 500 func-
tions and their execution has more than 1,500,000 function calls. We also report measurements for the
benchmarks that have been used in several other studies [PATT82a, HITC85]; however, from the results
reported here and in previous publications [HUGUS5] it seems clear that the conclusions obtained from

*UNTX is a trademark of AT&T Bell Laboratories.

**VAX is a trademark of Digital Equipment Corporation



these small programs are not very significant. We include the results for these small benchmarks in Ap-
pendix II.

The Compiler and the Number of Registers

The number of registers saved and restored in function calls is dependent on the register allocation
policy of the compiler used and on the number of registers available for assignment. For our measure-
ments we use the Portable C Compiler [JOHN79] which is the standard C compiler for UNIX. This com-
piler selects for allocation in registers only from the variables that have been explicitly defined by the pro-
grammer as register variables. Although this does not seem to be a good policy since it results in a large
data traffic for the access of variables not allocated in registers [HUGUB8S5], we use it because it is widely
available and because we expect the ratio between the traffic for alternative saving/restoring schemes to be
relatively independent of the allocation policy.

The number of registers available for assignment is not very critical for the conventional register
saving/restoring policies, since the number of register variables per function is quite small [HUGUSS].
However, for some of the new policies proposed more registers result in a smaller traffic. To illustrate this
point we used six registers (which is the number used by the Portable C Compiler on the VAX-11) and
eight registers (this was achieved by a modification of the compiler and of some library functions).

2. Register Saving/Restoring Approaches

We now describe the alternative approaches for register saving and restoring and indicate the sup-
port that they require from the architecture and from the compiler. For clarity of exposition we leave the
description of the detailed algorithms for Appendix I. Since the objective is to reduce the memory traffic,
the approaches are presented in order from the more conventional ones to those that we expect will pro-
duce the least traffic. A summary of the schemes is shown in Table 1 and the corresponding measure-
ments are presented in Table 2 and Figure 1.

Policies A and B

Policies A and B are the conventional ones. Policy A saves all the registers defined’ in the caller
when a function is called, and restores the saved registers when the function returns. The architecture can
support this policy by including in the call instruction a mask that specifies the registers to be
saved/restored.

In Policy B, the registers defined in the callee are saved when it is called, and these saved registers
are restored upon return. The registers to be saved can be specified in a mask located at the function entry
point. Since the return instruction must know which registers to restore, the same mask can be duplicated
on each return instruction. The alternative approach of saving the register mask upon function entry, is
discarded because it generates two extra memory references for each function call.

McKusick [MCKUB84] has evaluated the size of the generated program for both policies when ex-
plicit instructions are provided to perform the register saving/restoring. The programs measured were the
whole set of UNTX utilities. Since instructions to save/restore the registers must be specified in every call
instruction for Policy A and only once (at the entry point) for Policy B, the programs compiled with Policy
A resulted 8% bigger than with Policy B. This increase in program size would not be as large if a mask is

* - - * - 13
where defined means appearing in the program in contrast with used during execution.
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Table 1. Register Saving/Restoring Policies

Restiore saved registers

on return if already | when first read

Save registers on retum used by caller by caller

on call
if defined in caller
on call
if defined in cailee
on call
if defined in callee and Cc - -
used in exterior levels
when used by callee
if used in exterior levels
on call
if defined for caliee and
used in exterior levels and
not saved yet
when used by callee
if used in exterior levels - F H
and not saved yet

A - -

B - -

used, as proposed above. In this case, the instruction memory traffic should be similar for both policies.

From Table 2, we see that, for the composite of all three programs measured, the data memory
traffic caused by register saving/restoring is of 3.57 accesses per function call for Policy B. This value is
taken as a reference since this policy is the most frequently used. The corresponding traffic for policy A is
27% larger and this policy is consistently worse for all three programs.

In spite of the extra memory traffic generated by Policy A, some compiler writers prefer to use it
rather than B [MCKUB84]. The reason is that with Policy A the compiler can calculate the cost of allocat-
ing a simple local variable to a register because it can estimate how many times it is going to be saved.
This information is not known with Policy B and, thus, variables are allocated to registers without consid-
ering the cost of having to save/restore them. Moreover, with Policy A the compiler could generate dif-
ferent masks for each function call depending on the registers alive at each point.

