AN EXPLANATION OF AND CURE FOR
MINIMAX PATHOLOGY

Bruce Abramson October 1985
CSD-850034

An Expilanation of and Cure for Minimax Pathology *

Bruce Abramson **

. Department of Computer Science Computer Science Department
Columbia University University of California, Los Angeles
New York, N.Y. 10027 L:3 Angeles, California 90024

Abstract

The mintmaz procedure has long been the standard method of evaluating nodes in
game trees. The general assumplion underlying sts use in game-playing programs is that
tncreastng search depth improves play. Recent work has shoun that this assumption is not
always valid; for a large class of games and evaluation functions, searching deeper decreases
the probability of making a correct move. This phenomenon is called game tree pathology.

Two structural properties of game trees have been suggested as causes of pathology:
independence among the values of sibling nodes, and uniform depth of wins and losses.
This paper ezamines the relationship between uniform win depth and patholegy from two
angles. First, st proves mathematically that as search deepens, an evaluation function that
‘does not ask whether wins can be forced from mid-game positions becomes decreasingly
likely to choose forced wins. Second, st ezpcrimentally illustrates the connection between
recognition of mid-game wins and pathological behavicr. Two evaluation functions, which
differ only in their ability to recognize wins in mid-game, are run on a series of games.
Despite recognizing fewer mid-game wins than the theoretically predicted minimum needed
to avosd pathology, the funciion that checked for them cleared up the pathclogical behavior
of the one that did not.

The analytic and empirical aspects of this paper combine to form one major result:
As search decpens, so does the probability ihat failing to check for forced wins will change
the game’s outcome. This strengthens the hypothesis that uniform win depth is the cause

of pathology.

This research was supported in poart by the Defense Advanced Research Projects Agency under con-

tract NOOD39-284-C-0165, and by the National Science Foundation under grants IST-84-18879 and IST-85-

15302.
** Current address, UCLA

1. Introduaction

Computer programs that play two-player games generally adhere to the game-theoretic
paradigm, the minimax procedure {Shannon ’50|, which is optimal for finite two-person
zero-sum games of perfect information [LR 67| (p. 71). Unfortunately, tree size preciudes
the implementation of most popular games according to the specifications of this theory.
Theoretically, before play begins, toth players can see the entire game tree, including
the actual value of each node. In most implementations, however, the trees contain more
nodes than can be stored (or viewed) simultaneously — for all practical purpose an infinite
number. This forces players to move without knowing all possible completions ¢/ the game.
Devoid of this information, they can neither effectively compute the true minimax value
nor determine the strategy that leads to it. In order to reconcile implementation with
theory, minimax has been extended to partial game trees. Statically evaluated tip nodes
are treated like leaves; the tree is searched to some arbitrary depth, all nodes at that
depth are evalvated, and the estimates are minimaxed back up the tree. The appeal
of this procedure is obvious — since minimax is an optimal strategy for finite games,
estimated minimax should approximate an optimal strategy for “infinite” games.

Unfortunately, this extension does not estimate the minimax value, it minimaxes
estimated values. In general, the two are not equivalent; computing a function of estimates
instead of an estimated function is a cardinal sin of statistics. Statistically sound or
not, there is a significant collection of game playing programs that attests that not only
does minimaxing estimates work, but the deeper the search, {and thus the greater the
functional dependence on those estimates), the better the quality of play [Nilsson 80
[Berliner ’79]. Nevertheless, a theoretical difficulty with minimaxing estimates was pointed
out in [Nau ’83b]: for a large class of game trees and evaluation functions, as long as
the search does not reach the end of the tree, (in which case a correct decision would
be guaranteed), searching deeper causes decisions to become increasingly random. The
prediction of games exhibiting this type of pathological behavior suggested two interesting
questions: Do any known games belong to this class? And why hasn’t pathology been
observed in existing game playing programs?

