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ABSTRACT

Models of complex phenomena often consist of hypothetical entities called "hidden
causes', which cannot be observed directly and yet play a major role in understanding those
phenomena. This paper examines the computational roles of these constructs, and addresses the
question of whether they can be discovered from empirical observations.

Causal models are treated as trees of binary random variables where the leaves are acces-
sible to direct observation, and the internal nodes--representing hidden causes--account for
inter-leaf dependencies. In probabilistic terms, every two leaves are conditionally independent
given the value of some internal node between them.

We show that if the mechanism which drives the visible variables is indeed tree-
structured, then it is possible to uncover the topology of the tree uniquely by observing pair-wise
dependencies among the leaves. The entire tree structure, including the strengths of all internal
relationships, can be reconstructed in time proportional to nlogn, where n is the number of
leaves.

I. INTRODUCTION: CAUSALITY, CONDITIONAL INDEPENDENCE AND TREE STRUC-
TURES

This study is motivated by the observation that human beings, facing complex phenome-
na, exhibit an almost obsessive urge to conceptually mold these phenomena into structures of
cause-and-effect relationships. This tendency is, in fact, so compulsive that it sometimes comes
at the expense of precision and often requires the invention of hypothetical, unobservable enti-
ties such as "ego”, "elementary particles”, and "supreme beings" to make theories fit the mold of
causal schema. When we try to explain the actions of another person, for example, we invariably
invoke abstract notions of mental states, social attitudes, beliefs, goals, plans and intentions.
Medical knowledge, likewise, is organized into causal hierarchies of invading organisms, physi-
cal disorders, complications, pathological states, and only finally, the visible symptoms.

A first step toward mechanizing the process of learning causal models would be to give
causality an operational definition that will permit an algorithm to discover it from empirical
data. This paper takes the position that human obsession with causation is computationally
motivated. Causal models are only attractive because they provide effective data-structures for
representing empirical knowledge, and their effectiveness is a result of the high degree of
decomposition they induce. More specifically, causes are viewed as names given to auxiliary
variables which summarize interactions between the visible variables and, once calculated,
would permit us to treat visible variables as if they were mutually independent.

If you ask » persons in the street what time it is, the answers will undoubtedly be very
similar. Yet instead of suggesting that somehow the answers evoked, or the persons surveyed
tend to influence each other, we postulate the existence of a central cause, the standard time, and
the commitment of each person to adhere to that standard. Thus, instead of dealing with a com-



plex n-ary relation, the causal model in this example consists of a network of » binary relations,
all connected star-like to one central node which serves to dispatch information to and from the
connecting variables. Psychologically, this architecture is much more pleasing. Since the activi-
ty of each variable is constrained by only one source of information (i.e., the central cause), no
conflict in activity arises: any assignment of values consistent with the central constraints will
also be globally consistent, and moreover, a change in any of the variables can communicate its
impact to all other variables in only two steps.

In probabilistic formalisms, this decomposition is embodied by the notion of conditional
independence. In our preceding example, the answers to the question "what time it is" would be
viewed as random variables that are bound together by a spurious correlation [Simon 1952,
Suppes 1970] and become independent of each other once we know the state of the mechanism
causing the correlation, i.e., the standard time.

The most familiar connection between causality and conditional independence is
reflected in the notion of a state. It was devised to break up the influence that the past exerts on
the future by providing a sufficiently detailed description of the present, and came to be known
as a Markov property--future events are conditionally independent of past events, given the
current state of affairs.

Conditional independence, however, is not limited to separating the past from the future
but is often induced on events which occur at the same time. A distinctive characteristic featured
by the notion of causality is that it generally gives rise to independent outcomes, i.e., knowing
the cause C of an outcome X renders X independent on other possible consequences of C. In
medical diagnosis, for example, a group of co-occurring symptoms often become independent of
each other once we know the disease that caused them. When some of the symptoms directly
influence each other, the medical profession invents a name for that interaction (e.g., complica-
tion, clinical state, etc.) and treats it as a new auxiliary variable that decouples others; knowing
the exact state of the auxiliary variable renders the interacting symptoms independent of each
other.