It is also worth noticing that due to the nature of these saving/restoring policies there is no reduc-
tion in saving/restoring traffic when the number of registers is increased from 6 to 8. We will see that
there is some reduction in the other policies.

Policies Cand D

The large register saving/restoring traffic for policies A and B is due to the fact that all registers
defined for a function are saved, irrespective of their use. That is, a register is saved even if it has not been
used previously.



Table 2. Data Memory Traffic Caused by Register Saving/Restoring
Policy no.reg. || NROFF SORT VPCC ALL PROG

A 6 1.16 272 1.37 1.27
8 1.16 272 1.46 1.29

B 6 1.0(3.59) | 1.0206) | 1.04.59) 1.0 (3.57)
8 1.0 1.0 1.03 1.01
C 6 0.50 0.92 0.76 0.56
8 0.53 0.58 0.72 0.56
D 6 0.49 091 0.66 0.54
8 0.48 0.57 0.64 0.51
E 6 0.28 0.58 0.56 0.34
8 0.24 0.21 0.51 028
E 6 0.22 0.57 047 0.28
8 0.19 0.19 041 022
G 6 0.13 0.50 0.32 0.18
8 0.10 0.16 0.30 0.14
H 6 0.11 0.50 0.29 0.16
8 0.09 0.15 0.27 0.12

no. of functions 226 21 252 499

no. of calls 1250000 140567 194741 1585308

To reduce the traffic, in policies C and D a register is saved only if it has been used in exterior
levels. The management of these policies requires a dynamic mask (TBS = To Be Saved) which specifies
the registers that have been used in those levels. This mask has a bit associated to each register; this bit is
set when the register is written.

In Policy C a register is saved during a call if it is defined for the callee and has been used by exte-
rior levels. The registers saved are restored on return. This dynamic register saving/restoring was pro-
posed for LISP [STEE80].

The architectural support for this policy can consist of the dynamic mask TBS and a static mask
per function. During a call, the registers saved correspond to the intersection of both masks, TBS is saved
and the bits corresponding to the saved registers are cleared. When a register is written the bit of the mask
is set, and during return TBS is restored and the intersection of both masks determines which registers to
restore. Note that this mask saving/restoring might increase the data traffic.

To make this policy effective it is necessary to use a compiler that assigns different registers to
different functions in order to reduce the intersection. The ideal would be a dynamic assignment that, upon
entry to a level, assigns new registers that have not been used by previous levels. This would be very
close to what is done in multiple-window register files (with the difference that, to reduce the cost of
dynamic mapping, in the multiple-window case registers are saved according to the number defined per
function and not to the number used). Here we want to explore the alternative of static mapping and
dynamic saving depending on use. For this we use the straightforward scheme of assigning registers in a
round-robin fashion as functions are compiled. We modified the Portable C Compiler to generate code
using this round-robin register assignment. This modified compiler is used for policies C to H.



Table 2 shows the traffic for register saving/restoring for Policy C. We observe a 44% reduction
with respect to Policy B.

In Policy C registers are saved at function entry, whether the register is going to be used or not. To
reduce the traffic further, Policy D saves the registers when they are going to be written instead of saving
them upon function entry.

Two dynamic masks are required in this case: TBS, as before, and CU to indicate the register
usage in the current function. This last mask is required for the restoration. Both masks have to be
saved/restored.

The architectural support required for this policy is used for manipulating both masks and detect-
ing if a register has to be saved when it is going to be written. During the call, both masks are saved, the
TBS is ored with the CU, and the CU is set to zeroes. When a register is written we check both masks: if
the register has been used in an exterior level but not in the current function, then it is saved before being
written. On return the intersection of both masks determines the registers to restore and both masks are re-
stored.

Since in this case there is no static mask, it is necessary to have some other way of differentiating
between registers that have to be preserved across function calls and temporary registers. Two alternatives
exist for this: the separation can be fixed, or it can be specified by a global mask. The second solution al-
lows more flexibility because each compiler is allowed to have its own partition of the register set.

Table 2 shows the traffic for Policy D. As we can see, the reduction with respect to Policy C is not
significant. This can be due to the following causes: (i) programmers tend to initialize local variables
when they are defined (i.e., upon function entry), and (ii) the compiler also initializes the register parame-
ters upon function entry. To improve this policy, an optimizing compiler could possibly delay the initiali-
zation untii the register is going to be used.