Section 2 discusses work that has been done on board splitting, a game which behaves
pathologically when an intuitive, reasonably accurate evaluation function is used. Some
differences between board splitting and popular nonpathological games are considered as
possible causes of patholegy. Section 3 identifies one of these features in the board splitting
game tree, and shows that this structural flaw increases the probability of making an error
as search deepens. A new evaluation function, which compensates for this unusual feature
of board splitting, is introduced. When the game is played mirimaxing this new function,
the pathology disappears. Section 4 offers some conclusions.

2

2. A Pathological Game: Board Splitting

Board splitting was devised by Pearl [Pearl '84] as an example of a game whose tree
has a uniform branching factor (B), a uniform leaf depth (D), and a random distribution
of wins and losses. Play proceeds as follows: a square BP-by-BP board is covered with
randomly distributed 1’s and 0’s. The first player splits the board vertically into B sections,
keeps one in play, and discards the rest. The second player splits the remaining portion
horizontally, doing the same. After D rounds, only one square remains. If that square
contains a 1, the horizontal splitter (H) wins. Otherwise, the vertical splitter (V) wins. To
compensate V for going first, the board is set up by flipping a coin weighted ir her favor,
such that a 1 is generated with probabilily p < .5, and a 0 with probakility (1 — p) > .5.
The value of p needed to make the game fair is dependent on B [Pearl '84] *. In order to
use board splitting as 2 model for larger, more complex games, the tree must be treated
as if it were too large to be seen in its entirety. The minimax procedure searches the tree
to some arbitrary depth, k, where 0 < k < 2(D — 1). An heuristic evaination function is
then applied to all nodes at the specified level, and these estimates are minimaxed back
~up the tree. The search depth is bounded by 2{D — 1) to insure that neither player can
gee the last round prematurely. A simple function which has been.used in the past assigns
each {ip node a value equal to the number of 1’s it contains [Pear] ’84] [Nau '82]. Call this
evaluation function N(g). V tries to minimize 1’s (thereby maximizing 0’s), and H tries to
maximize 1’s.

Tipi{g) = The numberof I’'sin g

Tipl(g) if g is a tip node
N(g) = MIN{N(¢')lg"isachildof g} ifgisa min ncde
MAXI{N(g")|¢' isachildcofg} if gis a max node

Nau showed that N(g) evaluates a given board fairly accurately; the more 1's it contains,
the more likely it is to be a win for H, and the smaller the board, the mare accurate the
evaluation. Nevertheless, programs that use N(g) behave pathologically for sufficiently
large B and D. In other words, the probability of cerrectly choosing the successor node
which is most likely to lead to a win is not a monotonically nondecreasing function of
gearch depth; there are cases where searching ahead another round (in-reasing k by 2)
decreaces the probability of choosing correctly [Nau ’82] [Nau ’83a]. This result runs
counter to the intuition developed through the observation of thiity years of game-playing
pregrams, in which increased search depth improved play, and constitutes an example of

* Set p cqual to the unique solution to the equation (1 - S)B = Z in the interval (0,1). A table of

solutions to this equation is given in [Nan '832].

the theoretically predicted pathology.

Various cures have been offered for this pathological behavior, Most of them diag-
nose the minimax procedure as the primary cause, and alleviate pathology by removing
minimax. In its place, product propagation rules that estimate the conditional probability
of winning the entire game from each node are used [Nau '83a] {NauPT ’83] [TP ’83].
Although this approach has cured all observed pathologies, it has not answered the ba-
sic question: why is the minimax procedure nonpathological in games such as chess and
checkers? Two (not necessarily contradictory) conjectures have been forwarded, both fo-
cusing on zn evaluation function’s sensitivity to certain characteristics of a game tree’s
structure. The first, developed in [Nau ’82] and [Nau 83a], considers the meaning of the
“strength” of a position. In games like chess and checkers, most board features which
influence a position’s strength change incrementally. Since any two sibling nodes are only
marginally different, their strengths are interdependent. The random setup of board split-
ting. however, frequently leads to siblings with radically different values. Nau showed that
pathological game trees satisfy certain preconditions, one of which is that the value of a
tip node may be dependent only to a limited extent on the values of its siblings. This
sibling independence, it has been hypothesized, is the cause of pathology.