Based on these observations we chose to represent causal models as trees of binary ran-
dom variables, where the leaves are directly accessible to empirical observations and the internal
nodes represent hidden causes; any two leaves become conditionally independent once we know
the value of some internal variable on the path connecting them. The propagation of updated
probabilities in such trees was analyzed by Pearl [1982] and Kim and Pearl [1983]. It was
shown that the propagation can be accomplished by a network of parallel processors working
autonomously, and that the impact of new information can be imparted to all variables in time
proportional to the longest path in the tree. These computational advantages, we conjecture, may
account for the satisfying sensation called "in-depth understanding”, that people experience upon
discovering causal models consistent with observations.



Given that tree-dependence captures the main feature of causation and that it provides a
convenient computational medium for performing updating and predictions, we now ask wheth-
er it is possible to configure every set of random variables as a tree and, if so, how. Our first
task would be to assume that there exist dummy variables which decompose the set into a tree,
and then ask whether the internal structure of such a tree can be determined from observations
made solely on the leaves. If it can, then the structure found would constitute an operational
definition for the hidden causes often found in causal models. Additionally, if we take the view
that "learning" entails the acquisition of computationally effective representations of Nature’s
regularities, then procedures for configuring causal trees may reflect an important component of
human learning.

A related structuring task was treated by Chow and Liu (1968), who also used tree-
dependent random variables to approximate an arbitrary joint distribution. However, in Chow’s
trees all nodes denote observed variables, and so, the conditional probabilities for any pair of
variables is assumed given. By contrast, the internal nodes in our trees denote dummy variables,
artificially concocted to make the representation tree-like. The leaves only are accessible to em-
pirical observations; namely, we do not know any of the conditional probabilities that link the
internal nodes to the leaves, nor the structure of the tree -- those would have to be learned. A
similar problem of configuring probabilistic models with hidden variables is mentioned by Hin-
ton et al. (1984) as one of the tasks that a Boltzmann machine should be able to solve, Howev-
er, it is not clear whether the relaxation techniques employed by the Boltzmann machine can
readily accept the restriction that the resulting structure be a tree. The method described in the
following sections offers a solution to this problem, but it assumes some restrictive conditions:
all variables are bi-valued, a solution tree is assumed to exist and all inter-leaf correlations are
known precisely.

The paper is organized as follows: Section 2 presents nomenclature and precise
definitions for the notions of star-decomposability and tree-decomposability. In section 3 we
treat triplets of random variables and ask under what conditions one is justified in attributing the
observed dependencies to one central cause. We show that these conditions are readily testable
and, when the conditions are satisfied, that the parameters specifying the relations between the
visible variables and the central cause can be determined uniquely. In section 4 we extend these
results to the case of a tree with n leaves. We show that if a joint distribution of » variables has
a tree-dependent representation, then the uniqueness of the triplets’ decomposition enables us to
configure that tree from pair-wise dependencies among the variables. Moreover, the
configuration procedure takes only 0(nlogn ) steps. In Section 5 we evaluate the merits of this
method and address the difficult issues of estimation and approximations.



2. PROBLEM DEFINITION AND NOMENCLATURE

Consider a set of n binary-valued random variables x,, - - -, x, with a given probability
mass function P (x;, -, x,). We address the problem of representing P as a marginal of an
(n+1)-variable distribution Pg (x,, .., x, w), that renders x, ---,x, conditionally independent
given w, Le.

n
Poxy, o X0, w)=T1Ps(x; | W)Ps(w) (1)

i=1
Pxy ..ux,)= ()L]:E‘[P.v (x; |l w=1)+ (I—OL)IH—[PS(x‘- | w=0) (2)
i=l i=1

The functions Pg (x; | w),w=0, 1, i=1, .., n, can be viewed as 2x2 stochastic matrices relating
each x; to the central hidden variable w (see Fig. 1a), hence we name Py a star-distribution and
call P star-decomposable. Each matrix contains two independent parameters, f; and g;, where

fi=Ps (x; =1 | w=1)
8 =P; (x=1]w=0) (3)

and the central variable w is characterized by its prior probability P, (w=1) = « (see Figure 1b).

0 1 -g; 0

Figure 1
(a) _ (b)

The advantages of having star-decomposable distributions are several. First, the product
form of P, in (1) makes it extremely easy to compute the probability of any combination of vari-
ables. More importantly, it is also convenient for calculating the conditional probabilities
P (x; |x;), describing the impact of an observation x; on the probabilities of unobserved variables.
The computation requires only two vector multiplications.