In contrast with policies A and B, we see a reduction in traffic when the number of registers is in-
creased since the probability of using the same register in different levels is reduced.

Policy E

Better use of the registers can be made and the traffic reduced since in policies C and D there is
still unnecessary saving and restoring. Consider for example the situation of Figure 2(a); in policy D regis-
ter R1 is saved and restored in each of the functions Z1, Z2, and Z3 even if it is not used by Y. It is clear
that it is sufficient to save it in Z1 and restore it when returning to X. This is done in Policy E. Figure 2(b)
shows the case in which the function Z is inside a loop. In this case, the previous policies are going to
save the register R1 on each call to Z from Y—even though Y has not used the register at all—and to re-
store it upon return. In contrast, Policy E saves it only once and restores it when returning to X.

To determine when a register has to be saved the TBS mask is used: when a register is written the
corresponding bit is set to 1 and when the function returns it is reset. A register is saved if its bit in both
the TBS mask and the static mask for that function are 1 (same as in Policy C).
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To determine when a register is to be restored, a current usage (CU) mask is needed; when return-
ing, if the CU of the caller has the bit set and the TBS mask indicates that it has been saved, the register is
restored. To be able to do this restoring it is necessary to save the register in the activation record of the
outer function which last used it (X in the example). To do this, the architecture has associated with each
register a pointer (RP) which is loaded with the current frame pointer each time a register is written. This
pointer is used to determine the frame in which the register has to be saved (see Figure 3).

This use of pointers makes the register set operate in a fashion which is similar to a cache. How-
ever, the knowledge of the nested nature of the function calls/returns allows the use of the dynamic masks
to significantly reduce the traffic which would be obtained in a standard cache implementation.

Only one mask has to be saved/restored: the CU mask.

Table 2 shows the traffic for this policy. For the composite of all three programs the reduction
with respect to B is 66% for 6 registers and 72% for 8 registers.

Policies F, G, and H
The traffic produced by Policy E can still be reduced by the following mechanisms:

a) Save a register when it is used (written) instead of at function entry (as in Policy D). This is
Policy F. This policy uses two dynamic masks in a similar fashion as in Policy D. However, only one
mask (CU) needs to be saved/restored.

b) Restore a register when it is needed (read) instead of at function return. This is done in Policy
G. Note that in this case the restoring has to be done during execution of the instruction; the implementa-
tion of this is considered in the next section. This policy uses the static mask and the dynamic TBS mask
as Policy C, but the TBS mask does not need to be saved/restored across function calls.

¢) A combination of a) and b). This is Policy H. This policy uses both dynamic masks and CU
must be saved/restored across function calls to know which registers have been used by the current func-
tion. Observe that this information is given by the static mask for Policy G which is available in both the
call and the return instructions.

The saving/restoring traffic produced when using these policies is shown in Table 2. The
minimum traffic occurs with policy H; the reduction with respect to Policy B is of 84% for 6 registers and
of 88% for 8 registers. However, this policy has the drawback that one mask has to be saved and restored,
which might increase the overall traffic. Because of this, we select for implementation Policy G which has
a very similar traffic and requires no mask saving/restoning.

Figure 4 is an example that illustrates the eight policies described.
3. Implementation of the Selected Register Saving/Restoring Policy

In the previous section we selected Policy G as a candidate for implementation because of the
small data traffic and because it does not require the saving/restoring of masks. Here we sketch a possible
implementation of this scheme to determine its feasability. Of course, alternative implementations are
possible and the most suitable one would depend on many design requirements and constraints. The im-
plementation is based on the algorithm given in Appendix L.
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Figure 4. Example of Register Saving/Restoring Caused by Different Policies

Figure 5 shows the data section of a processor. It has a standard three-bus architecture (which
could be changed to one with two buses without significant modifications). Enclosed in the circle we indi-
cate those components that are added due to the register saving/restoring policy. These are:

1) A set of registers RP to contain the pointers. One pointer is required for each register that has to
be preserved across function calls. Since these registers are addressed together with the main registers, it is
possible to share one of the address decoders amcrg both sets.

2) An adder to compute the address of the memory location where the particular register is saved
in the activation record. This address is obtained as the sum of the frame pointer (stored in the specialized
register FP) and the register number. In an alternative implementation, this adder could be eliminated and
the ALU used for the addition. However, this would require the connection of the RP file to the main data
buses which could increase the basic cycle time.