[Pearl ’83] showed that pathology can only be avoided by using evaluation functions
whose accuracy improve by over 50% at each successive level in the tree. This type of
drastic improvement is unreasonable for most evaluation functions; in general, mid-game
nodes are not evaluated that much more accurately than their immediate ancestors. As
the search frontier approaches the end-game, however, the estimates rapidly become more
accurate. Most common game trees are not uniform in structure. Rather, they are riddled
‘with early terminal positions, or traps. Close ancestors of traps, then, are actually end-
game, ot mid-game nodes, and their estimated values are considerably more reliable than
those of other nodes at the same level. Although most evaluation functions are not 50%
more accurate for a given node at level k+1 than for a given node at level k, the presence of
terminal positions in the vicinity of the search frontier significantly improves the function’s
accuracy whern taken over all nodes at the deeper level. Since deeper searches expose more
traps, the noise introduced by an additional minimax operation is counterbalanced by
increasingly accurate evaluations. This led to the second conjecture: pathology is caused
by the absence of traps. According to this hypothesis, the introduction of even a small
number of traps may significantly dampen the noise amplification due to minimaxing
[Pearl '83]. A useful evaluation function, then, should not only discriminate among nodes
based on strength, but detect traps as well.

In an attempt to model common games more realistically, [Pear]l ’84] dropped the
requirement of uniform win depth, and analyzed ;ame trees in which each node was a trap
(or, in this case, a {erminal node) with probability ¢. In general, pathology can be avoided

4

if q exceeds the critical trap density, g, = l—ui'—‘g);—-(iﬂ. The next section introduces an
evaluation function for board splitting, which, despite having a trap density less than gq.,
is nonpathological.

3. Understanding and Curing Pathology

Board splitting, unlike most games, bas a uniform game tree. Since all leaves are
located at level 2D, there don’t seem to be any traps to detect. However, the salient
feature of traps is not that they are leaves, but that the values associated with them are
exact. Leaves are not the only nodes with this property. Any node that is recognized as
a forced win or loss has an exact value as well. Thus, the existence of leaves in mid-tree
is not crucial to the avoidance of pathology; the recognition of forced wins can serve the
same purpose. There are ébnﬁg’urations in board splitting which can eaeily be identified
as forced wins. The most obvious forced wins are boards which contain a row of 1's {win
for H), a column of 0’s (win for V), or a main diagonal of 1’s (win for H, who always
goes last). These patterns have two. particularly nice properties: they are as obvious to
the human designers of a program as they are to the computer that plays it, and they
can be checked for at minimal additional overhead while scanning the board to count 1%,
Although 2 reasonable case could be made for the inclusion of other patterns, this decision
should not affect the basic result: evaluation functions that do not recognize forced wins
behave pathologically; those that do, do not.

The evaluation function described in section 2, N(g), chcoses nodes using a single
criterion: the number of 1’s on the board. Thus, it frequently overlooks forced wins in
faver of configurations with more 1’s, albeit less strategically arranged. Y(g), shown below,
modifies N(g) by taking into account the arrangement, as well as the number, of 1’s. Tip
nodes are evaluated by checking for a row or diagonal of 1’s. If such a row exists, the node
is assigned the maximum value of N(z), B2? (the number of squares in the initial board
~ effectively co). This assures that wherever possible, a forced win will be chosen by H
and avoided by V. If a column of 0’3 exists, the value —B?D (effectively —00) does the
opposite, gnaranteeing that the node will be chosen by V and avoided by H. Otherwise,
the number of 1’s is counted, just like in N(g). These values are then minimaxed back up
the tree.