Unfortunately, when the number of variables exceeds 3, the conditions for star-
decomposability become very stringent, and are not likely to be met in practice. Indeed, a star-
decomposable distribution for » variables has 2»+1 independent parameters, while the
specification of a general distribution requires 2"~1 parameters. Lazarfeld (1966) considered
star-decomposable distributions where the hidden variable w is permitted to range over A values,
A>2. Such an extension requires the solution of An+A—1 non-linear equations to find the values



of its An+A—1 independent parameters. In this paper, we pursue a different approach, allowing a
larger number of binary hidden variables, but insisting that they form a tree-like structure (see
Figure 2), i.e., each triplet forms a star but the central variables may differ from triplet to triplet.
Trees often portray meaningful conceptual hierarchies and, computationally, are almost as con-
venient as stars.

Figure 2
We shall say that a distribution P (x | ,x4, - , x,) 1S tree-decomposable if it is the margi-
nal of a distribution
Pr(xyxq, 0 X, Wwpwy, o0 ,w,) m<n-2
where w,w,, - ,w,, correspond to the internal nodes of a tree T', x, x4, ** - , x,, to its leaves,

and any two leaves are conditionally independent given the value of any internal node on the
path connecting them

Given an unrooted tree T and an assignment of variables to its nodes, the form of the
corresponding distribution can be written by the following procedure. We first choose an arbi-
trary node as a root. This, in turn, defines a unique father F (y;} for each node
y; €{xy, 0 ,x,, Wy, - ,w,}in T, except the chosen root, y,. The joint distribution is simply
given by the product form:

m+n

Pr(xy - xp,wy - wo)=Pu TP il Fi)l 4)
i=2

For example, if in Figure 2 we choose w, as the root we obtain:

Prixy - - xq,wy - w)=Pxqlwy) Plxglwy) P(xs|w3) P(x4lw3) P(x3|wy) Px;|wy)
Pxyfw)Pw Iwa) P(wilwy) P(wy|wy) P{wy)
Throughout this discussion we shall assume that each w has at least three neighbors; oth-

erwise it is superfluous. In other words, an internal node with two neighbors can simply be re-
placed by an equivalent direct link between the two.



If we are given Pr(x,, -** x,,w;, -+ w,) then, clearly, we can obtain P (x,, - - x,) by
summing over the w's. We now ask whether the inverse transformation is possible, i.e., given a
tree-decomposable distribution P(x,, -+ x,), can we recover its underlying extension
Pr(xy - " x,,w; ' w,) ? We shall show that: (1) the tree distribution Py is unique, (2) it can
be recovered from P using nlogn computations, and (3) the structure of T is uniquely deter-
mined by the second order probabilities of P. The construction method depends on the analysis
of star-decomposability for triplets which is presented next.



3. STAR-DECOMPOSABLE TRIPLETS

In order to tcét whether a given 3-variable distribution P (x ,x,,x4) is star-decomposable,
we first solve €q.(2) and express the parameters of;,g; as a function of the parameters specify-
ing P. This task was carried out by Lazarfeld (1966) in terms of the seven joint-occurrence pro-

babilities

pi=P (x;=1)

pij =P (x,-=1, x1=1)

Py =P x=1, x=1, x;=1)

and led to the following solution:

Define the quantities

and let ¢ be the solution of

The parameters o,f;,g; are given by:

[ij1=pi; —pip;

1
5. = | L10A] 2
1] [J-k]

PiPijk — PijPik

" Lk
S; P i
K P t s
pi Si Sipi
t2+Kt —1=0
;2
o=
1412
31
1-o0 |2
fi=p:+Sl' [_a—
L
o 2
8 =pPi—Si [l—a

Moreover, the differences f;—g; are independent of p;;,

1
P [_UM]Z

Lk]
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(6)

@
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The conditions for star-decomposability are obtained by requiring that the preceding
solutions satisfy:

(a) S; be real
(b) 0<£;<1
Using the variances
1
o; =[p; (1-p)1? (15)

and the correlation coefficients

o Pii—PiP;

7 2 0., (16)

i9F
requirement (a) is equivalent to the condition that all three correlation coefficients are non-
negative. (If two of them are negative, we can rename two variables by their complements; the
newly defined triplet will have all its pairs positively correlated.) We shall call triplets with this
property positively correlated.