11
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3) A multiplexer to transfer the pointer to the memory address register. This muitiplexer could be
eliminated if the RP file is connected to the result bus.

4) Two registers io store the masks.
5) A priority encoder of the AND of both masks to determine the next register to save.

6) Logic to determine whether to restore 0, 1, or 2 registers. This consists of two multiplexers and
one OR gate.

7) Logic to set and reset the TBS. A specific bit can be set or reset and several bits can be reset
(depending on the mask M).

With this data section the operations related to saving/restoring would be as follows:

i) During a call the priority encoder generates, in sequence, the register numbers of those that have
to be saved. For each of them, the corresponding pointer is transferred to the memory address register and
the values to the memory data register. A memory write is performed and the corresponding bit of the
TBS cleared. The clearing of this bit makes the priority encoder produce the next register number.

ii) During a write to a register, the corresponding pointer is stored in RP and the corresponding bit
of TBS is set.

iii) For restoring the fields of the instruction specifying the registers of the operands are used to-
gether with the corresponding bits of the TBS to determine if registers have to be restored. If no-restore =
1, the operation is executed in a normal manner. If no-restore = 0, it is necessary to restore one or two re-
gisters. This restoration is done as normal register loads from memory, using as addresses the frame
pointer plus the corresponding register numbers. These addresses are also stored in the pointer register file.
For each register restored the corresponding bit of TBS is set. After the registers are restored the instruc-
tion is executed in the normal way.

iv) During return it is necessary to reset the bits of TBS corresponding to the 1’s of mask M.

The implementation described indicates that the additional hardware required for this
saving/restoring policy consists mainly of a register set for the pointers and of an adder (which could be
eliminated as indicated before). The cost, in additional modules or circuit area in a VLSI implementation,
can be justified by the reduction in execution time provided by the policy. The basic processor cycle is
not increased by these additions since they are decoupled from the main datapaths and the operations that
have to be done during normal register reads and writes are performed overlapped with the normal cycle.

Since most modern processors use pipelining to increase the throughput, it is important to evalu-
ate the impact of this saving/restoring policy and its implementation on the performance of such a proces-
sor. The following considerations apply to this:

a) Since a dynamic mask is used during call to determine which registers to save, it is necessary to
wait until this mask is set (by previous instructions) before executing the call. However, this does not in-
troduce additional constraints in most processors because they would anyhow wait before executing a call
( because of the change in environment).

13



b) During a return bits of TBS are reset. This can be done without waiting for the previous instruc-
tions to finish, if the eventual setting by them of the TBS is inhibited. However, similar to a call, usually a
return would anyhow be a waiting point.

¢) During a register write no additional requirements are imposed.

d) Before a register read it is necessary to finish any previous restoring of that register. The control
of this dependency can use the same flag required for the control of the read-after-write condition.

From the previous discussion we conclude that the implementation of the proposed
saving/restoring policy does not impose significant limitations to the pipelined implementation of the pro-
cessor.

4. Conclusions

We have described and evaluated several register saving and restoring policies that provide a
reduction of memory traffic with respect to the conventional ones used by most processors. We also show
that these policies could benefit from a larger set of registers, which is not the case for the conventional
ones if the allocation policy of the Portable C Compiler is used.

From the policies proposed we have selected Policy G for implementation because, for the meas-
ured programs, it produces a reduction of 86% in the traffic and does not require the saving/restoring of
any masks. We have sketched a possible implementation and concluded that the amount of additional
hardware required is sufficiently small to justify the inclusion because of the reduction in execution time
that would result. We also concluded that the added hardware would not increase the basic cycle of the
processor and that the policy does not pose significant limitations on a pipelined implementation of the
processor.