B2*P if g contains a row or diagonal of 1’s
Tip2(g) = { —B2?P if g contains a column of 0's
The number of 1’s in g Otherwise

Tip2(g) if g is a tip node
Y(g) = { MIN{Y(¢')lg isachildofg} ifgisa min node
MAX{Y(¢'")|¢’ isachildof g} ifgisa max node

3.1 Errors Caused by Ignoring Traps

This section compares the performances of three evaluation functions, N(g), Y(g), and
R(g). R{g) chooses nodes randomly by assigning random values to tip nodes, and then
performing minimax. Y(g} and N(g), on the other hand, consider the number of 1’s on
a board as a measure of its strength. They differ in only one respect: Y(g) introduces
nodes with completely accurate values in mid-tree. How often will this correct a mistake
that N(g) would make? Define an incorrect decision as the selection of a non-trap node as
the best (max or min) child of a given parent despite the existence of a winning trap *.
Clearly, N(g) and Y(g) will choose the same child of any parent with no traps among its
children. If there is a win trap, Y(g) will always (correctly) choose it. N{g), which does
not look for traps, may or may not. To determine the effect of increased search depth on
the probability that N(g) and R{g), which do not check for traps, will find them, consider
the following scenario: On her first move, H looks ahead k levels in the tree, (k even),
and evaluates square boards using N(g). What is the probability that she will miss a trap
containing a row of 1’87 (Analogous arguments can be applied to all other cases, namely
varying V’s lookahead, evaluating rectangular boards, and missing other trap patterns).

Let S = BP—*/2~! be the number of rows {and columns) in g, where g is a board at
level k in the game tree.

Let p represent the probability that a 1 was placed in a given square in the origfnal
board.

Then P &' Pr(g is a trap containing a row of 1's]
= (1— Prlall rows in g contain at least cne 0))

= (1—-Pr(a given row contains at least one 0]%)
= (1 — (1— Prfa given row is all 1’s})%)
=(1-(1-p%)%).

By definition, if an incorrect decision was made by an evaluation function F at level
k, there must be some node at level (k-1), G, with a child of maximum value among its
trap children, ¢;, and one of maximum value amorg its non-trap childrer, gn¢, for which
F(gn:) > F(g:). The probability of an error being made by an evaluation function F look-
ing ahead to level k, then, can be expressed as:

* Other reasonable defintions are possible. Several authors [Pearl *83] [Nau '83a| consider a decision
incorrect only if o “loss™ node was chosen wken a “win” was available. The definition used here considers
a decision incorrect if a node of unknown exact value is ¢hosen when a *win® trap should have been

recogaized.

E(F,k) Z ! Pr{G has exactly i trap children|Pr{F(gn¢) > F(g)).

An incorrect decision made by F at level k, however, does not necessarily imply that
H will miss an opportunity to force a win; the minimax procedure might have labeled that
trap as inaccessible to H, anyway. For the trap to have been accessible to H after passing
through a min level, say (k-1), F must have missed a trap child of every max child of the min
node. In other words, E(F,k—1) = [E(F, k})]?. To be accessible after a max level, an error
must have been made on at least one min child. Thus, E{F, k—2) = (1-(1- E(F, k-1))#).
This recurrence relation alternates up the tree, until E(F,0) indicates the probability
that H should have been able to guide the game towards a forced win, but, because of
F’s inability to recognize traps, did not. (This mistake need not cost H the game. H
should, however, already have a guaranteed win, but, because of this error, does not. The
game’s outcome will onlv change if V is able to capitalize on this mistake.) If E(F,0)
is an increasing function of search depth, the number of opportunities that H will miss
- increases with search depth. If V is equally likely to capitalize on any given error, the more
opportunities V has, the more games H will lose. This is exactly the definition of pathology:
as H searches deeper, V wins more games. Thus, pathology can be expected if E(F,0)
increases with search depth. Differentiating E(F, k — j) with reépect to E(F,k—-j+1)
gives a positive expression for all j.- In other words, E(F,0) is an increasing function of
search depth if and only if E(F,k) is. If poor trap recognition is, in fact, responsible
for pathology, any function F in the range of k’s for which ﬁE’(F, k) > 0 should behave
pathologically.
~ In the calculation of E(F, k), only Pr(F(gnt) > F(g)| is dependent on F. The proba-
bility that G’s children include exactly i traps is the same regardless of which function is
used.