This, together with requirements (b) and (c), gives (see Appendix I):

Theorem 1: A necessary and sufficient condition for three dichotomous random variables to be
star-decomposable is that they are positively correlated, and that the inequality:

PuPij PP
lp’” <Pijk 5% +0;0; (Pjx —PijPu) (18)
i L

is satisfied for all i¢{1, 2, 3}. When this condition is satisfied, the parameters of the star-
decomposed distribution can be determined uniquely, up to a complementation of the hidden
variable w, i.e., w >(1-w), f;—og;, —{(1-o).

Obviously, in order to satisfy (18), the term (p; — p;;pi) must be non-negative. This in-
troduces a simple necessary condition for star-decomposability that may be used to quickly rule
out many likely candidates.

Corollary -- A necessary condition for a distribution P (x,, x,, x3) to be star-decomposable is
that all correlation coefficients obey the triangle inequality:

Pik 2 PjiPix (18)

(18) is satisfied with equality if w coincides with x;; i.e., when x; and x, are independent
given x;. Thus, an intuitive interpretation of this corollary is that the correlation between any
two variables must be stronger than that induced by their dependencies on the third variable; a
mechanism accounting for direct dependencies must be present.



Having established the criterion for star-decomposability we may address a related prob-
lem: Suppose P is not star-decomposable, can it be approximated by a star-decomposable dis-
tribution P that has the same second-order probabilities?

The preceding analysis contains the answer to this question. Note that the 3rd order
statistics are represented only by the term p,;, and this term is confined by eq.(7) to a region
whose boundaries are determined by 2nd- order parameters. Thus, if we insist on keeping all
2nd-order dependencies of P in tact and are willing to choose p;; so as to yield a star-
decomposable distribution, we can only do so if the region circumscribed by (7) is non-empty.
This leads to the statement:

Theorem 2: A necessary and sufficient condition for the 2nd order dependencies among the tri-
plet x; x, x5 to support a star-decomposable extension is that the six inequalities:
PijPix <x Spijpik
Pi pi

40,0, (Pi—PiiPa) i=1,2,3 (19)

possess a solution for x.

10



4, A TREE-RECONSTRUCTION PROCEDURE

We are now ready to confront the central problem of this paper: Given a tree-
decomposable distribution P (x,, - -, x,), can we uncover its underlying topology and the under-
lying tree-distribution Pr(x,, * -, x, wyq, ", Wp)?

The construction method is based on the observation that any three leaves in a tree have
one and only one internal node that can be considered their center, i.e., it lies on all the paths
connecting the leaves to each other. If one removes the center, the three leaves become discon-
nected from each other. This means that if P is tree-decomposable then the joint distribution of
any triplet of variables x;.x;,x, is star-decomposable, i.e., P (x;, x;, x;) uniquely determines the
parameters c.f;.g; as in eq.(11), (12), and (13), where o is the marginal probability of the central
variable. Moreover, if we compute the star decompositions of two triplets of leaves, both having
the same central node w, the two distributions should have the same value for o= Pp(w=1),

This provides us with a basic test for verifying whether two arbitrary triplets of leaves share a
commeon center and a successive application of this test is sufficient for determining the struc-
ture of the entire tree,

Consider a 4-tuple x|, x5, x5, x4 of leaves in T. These leaves are interconnected through
one of the four possible topologies shown in Figure 3. The topologies differ in

1 4 1 2 1 2 1X2
2: :3 3: :4 4: :3 a3
(a) (b) (c) (d)
Figure 3

the identity of the triplets which share a commeon center. For example, in the topology of Figure
3(a), the pair [(1,2,3), (1,2,4)] share a common center and so does the pair [(1,3,4), (2,3,4)]. In Fig-
ure 3(b), on the other hand, the sharing pairs are [(1,2,4}, (2,4,3)] and [(1,3,4), (2,1,3)], and in Fig-
ure 3(d) all triplets share the same center. Thus, the basic test for center-sharing triplets enables
us to decide the topology of any 4-tuple and, eventually, to configure the entire tree.

