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ABSTRACT

Ever since McCarthy and Hayes proclaimed probabilities "epistemologically inadequate’
for reasoning with partial beliefs, research in this area has consisted primarily of nonnumerical
approaches, attempting to enrich first-order logic with modal operators that capture the notions
of default, likelthood, and knowledge. This paper addresses the problem from the opposite ex-
treme: devising new representations to probabilistic models that emphasize the qualitative as-
pects of the reasoning process and minimize its sensitivity to numerical inputs. We find that,
although numbers pep se are bad summarizers of implicit knowledge, they can be very useful in
processing that which has been explicated. Probabilistic networks of concetpually related pro-
positions, where the numbers serve to regulate and propel the flow of information, allow reason-
ing about uncertainty to be as knowledge-intensive, accurate, and psychologically plausible as

the level of details we care to explicate.

The paper describes a mechanism for maintaining and propagating beliefs in such net-
works, which facilitates concurrent, distributed, and coherent inferences, and fully conforms to
the axioms of probability theory. Using this mechanism as a model of reasoning we find that
many arguments against the use of probabilities are no longer valid, while others expose a core

of problems that must eventually be confronted by every formalism of partial beliefs.



1. INTRODUCTION

Probability theory is shunned by most researchers in Artificial Intelligence. New calculi,
claimed to better represent human reasoning under uncertainty, are being invented and reinvent-
ed at an ever-increasing rate. A major reason for the emergence of this phenomenon has been
the objective of making reasoning systems transparent , i.e., capable of producing psychologi-
cally meaningful explanations for every intermediate step used in deriving the conclusion. Ad-
mittedly, traditional probability theory has erected cultural barriers against meeting this require-
ment. For example, scholarly textbooks on probability theory create an impression that to con-
struct an adequate representation of probabilistic knowledge we must literally start by defining a
Joint distribution function P (x, . . ., x,) on all propositions and their combinations, and that
this function should serve as the sole basis for all inferred judgments. As a result, even simple

tasks such as computing the impact of an evidence e on a hypothesis # via

Y P(xy,...,x,)
Ph,e) x=he

P(e) > P(xy, ..., x,)

X +e

P(hle)=

appear to require a horrendous number of meaningless arithmetic operations, unsupported by
familiar mental processes. Another example is the striking disparity between traditional numeri-
cal definitions of independence (e.g. P(h,e) =P (k) P(e)) and the ease and conviction with
which people identify conditional independencies, being so unwilling to provide precise numeri-

cal estimates of probabilities.

However, other representations of uncertain knowledge are available, which provide a

more faithful model of human reasoning, and still comply with the basic tenets of probability



theory. Dependency-graph representations, in which the links signify direct probabilistic depen-
dencies among semantically-related propositions, are the most appealing candidates because
they are robust to numerical imprecisions. They permit people to express essential qualitative
relationships and preserve them despite sloppy assignment of numerical estimates. An integral
part of dependency-graph models of reasoning is the assumption that the basic steps invoked
while people query and update their knowledge correspond to local mental tracings of links in
these graphs and this, in turn, determines what kind of operations people consider "psychologi-
cally meaningful". Bayesian networks offer an effective formalism for describing and control-

ling such graph operations.

Section 2 summarizes the properties of Bayesian networks and of a Belief Maintenance
System (BMS) that performs inferences within such networks [Pear], 1985a]. The impact of
each new evidence is viewed as a perturbation that propagates through the network via local
communication among neighboring concepts. We show that in reasonably sparse networks such
autonomous propagation mechanism can support both predictive and diagnostic inferences, that
it is guaranteed to converge in time proportional to the network’s diameter, and that every pro-
position is eventually accorded a measure of belief consistent with the axioms of probability

theory.

Section 3 shows that the current trend of abandoning probability theory as the standard
formalism for managing uncertainty is grossly premature--taking graph propagation as the basis
for probabilistic reasoning nullifies most objections against the use of probabilities in reasoning

systems. For example, the graph representation allows us to:



Construct consistent probabilistic knowledge-bases without collecting "massive amounts

of data".
Admit judgmental evidence at any level of abstraction.

Ensure that evidence in favor of a hypothesis not be construed as partially supporting its

negation.

Postpone judgement.

Distinguish between various types of uncertainty.

Trace back the sources of beliefs and produce sound explanations.

Optimize the acquisition of data.