Let Pr{I] =Pr[G’s children include exactly i traps|=(Z) Pf(1 — P)8~¢.

Let the probability that F returns a non-trap, given that G has i trap children, be
denoted by Pr(FNTI| = Pr(F(gnt) > F(g:)|G has exactly i trap children].

Then E(F, k) =527 Pr{I|Pr[FNTI}=52"(8)Pi(1 — P)B~'Pr[FNTI].

=1
R(g), which chooses nodes randomly, returns non-traps with probability equal to the
proportion of non-trap children, Pr[RNTI] =9§—‘.

Thus, B(R, k) =1, (7) P1(1 ~ P)*~(55")

TP E) P = 2P AT EL i(B) P -)P

—Z.-o() P! (1 PYP~i~(1 =)8 — PP_LITSE i(B)pi(1 - P)P—i—BPP|
—(1-P)~(1-P)".

Intuitively, this means that the board chosen by R(g) is a trap with probability (1- P), and

8

this is an error unless all B boards were non-traps. This function can be shown to increase
with search depth, (that is, f—;E(R,k) > 0), and thus, R(g) will behave pathologically.

For M(g), however, the case is not that simple. N{gne) > N{g:) implies that there is
some value x, (§ + 1) < z < (8% — §), such that N(gp) = z, and N(g) < z for all traps.
Setting up the i traps with a maximum of (x-1) 1's means first choosing a row to contain
all 1’s, then setting up the remaining 1’s in the other (S-1) rows, or

[SPSZ:B-S-I (5’;3)‘?,'(1 _ p)s’—S—:‘]s‘_

To calculate Pr[NNTI], then, choose one of the (B-i) non-traps, set it up with x 1's, and
set up all i traps with fewer than x. Thus, E(N, k) =Ef:l Pr(I|Pr[NNTI], where

PrINNTI = (B-i)X .55, ($)p=(1-p)*"~2(Sp5 Do = (57 5)p? (1-p) S-S -3},

This expression is rather difficult to analyze directly because of the triply nested
incomplete binomial distributions. However, a strict upper bound can be obtained by
completing the two innermost distributions, and multiplying each term by (Sp%)!~*, which
is never less than 1. Similarly, a strict lower bound can be obtained by selecting individual
terms from the two innermost distributions, and multiplying the result by a number smaller
than 1. Specifically, set j = 0, and z = §2 — §, multiply each term by (Sp®)Z ¢ (always
o
possible, and these are by no means the tightest. Although they may seem artificial, they

less than 1), and replace (s) with the smaller term, §%. (Many other bounds are

‘were chosen because they can be analyzed easily in terms of E(R, k), and are tight enough
to illustrate the behavior of E(N, k)). This gives the series of inequalities: Pr[UBNTI| >
Pr[NNTI] > Pr[LBNTI, wiere
Pr[UBNTI} = (B —)Sp° and
Pr[LBNTI] = (B - ')Ss+3ps’~s+ss(l _ p)as’—as+s.

Both E(UB, k)= SpSY2~* Pr{I)(B — i)= (Sp° B)E(R, k)
and
E(LB,k)= Ss+3ps’-s+sa(l p)ss’—as+szB—- Pr{I)(B - 1)
— (SS+BPS’—S+SB(1)BS’—BS+SB)E(R, k)

are increasing functions of search depth. Although this fact in and of itself is insufficient to
prove that E{N, k) is an increasing function as well, examining the endpoints gives some
hint to E(N, k)’s behavior. If H can see only to her next move, then

9

k= O,S = BD_I’P = (l - (1 —pBD-t)BD—‘)) and

E(UB, k)imo = BP9 (1 - 9777777 = (1= 7777,

H, on the other hand, H can see all the way down to her next-to-last move,
k=2(D-1),§=B,P =(1~(1~p?)?), and

E(LB, kk=2(p-1) = Bp®|(1 - p7)® — (1-p")7).
Combining these values with the aforementioned inequalities gives :
"E(N,k)k=0 < E(UB,k)x=0 < E(LB,k)x=2(p-1) < E(N, k}r=2(p-1)-

Thus, there must be some values of k for which E(N, k) is an increasing function, and N{g)
can be expected to behave pathologically in that range.