14



Appendix I

This appendix describes the actions performed for the eight register saving and restoring policies
discussed in Section 2. The algorithms are specified using the following notation:

R Set of general-purpose registers
R® Subset of registers preserved across function calls
RP Register Pointers. Set of specialized registers associated to R
(to indicate the location of the register in the activation record
where R was used)
X[i]  element i of the set X, where X is R, R®, or RP
M register mask given at the function entry point
(to indicate registers defined by the function)
CU  Current Usage mask
(to indicate registers used by the current function)
TBS  To Be Saved mask .
(to indicate registers used by the exterior levels)
m<i>  bit i in the mask m, where mis M, CU, or TBS

Policy A. Save the registers defined for the caller and restore them upon return. The operations to per-
form are:

on call save registers given by the register mask of the call instruction

on return restore registers given by the register mask of the call instruction

Policy B. Save the registers defined for the callee and restore them upon return. The operations to per-
form are:

oncall save registers given by the register mask at function entry

on return restore registers given by the register mask in the return instruction

Policy C. Save the registers defined for the callee if they have already been used; restore them upon re-

turn. TBS and M indicate which registers have to be saved and restored. The operations to perform are:

on write (R[i]) TBS<i> « 1;

on call save TBS;
for all i do if (TBS<i>= 1 and M<i> = 1) then
save R[i];
TBS<i>«0;
on return restore TBS;

for all i do if (TBS<i> =1 and M<i> = 1) then restore R[i];

*For some policies TBS indicates both the registers used by the current function and the registers used by
the exterior levels.

i5



Policy D. Save a register when it is first written (by the callee) if it has already been used; restore it upon
return. This policy uses both masks (TBS and CU) to indicate which registers need to be saved and re-
stored. The operations to perform are:

onwrite (R°[i])  if (TBS<i>=1and CUxi> =0) then save R[i];
CU<i>«1;
on call save TBS;
save CU;
TBS « TBSor CU;
CU&«0
on return for alli do if (TBS<i>=1 and CU<i> = 1) then restore R[i];
restore TBS;
restore CU;

Policy E. Save the registers defined by the callee that have already been used and have not been saved
yet; restore registers saved on return if they have been used by the caller. This policy uses all three masks
(TBS, CU, and M), but only the CU mask has to be saved and restored across function calls. The opera-
tions to perform are:

onwrite (R[i]) TBS<i> « CU<i> « 1;
RP[i] « current frame pointer + displacement;
on call save CU;
for alli doif (TBS<i>=1and M<i>=1) then
save R[i] in the memory location given by RP[i];
TBS<i> « 0;
CU &« 0
on return for alli do if (M<i>=1) then TBS<i> « 0;
restore CU;
for aili do if (TBS<i>=0 and CU<i> = 1) then
restore R[i];
RPJi] ¢« caller’s frame pointer + displacement;
TBS<i> « 1;

Policy F. Save a register when it is first written (by the callee) if it has already been used and has not been
saved yet; restore registers saved on return if they have been used by the caller. This policy uses both the
TBS and the CU masks, but only the CU mask needs to be saved and restored across function calls. The
operations to perform are;

onwrite (R°[i])  if (TBS<i>= 1 and CU<i> =0) then
save R[i] in the memory location given by RP{i];
RP[i] « current frame pointer + displacement;
TBS<i» « CUx«i> «1;

on call save CU;
CU&0O;

on return for alli doif (CU<i>=1) then TBS<i> « 0;
restore CU;

16



for alli do if (TBS<i>=0 and CU<i> = 1) then
restore R[i];
RP[i] « caller’s frame pointer + displacement;
TBS<i>«1;

Policy G. Save the registers defined by the callee that have already been used and have not been saved
yet; restore registers saved when they are first read by the caller. This policy uses the M and TBS masks,
but no mask needs to be saved and restored across function calls. The operations to perform are:

on read (Rfi]) if (TBS<i>=0) then
restore R[i];
RP[i] « current frame pointer + displacement;
TBS<i>» « 1;
onwrite (Rfi]) TBS<i> «1;
RP[i] < current frame pointer + displacement;

on call for alli do if (TBS<i>=1 and M<i> = 1) then
save R[i] in the memory location given by RP[i];
TBS<i> «0;

on return for all i do if (M<i>=1) then TBS<i> « 0;

Policy H Save a register when it is first written (by the callee) if it has already been used and has not been
saved yet; restore registers saved when they are first read by the caller. This policy also uses both the TBS
and the CU masks, but only the CU mask needs to be saved and restored across function calls. The opera-
tions to perform are:

on read(R’[i]) if (TBS<i>=0 and CU<i> = 1) then
restore R[i];
RP[i] « current frame pointer + displacement;
TBS<i> ¢ 1;

on write (R*[i]) if (TBS<i> =1 and CU<i>=0) then
save R[i] in the memory location given by RP[i];
RPfi] « current frame pointer + displacement;