We start with any three variables x,, x,, and x5, form their star decomposition, choose a
fourth variable x ,, and ask to which leg of the star should x, be joined. We can answer this
question easily by testing which pairs of triplets share centers, decide on the appropriate topolo-
gy, and connect x 4 accordingly. Similarly, if we already have a tree structure T;, with i leaves,
and wish to know where to join the (i +1)" leaf, we can choose any triplet of leaves from 7; with
central variable w, and test to which leg of w should x;,; be joined. This, in turn, identifies a
subtree T;” of T; that should receive x;,; and permits us to remove from further considerations
the subtrees emanating from the unselected legs of w. Repeating this operation on the selected

11



subtree T;” will eventually reduce it to a single branch, to which x;,, is joined.

Appendix II describes the construction procedure in algorithmic detail and shows that by
choosing, in each state, a central variable that splits the available tree into subtrees of roughly
equal-size, the joining branch of x;,, can be identified in at most log , (i) tests, where & is the

=
maximal degree of the tree 7;. This amounts to O (nlogn ) tests for constructing an entire tree of
n leaves.

So far we have shown that the structure of the tree T can be uncovered uniquely. Next
we show that the distribution Py, likewise, is uniquely determined from P, i.e., that we can
determine all the functions P(x; | w;) and P (w; | wy) in (4), fori=1, --- n and j, k=12, - - m.
The functions P (x; | w;) assigned to the peripheral branches of the tree are determined directly
from the star decomposition of triplets involving adjacent leaves. In Figure 2, for example, the
star decomposition of P (x| x, xs) yields P(x; | w;) and P (x, | w,). The conditional probabili-
ties P (w; | w, ) assigned to interior branches are determined by solving matrix equations. For
example, P (x, | w,) is obtained from the star decomposition of (x|, x5, x7), and it is related to
P(x; | wp)via

P, |lwp)=2Plx;tw)P(wy | wy
L4
This matrix equation has a solution for P(w, | w,) because P (x, | w,) must be non-singular. It
is only singular when f ;=g ,, i.e., when x, is independent of w and, therefore, independent of
all other variables. Hence, we can determine the parameters of the branches next to the peri-
phery, use those to determine more interior branches, and so on, until all the interior conditional
probabilities P (w; | w;) are determined.

Next, we shall show that the tree structure can be recovered without resorting to 3rd ord-
er probabilities; correlations among pairs of leaves suffice. This feature stems from the observa-
tion that when two triplets of a 4-tuple are star-decomposable with respect to the same central
variable w (e.g. 1,2,3 and 1,2,4 in Fig. 3(a)}, then not only the values of o are the same but also
the f and g parameters associated with the two common variables (e.g. 1 and 2 in Fig. 3(a))
must be the same. Whereas the value of o depends on a 3rd order probability, the difference
f.—g; depends only on 2nd order terms via eq.(14). Thus, requiring that f ;—g, in Fig. 3(a) ob-
tains the same value in the star decomposition of (1,2,3) as in that of (1,2,4), leads to the equa-
tion:

[123[13] - [12][14] (20)
[23] [24]
and, using (6), this yields
P13P42=P14P3z2 - (21)

An identical equality will be obtained for each f;—g;, i=1,2,3,4, relative to the topology of Figure
3(a). Similarly, the topology of Figure 3(b) dictates

12



P12P43 =P14P23 (22)
and that of Figure 3(c):
P12P24 =P13P24 (23)

Thus, we see that each of these three topologies is characterized by its own distinct equality,
while the topology of Figure 3(d) by having all three equalities hold simultaneously. This pro-
vides the necessary 2nd-order criterion for deciding the topology of any 4-tuple tested; if the
equality p;;py =pupj holds for some permutation of the indices, we decide on the topology

§> e ,Jc, if it holds for two such permutations, the entire 4-tuple is star decomposable. Note

that the equality p;;pu = pap; must hold for at least one permutation of the variables, or else the
4-tuple would not be tree-decomposable.

13



5. CONCLUSIONS AND OPEN QUESTIONS

This paper provides an operational definition for entities called "hidden causes", which
are not directly observable but facilitate the acquisition of effective causal models from empiri-
cal data. Hidden causes are viewed as dummy variables which, if held constant, induce proba-
bilistic independence between sets of visible variables. It is shown that if all variables are bi-
valued and if the activities of the visible variables are governed by a tree-decomposable proba-
bility distribution, then the topology of the tree can be uncovered uniquely from the observed
correlations between pairs of variables. Moreover, the structuring algorithm requires only nlogn
steps.