To summarize, this section claimed that trap detection is an integral part of a good,
nonpathological evaluation function. The connection between performance and trap de-
tection was illustrated by showing that an evaluation function, N(g), which is known to
become less likely to win as search depth increases, also becomes less likely to guide play
towards winning traps. The connection between these two is straghtforward. A failure
to force wins when the opportunity arises gives the opposing player more chances to win.
The next section describes a series of experiments which shows that an evaluation function
that recognizes these traps, Y(g), does not behave pathologically.

10

3.2 Curing Pathology by Recognising Traps

Game tree pathology is an observed phenomenon. Even for board splitting, no definite
criteria have been developed for predicting exactly when minimaxing N(g) will behave
pathologically. The previous section used Pearl’s conjecture that pathology is due to the
absence of traps to identify a flaw in N(g), its inability to recognize certain patterns as
obvious wins or losses. A new evaluation function, Y(g), recognizes those configurations.
The probabilily that an evaluation function that does not recognize traps will err was
shown to be an mcrea.smg function of search depth. Y(g), by identifying traps, avoids
these errora.

Y(g)’s ability to recognize these patterna indicates that it should outperform N(g); it
does not prove that Y(g) is nonpathological. It is altogether conceivable that because Y(g)
recognizes only a few select patterns as forced wins, it will behave pathologically as well.
In fact, because pathology is an observed phenomena, it is impossible to prove that Y{g);
or any evaluation function on any game, for that matter, will never behave pathologically.
In particular, it is interesting to observe the behavior of Y(g), because the probability
with which a node is a trap is smaller than the critical trap deusity, g.. P, defined in
the previous section, is the probability that a given board does not contain a row of 1's.
Thanks to symmetry, the probability that a given board does not contain a column of 0% is

- also equal to P. Since there are fewer diagonals than rows or columns, the probability of a

diagonal trap is less than P. All told, Y(g) introduces traps with a density of less than 3P.
This density reaches a maximum when S is at its smallest, or § = B. Even at this level,

3P =3(1-(1-pB)B) < 1- M_qc

Nevertheless, it can be shown experimentally that for several cases for which N(g) bebaves

pathologically, Y(g) does not.

The outcome of the following experiment is shown in figures 1 through 6. For a fixed
B and D, 100 random games were generated. In each instance, one player saw only her
possible next moves (lookahead fixed at 0), while the other player looked ahead k moves. K
was varied by 2’s, either from 0 to 2(D-1), or from 1 to (2D-3). When the lookahead length
was even, tips were MAX nodes (square boards for H, rectangulzr boards for V). When
odd, the tips were MIN nodes (rectangular for H, square for V). To insure that neither
player could see the endgame too early, lookahead was always cut off at H’s next-to-last
move, level 2(D-1} in the original game tree. (In other words, when k=2(D-1), the player
with the k-move lookahead evaluated tip nodes at level 2(D-1) until play actually reached

- that level, at which point both players were allowed to view the end-game simultaneously).

For each lookahead length, the same 100 games were played, with both players using the
same evaluation function, first N(g), then Y(g). The results of this experiments are shown
for three pair of B and D.