2. BELIEF MAINTENANCE USING PROBABILITIES
2.1  Bayesian Networks

Bayesian Networks are directed acyclic graphs in which the nodes represent propositions
(or variables), the arcs signify the existence of direct causal influences between the linked pro-

positions, and the strengths of these influences are quantified by conditional probabilities (Figure

1).

Figure 1

Thus, if the graph contains the variables x|, . . . ,x,,, and S; is the set of parents for variable x;,
then a complete and consistent quantification can be attained by specifying, for each node x;, an
assessment P’(x; | S;) of P(x; | S;). The product of all these assessments,

P(xy,... an)'_'I;IP’(xilSi)
constitutes a joint-probability model which supports the assessed quantities. That is, if we com-
pute the conditional probabilities P (x; | S;) dictated by P {x, . . ., x,), the original assessments
are recovered. Thus, for example, the distribution corresponding to the graph of Figure 1 can be

written by inspection:



P (x X 2x3,.%4,x5.x6) =P (xg|x5) Pxsixgxs3) P(xg|xyx0) P(x3|x)) Pxa|xy) Pxy).

An important feature of Bayes network is that it provides a clear graphical representation
for the essential independence relationships embedded in the underlying model. The criterion
for detecting these independencies is based on graph separation: namely, if all paths between x;
and x; are "blocked" by a a subset S of variables, then x; is independent of x; given the values
of the variables in §. Thus, each variable x; is independent of both its siblings and its
grandparents, given the values of the variables in its parent set S;. A path is "blocked" if it con-
tains an instantiated variable between two diverging or two cascaded arrows. A different cri-
terion holds for converging arrows: the connection between two arrows converging at node x;
is normally "blocked", unless x; or any of its descendants is instantiated. In Figure 1, for exam-
ple, x, and x5 are independent given §| = {x} or §5 = {x;,x4}, because the two paths between
x5 and x5 are blocked by either one of these sets. However, x, and x3 may not be independent
given §4 = {x,x¢}; because x¢, as a descendant of x 5, "unblocks” the head-to-head connection

at x 5, thus opening a pathway between x, and x 5.
2.2 Belief Propagation in Bayesian Networks

Once a Bayesian network is constructed, it can be used to represent the generic causal
knowledge of a given domain, and can be consulted to reason about the interpretation of specific
input data. The interpretation process involves instantiating a set of variables E corresponding
to the available evidence and calculating its impact on the probabilities of a set of variables H
designated as hypotheses. In principle, this process can be executed by an external interpreter
who may have access to all parts of the network and may use its own computational facilities to

store and manipulate intermediate results. An extreme example would be to calculate P (H | E)

-



using the ratio definition P (H, E )/P (E) (see Introduction). However, the sequence of steps fol-
lowed by such an interpreter would seem foreign to human reasoning, and would not be defensi-

ble by a psychologically meaningful explanation.

A more transparent interpretation process results when we restrict the computation to
take place at the knowledge level itself, not external to it. That means that the links in the net-
work are the only pathways and activation centers that direct and propel the flow of data in the
process of querying and updating beliefs. Accordingly, we imagine that each node in the net-
work is designated a separate processor which both maintains the parameters of belief for the
host variable and manages the communication links to and from the set of neighboring, logically
related, variables. The communication lines are assumed to be open at all times, i.e., each pro-
cessor may at any time examine the messages received from its neighbors and compare them to
its own parameters. If the compared quantities satisfy some local constraints, no activity takes
place. However, if any of these constraints is violated, the responsible node is activated to revise
its violating parameter and transmit new messages to its neighbors. This, of course, will ac-
tivate similar revisions at the neighboring nodes and will set up a multidirectional propagation

process, until equilibrium is reached.

The fact that evidential reasoning involves both top-down (predictive) and bottom-up
(diagnostic) inferences has caused apprehensions that, once we allow the propagation process to
run its course unsupervised, pathological cases of instability, deadlock, and circular reasoning
will develop [Lowrance, 1982]. Indeed, if a stronger belief in a given hypothesis means a greater
expectation for the occurrence of its various manifestations and if, in turn, a greater certainty in

the occurrence of these manifestations adds further credence to the hypothesis, how can one



avoid infinite updating loops when the processors responsible for these propositions begin to

communicate with one another asynchronously?

The key to maintaining stability in bi-directional inference systems lies in storing with
each proposition an explicit record of the sources of its belief. Thus, in addition to its measure
of total belief, each proposition also maintains a list of parameters, called support list, each

representing the degree of support that the host proposition obtains from one of its neighbors.
2.3  Maintaining The Support List

The problems associated with asynchronous propagation of beliefs, have simple solu-
tions if the network is singly connected, namely, if there is one underlying path between any pair
of nodes. These include trees, where each node has a single parent [Pear], 1982], as well as
graphs with multi-parent nodes, representing events with several causal factors [Kim and Pearl,
1983]. We shall first describe the propagation scheme in singly connected networks and then

show how it can be modified to handle loops.