The method introduced in this paper has two major shortcomings: It requires precise
knowledge of the correlation coefficients and it only works when there exists an underlying
model that is tree-structured. In practice, we often have only sample estimates of the correlation
coefficients, and it is therefore unlikely that criteria based on equalities (as in €q.(21)) will ever
be satisfied exactly. It is possible, of course, to relax these criteria and make topological deci-
sions by seeking proximities rather than equalities. For example, instead of searching for an
equality p;;pw =pap, We can decide the 4-tuple topology on the basis of the permutation of in-
dices that minimizes the difference p;;py —pip,;. Experiments show, however, that the struc-
ture which evolves by such a method is very sensitive to inaccuracies in the estimates p;;, be-
cause no mechanism is provided to retract erroneous decisions made in the early stages of the
structuring process. Ideally, the topological membership of the (i+1)* leaf should be decided
not merely by its relations to a single triplet of leaves chosen to represent an internal node w, but
also by its relations to all previously structured triplets which share w as a center. This, of
course, will substantially increase the complexity of the algorithm.

Similar difficulties plague the task of finding the best tree-structured approximation to a
distribution which is not tree-decomposable. Even though we argued that natural data which
lend themselves to causal modeling should be representable as tree-decomposable distributions,
these distributions may contain internal nodes with more than two values. The task of determin-
ing the parameters associated with such nodes is much more complicated and, in addition, rarely
yields unique solutions. Unique solutions, as shown in section 4, are essential for building large
structures from smaller ones. We leave open the question of explaining how approximate causal
modeling, an activity which humans seem to perform with relative ease, can be embodied in
computational procedures that are both sound and efficient.

14



APPENDIX I
CONDITIONS FOR STAR-DECOMPOSABILITY

Let
pi=P (x=1)

pij =P (x=1,x=1) (I-1)

Pijk =P (x=1,x;=1, x;=1)

The seven joint-occurrence probabilities, py p, pa P12, P13, P 23, P 123, Uniquely define the seven
parameters necessary for specifying P (x,, x,, x3), for example:

Plxi=lx;=1x3=0F=p;—-pin
P(x1=1,x;=0)=p,—-pyy etc.

and will be used in the following analysis.

Assuming P is star-decomposable (eq.1), we can express the joint-occurrence probabili-
ties in terms of o, f; g; and obtain seven equations for these seven parameters.

pi=af; +(1-0) g; (I-2)
pi=0fif; +(1-0} g;8; (I-3)
P =0f if ifi +(1-00) 8,8, 8% (I-4)

These equations can be manipulated to yield product forms on the right-hand sides:
pij —pipj = o1-0(f; —g)(f; ~ &) (I-5)

PiPijk —PijPi =0(1-0) f:8; (f ; =8, YF e —f1) (I-6)

Eq.(I-5) comprises three equations which can be solved for the differences f; —g; i=1,2,3, giv-
ing

1
g =g |LIOEL 2 17
fi gl 3 [ Uk] ( )

where the bracket [ij] stands for the determinant
Ljl=pi;—pip; (1-8)

These, together with (I-2), determine f; and g; in terms of S; and a (still unknown):

15



fi=pi+8; [T (I-9)

3L
e ¢ | ? .
8i =Pi Sl {1—(1 (I 10)
To determine o, we invoke eq.(I-6) and obtain
1
a |2 r2
[_l—a ] =t f(or,o= l+t2) (I-11)
where ¢ is the solution to
124Kt -1=0 (I-12)
and X is defined by:
Si pi i
K=——- _.f_ +L (1_13)
pi S Sipi

" = [jk,i] _Pip:'jk —PijPix
C k] Lk]

It can be easily verified that K {and, therefore, o) obtains the same value regardless of which in-

dex i provides the parameters in (I-13).