The graphs of figures 1 through 6 show the playing quality of the player whose looka-

11

head depth varied, by plotting lookahead depth (x-axis) vs. number of victories out of
a maximum of 100 (y-axis). Nonpathological behavior is characterized by monotonically
nondecreasing curves; looking ahead further is never a loss. The major result is that Y(g)
did not behave pathologically for any of the cases tested. At first glance, however, this may
not appear terribly impressive. After all, even N{g), which becomes increasingly likely to
miss traps as lookahead grows, wasn't pathological in all cases (see figures 1 and 2). It
was not until the board size reached 3%-by-3° that pathology appeared. Perhaps Y(g) will
behave pathologically for some values of B and D larger than those tested. A response
to this charge, then, requires a second glance at the graphs. Even when nonpathological,
N{g) was a rather weak evaluation function. Given an initial eight move lookahead in
a ten move game, H was still only able to win 66% of the time (figure 1). Y(g), on the
other hand, was always quite strong — given the same eight move lookahead using ¥Y{g), H
bad a 90% winning record. Furthermore, as B and D increased, the number of games won
using N(g) with the maximum lookahead depth stayed about the same (66,6¢,65,65,70,66).
When Y(g) was used, the victory margin increased steadily, to the point where V won 99
times by looking abead 7 moves in a 10 move game (figure 5). These two facts indicate
that far from becoming pathological as the game size grows, Y(g} becomes stronger.

The critical trap density, however, indicates that Y(g) should be pathological. How
could Y(g) beat the theoretical minimum? An explanation may lie in the very definition of
Y(g). The.analysis in [Pear] '84): started «withra tree with uniform win depth, and showed
that minimax would behave pathologically. To bring this model closer to real games, the
uniform win depth constraint was drerped, and every node in the tree was made a trap
with constant prebability q. Pathology was shown to disappear at ¢ = ¢.. The implicit
‘model used in section 3.1 to define Y(g) goes one step further: it drops the requirement of
uniform win denssly, and makes each node a trap with probability g(depth), where g is now
a function of depth in the tree. Thus, deeper searches not only uncover more traps, they
uncover traps uath greater probabslity. This is almost certainly true in a game like chess;
there is a much greater censity of 50 move checkmates than of 4 move checkmates. As the
models come closer to approximating real games, then, the trap density required to avoid
pathology decreases. This strengthens the claim that a failure to recognize traps, which
would be a disaster in any real game, is what causes pathological behavior of evaluation
functions on simplified models.

12

TR L

4. Conclusions

The iheoretical prediction of game tree pathology in {Nau ’83b}, and the subsequent
observation of pathological behavior in board splitting in [Nau ’82], raised an obvious
question: What characteristics of game trees cause pathological behavior? Two plausible
answers have been posited, independence among sibling nodes {Nau ’82] [Nau ’83al, and
the absence of traps [Pearl '83]. This paper examined the relationship between traps and
pathology in board splitting. The pathological behavior of N(g), a function which has been
shown to evaluate individual boards fairly accurately [Nau ’82], was explained. Although
it performed well on most individual boards, N(g)’s inability to recognize traps doomed
it to frequently missing what should have been an obvious best choice. This type of error
becomes increasingly likely as search depth increases. Each time a forced win is missed,
the opposing player is given an opportunity to win a game that should have already been
lost. As search deepens and the number of these errcrs increases, so does the probability
that the game's outcome will be changed, thereby predicting pathological behavior. A
modified evaluation function, Y(g), was designed to combat these errors. It did this by
recognizing certain mid-game setups as wins and lozses. For several cases in which N(g)
behaved pathologically, Y(g) did not. Furthermore, Y(g) avoided pathological behavior
despite introducing traps with a density smaller than the theoretically predicted minimum.
It was able to do this by distributing the traps nonuniformally throughout the tree, so that
more traps appeared at deeper levels. These results represent the first empirical evidence
of the importance of traps to the avoidance of pathclogy, and strengthen the claim that
there is a causal nature between them.

Acknowledgements

I would like to thank Mordechi Yung, Eugene Pinsky, and my sdvisor, Richard Korf, for
their helpful discussions and suggestions.