Consider a fragment of a singly connected Bayesian network, as depicted in Figure 2.
Let variable names be denoted by capital letters, e.g., A, B, X, Y, and their associated values by
subscripted lower case letters, e.g., @3, @5 * * + . With each variable A we store the following

three parameter lists:

1. P (A |B, C) -- The fixed conditional probability matrix which relates the variable A to

its immediate causes (parents).



2. 74 (B) -- The current strength of causal (or prospective support, contributed by each in-

coming link, e.g., from B to A, where:
T4 (B) =P (B=b;|evidence connected to A via B) j=12,... (1)
3. Ax(A) -- The current strength of diagnostic (or retrospective) support contributed by

each outgoing link, e.g., from A to X, where:

Ax(A) =P (evidence connected to A via X |A=aq;) i=1,2,.. (2)
N \

(B mf’/@i
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The absolute magnitudes of the elements in each of the A vectors are arbitrary; only their ratios
count, In the case of bivalued (propositional) variables, only a single parameter, the likelihood
ratio, is needed. The m—A parameters are delivered to each node by the corresponding neighbors

and are sufficient for calculating the current belief over the values of A :

Bel (A) =P (A=aq;|all evidence)

=fp [P(A|B,C), Ax(A), Ay(A), 4 (B), T4 (C)). 3

Similarly, the 7—A parameters stored at A are sufficient for calculating the appropriate messages
(also n—A parameters) that A should deliver to its corresponding neighbors. These calculations
involve all the stored parameters except the one obtained from the port receiving the message.

For example:



AMB)=fAP(AIB,C), Ax(A), hy(A), =y (C)], C))

ty(A)=faP(A|B,C), Ay(A), 1y (B), my (C)]. )

The combining functions f,, f 5, and f, involve only inner products and component-by-

component products [Kim, 1983].

The impact of new evidence propagates through the network by uniform local computa-
tions which may be concurrent, asynchronous, or activated by some goal-oriented strategy.
Upon receiving an activation signal, each processor examines the ©—A parameters stored, then
recomputes and transmits the t—A messages for its neighbors. Egs. (4) and (5) demonstrate that
a perturbation of the causal parameter, &, will not affect the diagnostic parameter, A, on the same
link and vice versa. The two are orthogonal to each other since they depend on two disjoint sets
of data. Therefore, any perturbation of beliefs due to new evidence propagates through the net-
work and is absorbed at the boundary without reflection. A new equilibrium state is reached

after a finite number of updates which, in the worst case, is equal to the diameter of the network.

This architecture lends itself naturally to hardware implementation capable of real-time
interpretation of rapidly changing data. It also provides a reasonable model of neural nets in-
volved in cognitive tasks such as visual recognition, reading comprehension, and associative re-

trieval, where unsupervised parallelism is an uncontested mechanism.

Special provisions are necessary to support propagation in networks containing loops
(like the one in Figure 1), where parents of common children also possess common ancestors. If
we ignore the existence of loops and permit the nodes to continue communicating with each oth-
er as if the network was singly-connected, it wili set up messages circulating indefinitely around

the loops and the process will not converge to a coherent equilibrium.
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The method that we found most promisiné, called conditioning [Pear], 1985b], is based
on the ability to change the connectivity of a network and render it singly connected by instan-
tiating a selected group of variables. In Figure 1, instantiating x| to some value would block the
pathway x5, X |, x 3 and would render the rest of the network singly connected, where the propa-
gation techniques of the preceding paragraphs are applicable. Thus, if we wish to propagate the
impact of an observed data, say at x, to the entire network, we first assume x; = 0, propagate
the impact of x 4 to the variables x,, . . . ,x 5, repeat the propagation under the assumption x; = 1
and, finally, linearly combine the two results weighed by the posterior probability P (x|xg). It
can also be executed in parallel by letting each node receive, compute, and transmit several sets
of parameters, one for each value of the conditioning variable. This mode of propagation is not
foreign to human reasoning. The terms "hypothetical” or "assumption-based" reasoning, "rea-
soning by cases," and "envisioning" all refer to the same basic mechanism of selecting a key
variable, binding it to some of its values, deriving the consequences of each binding separately,

and integrating these consequences together.
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