(I-14)

From eq.(I-13) we see that the parameters §; and p; of P govern the solutions of (I-12)
which, in turn, determine whether P is star-decomposable via the resulting values of a, f; g;.
These conditions are obtained by requiring that:

(a) S; be real
(b) 0<sf <1
(c) 0<g;<1

Requirement (a) implies that, of the three brackets in (I-7), either all three are non-negative or
exactly two are negative. These brackets are directly related to the correlation coefficient, via:
1 1.
0y =11 (p)] 21p; (1p) * =L (I-15)

9]
and so, requirement (a) is equivalent to the condition that all three correlation coefficients are
non-negative. If two of them are negative, we can rename two variables by their complements;
the newly defined triplet will have all its pairs positively correlated.

16



Now attend to requirement (b). eq.(I-9) shows that f; can be negative only if §; is nega-
tive, i.e., if S; is identified with the negative square root in (I-7). However, the choice of nega-
tive S; yields a solution (f;’, g;’, ") which is symmetrical to that stemming from a positive
S; (fir 8,00, with f,"=g;, ;' =f;, o' = 1-0. Thus, §; and f; can be assumed non-negative, and it
L (see (I-9) and (I-11)). Impos-

—Pi

remains to examine the condition f; <1 or, equivalently, ¢ > 1

ing this condition in (I-12) translates to:

Pin & PiiPik
PR =

+0, 0[P — PijPucl (I-16)

Similarly, inserting requirement (c), g;20, in eq.(I-12) yields the inequality:
Laby <Pijk (I-17)
Pi

which, together with (I-16), lead to Theorem 1, Section 3.
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APPENDIX I
DESCRIPTION AND ANALYSIS OF THE TREE-CONSTRUCTION ALGORITHM

Qur primary task is to reconstruct an unrooted tree by a sequence of tests performed on
its leaves. In each test we select a group of four leaves and identify which pairs are connected
by disjoint paths. Our procedure for accomplishing this task is best described in two stages.
First we treat the construction of rooted trees where the tests are performed on triplets of leaves.
Then we show that the rooted-tree procedure can be easily adapted to handle unrooted trees as
well.

II-1 Reconstructing Rooted Trees

Let T be a rooted tree with nn leaves x, x5 - ,x,. A leaf x; is said to be the leader of the
triple ( x;, x;, ;) if the path from the root to x; does not contain the deepest common ancestor of
x; and x,. If a triple does not have a leader then the deepest common ancestor of all three leaves
is also a common ancestor of any two of them.

We next present an algorithm to reconstruct a tree where the available information is the
leader (if there exists any) of every triple of leaves. We will try to minimize the number of tri-
ples for which we ask who the leader is.

In order to state the algorithm we first make the following observation.

LEMMA 1: Let & be the maximum number of sons of a node in a rooted tree T with n leaves.
There exists a node v of T such that ?i—l— <des(v) < -k—nfl— where des (v) is defined to be the

number of leaves which are descendant of v, and des(v)=1 if v is a leaf.

PROOF: Let v, be the root of T. Define v,,, to be that son of v, which has the largest des(.)

value among all the sons of v,. We thus defined a sequence vy vy *- v, vy, * - v, Where the
last term (v,,) is a leaf. Let v; be the first node in the sequence vy v, -~ v, with
des(v;) < k,ffl . v; does exist, because des(v,)=n and des(v,,) = 1. Now, from
kn
d ; T II-1
es (vj 1) > o (I-1)
we obtain
des (v;_y) n
des (v;) 2 : > (i-2)
as required.
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Let T be a rooted tree with leaves x; x, --- x,. Every node of T which is not a leaf has
at least 2 and at most &£ sons. Our algorithm constructs a sequence of trees Ty T3 --- T,, where
T, is the tree x 0@ —wx,, T, =T, and T;,, is obtained by adding x;,, as anew leafto T;. T;
would be the subtree of T containing only the leaves x; - - - x; and the path connecting them,
i.e., any non-leaf node of T which does not have any sons is removed and any node which
remains with just one son is replaced by an edge joining the son directly to its father. The loca-
tion where x;,, should be added to T; is found in the following "binary search-like" algorithm.

Procedure add (integer i) Begin

1. T.=T,; (T, is a subtree of T; to which x;, is to be added. It becomes progressively smaller
by eliminating those sections of T; known not to contain x;,; (statements 8, 9, and 10).

2. s:=the number of leaves in T.