13

Bibliography
[Berliner *79] H. Berliner, “The B* Tree Search Algorithm: a Best-first Proof Procedure,” Artificial
Intelligence 12 (1979}, 23-40.

[LR '67] R.D. Luce and H. Raiffa, Games and Decisions, John Wiley and Sons, New York,
1967.

[Nau ’82] D.S. Nau, “An Investigation of the Causes of Pathology in Games,” Artificial Intelli-
gence 19 (1982), 257-278.

[Nau ’83a] D.S. Nau, “Pathology on Game Trees Revisited, and an Alternative to Minimaxing,”
Artificial Intelligence 21 (1983), 221-244.

[Nau ’83b] D.S. Nau, “Decision Quality as a Function of Search Depth on Game Trees,” JACM
30,4 (October 1983), 687-708.

[NauPT ’83] D.S. Nau, P. Purdom, C.H. Tzeng,“Experiments on Alternatives to Minimax,” Uni-
versity of Maryland, October 1983.

[Nilsson ’80] N.J. Nilsson, Principles of Artificial Intelligence Tioga, Palo Alto, California 1980.

[Pearl 83} J. Pearl, “On the Nature of Pathology in Game Searching,” Artificial Intelligence 20
(1983), 427-453.

[Pearl ’84] J. Pearl, Heuristics. Addison-Wesley, Reading, Massachusetts, 1084.

[Shanron ’50] C.E. Shannon,“Pregrammting a Computer for Playing Chess;® Philosophical Magazine
41 (1950), 256-275.

[TP ’83] C.H. Tzeng and P.W. Purdom,“A Theory of Game Trees,” Proceedings of the National
Conference of Artificial Intelligence, AAAI 1983, 416-419.

14

95

%0 |
) (6,90 (8.90)

85
g B0
O
=
W 75
/]
@
2
“w N(g)
"y /85 (6,66) (8.66)
"’.‘éij
5

Figure 1: H wins vs. H lookahead.

50 B=3, D=3, V lookahead = 0.
Square boards evaluated.
45 $(0.16)
0 o . . o .) . .
© 3 2 3 4 s 6 17 8 9 10 11 I

H'’s initial lookahead length
(Depth at which tips were evaluated)

Number of games H won

100
95

90

85

80

75

70

65

60

55

50

45
10

N(g)

(1,67} //(}",56))

68 (563)

(1.60)

Figure 2: H wins vs. H lookahead.
B=3, D=3. V lookahead = 0.
Rectangular hoards evaluated.

H’s initial lookahead length
(Depth at which tips were evaluated)

10

i1

2

e -

Number of

games H won

i

100
95

90
85

80

75

70

N
n

50

45
10

Y(g)
(8.93) (10.93)

_ N(g)
(8,65) (10.65)

.

Fizure 3: Il wins vs. H lookahead.
B=3, D=6, V lookahead = Q.
Square boards evaluated.

H’s initial lookahead length
(Depth at which tips were evaluated)

11 12

Number of games H won

100
95

80

(<]
v

™
(=

]
»n

-~
(=]

o
n

N
L=

r
n

n
o

45
10

(1,60)

Figure 4: H wins vs. H lookahead.

=3, D==6. V lookahead = 0.
Rectangular boards evaluated.

2 3 4 S 6 7 8 9 10

B’s initial lookahead length
(Depth at which tips were evaluated)

11

12

ﬁ;hber 6! games V won

100
95

90

851%

80|

75}

70

65 |

50

45|
40

(1,58)

Fizure 5: V wins vs, V lookahead.
B=4, D=>5. i lookahead = Q.
Square boards evaluated.

V’s initial lockahead length
{Depth at which tips were evaluated)

10

11

12

Number of games V won

Ficure 6: V' wins vs. V lookahead.
=1, D=3, H lookahead = 0.

50 [(0.49
() Rectangular boards cvaluated.
45
IO 2 a2 & Y
12

V’s initial lookahead length
(Depth at which tips waere evaluated)