TBS<i>» « CU<i> « 1;

on call save CU;
CU«0;

on return for alli do if (CU<i>=1) then TBS<«i> « 0
restore CU;
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Appendix I

This appendix contains the data memory traffic caused by register saving and restoring (DMT/SR)
for the small benchmark programs, Twelve programs have been measured: five (E, F, H, I, K) were
developed at Carnegie-Mellon University to evaluate different computer architectures [GRAP81], and
they were coded in C by Piepho [PIEP81]; the Ackermann’s function (acker) [WICH?76]; the C version of
the Dhrystone benchmark [WEIC84]; two versions of the Puzzle benchmark, one using pointers (puzzptr)
and the other using subindexes (puzzsub) [BEEL84]; the Quicksort benchmark (gqsort); the Sieve of Era-
tothenes benchmark (sieve) [GILB81]; and the Towers of Hanoi benchmark (towers).

Table 3 gives the register saving/restoring traffic for the standard version of the programs. Since
some of these programs do not use register variables at all , new versions were developed to force register
allocation by the Portable C Compiler. Table 4 gives the traffic for the new versions.

*Register saving and restoring traffic is generated by the library functions.
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Table 3. DMT/SR Caused by the Benchmark Programs

| program reg. || fm | culs || A | B | C oL E F | G | H |
E ° | 2 10 || 200 | 210 | 020 | 020 | 330 | 020 “ggg 0.10
F | 2 12 || 000 | 608 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
H * 2 g || 000 013 | 000 | 000 | 000 | 000 | 000 | 0.00
I ° 1l 2 4| 000 025|000 | 000 | 000 | 0.00 | 000 | 0.00
K Sl 2 4|l 000 | 3% | 000 [ 000 | 000 | 000 | 000 | 0.0
acker | o || 2| 172236 || 000 | 000 | 000 | 0.00 | 0.00 | 000 | 000 | 0:00
dhrystone g 12 | 170055 || 000 | 0.59 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
puzzptr g s | 21381 || 599 | 9.80 | 8.58 | 971 :;? e gﬁ g:ﬁ
puzzsb | 5 || 5| 21381 || 000 | 001 | 000 | 0.00 | 000 | 000 | 000 | 0.00
won | ¢ || 6| s |f1000 ] 225 | 70| {51 | 179 | ven | wst | 139
sieve | o || 1 9| 222|233 | 022 | 022 | 072 | 022 S | o
owers | S || 2| 524200 || 0.00 | 000 | 000 | 000 | 0:00 | 000 | 000 | 0.00
TOTALS | o (143 | 952011 || 058 | 043 | 029 ol om | o oleon
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Table 4. DMT/SR Caused by the Benchmark Programs (with registers)

program r:; fn | s || A | Bl c | Dl E|F |G| H
Beg | g || 2| 10 a00 a0 | T 1 T50 | 170 | rdo0 | 100 | 050
ree | g || 2| 2] 390|792 | 55 | 620 | 00 | 00 | 000 | 000
Heg | g |l 2 8|l 125|538 | oo | 000 000 | 00 | 000 | 000
wg | g |l 2| 4] 200|525 | T00 1 700 | Too | 100 | 078 | 030
kg | g |l 2| 4]l 190|425 | 5 | 600 | 000 | 000 | 000 | 000
ackerreg | o || 2 | 172236 || 400 | 400 | 400 | 400 | 400 | 400 | 200 | 2.00
dheysionereg | g || 12 | v700ss || 529 | ax2 | T3¢ | 17 | Tes | Tes | o9 | o
puzpr | S |1 s | 21381 (| 599 | 980 | &s8 [ o7 |43 438|364 36
puzzsubreg | o f| 5 | 21381 || 599 | 600 | 428 | 428 hpo gﬁ: (3):46: o
wor | g |6 | a2 |{1000 | 225 | 230 T 0 10| 15 | 13
sievereg g 1 o || 333 | 344 | 022 | 022 gﬁ 0.22 g:;; 0.11
owersreg | o || 2 | 524200 || 800 | 800 | 800 | 800 | 800 | 800 | 600 | 6:00
TOTALS | g || 43 | 952011 || 679 | 632 | oo | So | 3eg | 567 | 399 | 308
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