3. Ifs=2letv be the root of T, and x;, x, its two leaves.

sk

4. Ifs>2select as v any node of 7, for which ksT <des(V)S 5

(lemma 1) and let x; x;

be two leaves whose common ancestor is v.
5. Ask for the leader of the triple (x;,,, x; x;) (with respect to T).
6. Ifs > 2then begin.

7. Define a partition of T, into 2 subtrees: T, rooted at ¥ with all the descendants of v and
T,,=T,—T, in which v is considered a leaf.

8. Ifxy is the leader of (x4, x;, x;) then set Te=T .

9. If there is no leader, set T, =T, from which the 2 sons of v whose descendants are v, and
v, are removed with all their descendants.

10.  If x; (or x,) is the leader, set T, = the subtree of T, rooted at that son of ¥ which is the
ancestor of x, (or x;, respectively).

1. GOTO2 END
12.  If s=2 then begin

13. Ifx ; (or x) is the leader add a new node on the edge gf Xg OF X;, respectively, and make it
the father of x;,, g —_—
]

x; xj Xa ;Et'r.r
14.  If x;,, is the leader add a new root and make x;,; and the old root ¥ his sonsK\
g
= yl:f
15.  If there is no leader, make x;,; ason of v. 75/\ X, Y; x, !



16. END END Add

Complexity Analysis

Whenever the procedure add is applied to construct T;, out of T; it starts to search on a
tree with i leaves. After each leadership test (statement 5) the search proceeds on a subtree

which might contain at most a fraction k_f-l of the leaves of the previous subtree. Thus, the

number of steps (leadership tests) can be at most log ., (i).
k

The complexity of the entire algorithm is the sum of this amount over
i=2,3, - n=log,. (n})=0(nlogn) for every fixed number k. However, if the degree k is not
k
bounded, the construction of T;,; out of T; might take up to i steps which leads to a total com-

plexity of ¥=1i = alntl) g (n?). This upper bound will actually be achieved in a star-like tree,
i

where all n leaves are sons of the root.

The number of different binary (and thus any fixed £22) trees on » labeled leaves can be
lower bounded by n ! using the following construction: Take a simple path a, a, --- a,, make
a, the root, and for every permutation P=X;,X;, - -- X,, construct a binary tree T(P ) making
every x; the son of a;. This shows that spending 0 (# log ) tests is the best possible for this
kind of problem. (Every leadership test provides one of four possible answers and this gives
two bits of information.)

The number of trees possible in the case where k is not bounded can be estimated as fol-
lows: Since no node of T has just one son, the total number of nodes in T is less than twice the
number of leaves--2n. On 2n labeled nodes there exist 222"~ different spanning trees, thus
2r2*~2 is an upper bound to our tree-counting problem. To identify one of these spanning trees
would require at least log (272" 2) tests, which is still O(zlog n); thus, our algorithm, with 0 (n?),
is not guaranteed optimality in this case.
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II-2 Constructing Unrooted Trees

Let T be an unrooted tree in which the degree of every node is at least three, and let
u,v,w,x be any quadruple of leaves. We say that x pairs with u relative to (v, w) if the path
from x to u is edge-disjoint relative to the path from v to w. Obviously x pairs with at most one
node out of u,v and w.

Remove a leaf x of T and examine the remaining tree 7', as rooted at the node x| with
which x is adjacent in T'. The following observation is a direct consequence of the definitions:

LEMMA 2: x pairs with u relative to (v,w) in the tree T if and only if u is the leader of
u,v,w in the tree T, rooted at x,.

The algorithm of section 1I-1 can be used for reconstructing unrooted trees out of ques-
tions of the form: "Which node pairs with x in the quadruple (x, u, v, w)?"

Choosing arbitrarily a fixed leaf x we use lemma 2 and the algorithm of section II-1 to
reconstruct T'; rooted at x, and finally add x as a son of x, to get the required tree T. The com-
plexity analysis does not change since an unrooted tree T with n+1 leaves and maximal degree
k+1 will provide T, with n nodes and at most k sons to every node.
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Figure Captions
Figure 1 - (a) Three random variables, x, x,, x4 connected to a central variable w
by a star network.
(b) Illustrating the three parameters, o, f;, g;, associated with each link.

Figure 2 - A tree containing four dummy variables and seven visible variables,

Figure 3 - The four possible topologies by which four leaves can be related.
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