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Abstract

An algorithm to convert redundant number representations into conventional representa-
tions is presented. The algorithm is performed concurrently with the digit-by-digit generation of
redundant forms by schemes such as SRT division. It has a step delay roughly equivalent to de-
lay of a carry-save adder and simple implementation. The conversion scheme is applicable in
arithmetic algorithms such as nonrestoring division, square root, and on-line operations in which
redundantly represented results are generated in a digit-by-digit manner, from most significant to
least significant.

1. Introduction

We consider an algorithm and implementation to convert a signed integer from a redun-
dant (signed digit) into a conventional range-complement representation. Such a conversion is
necessary, for example, in SRT division or square root algorithms that produce this redundant
result [1,2,3,4,5], or to convert results produced by on-line algorithms into the equivalent con-
ventional forms [6,7,8]. The standard approach for the conversion is to separate the digit vector
into two, one formed by the positive digits and the other by the negative ones, and add themina
carry-propagate adder. However, this adds the delay of the adder to the total operation time. To
reduce this delay we propose here an algorithm that has the following characteristics:

« it performs the conversion on the fly, as the digits of the result (e.g., of the division or
square root) are obtained in a serial fashion from most to least significant, and

« it has a delay which is compatible with one step of a fast division algorithm [4]. This
delay is roughly of a carry-save adder. '

We begin with a description of the algorithm for a radix-2 representation and then gen-
eralize to radix r.



2.Radix-2 Conversion

We want to convert the redundant digit-vector P (with p; € {-1,0,1}) representing the
normalized fraction p into the digit-vector Q (with g; € {0,1}). That is,

m . .
p=Xp2", pie{-10,1}
i=l
is to be converted into its conventional 2’s complement form
m \
q=-qo+ Xq;2", q;£{0,1}

i=1

As mentioned before, the transformation is to be performed as the digits of P are pro-
duced, from most significant to least significant. A simple algorithm would be to form ¢ (k] such
that

qlk]=qlk—1]+p27*
which results in g = g[m].

However, this algorithm requires the propagation of a carry when p;, =—1. The propaga-
tion of this carry is up to the previous bit of Q having value 1. That is, if for example,
GiGiv1rrGk-29%-1 = 1,0...0,0
then after adding —27% we get
Gi i +15--qk-29k-1:9k = 0,1,..,,1,1,1

The approach we follow is to avoid the propagation of the carry by keeping two condi-
tional forms, one (A[k-1]) expecting p, =1 or p, =0 and the other (B[k-1]) expecting
Pi = ~1, and selecting the correct one when p; is known. '

That is,

A[k-1]+27F if pe=1
qik]l=<A{k-1] if p=0 n
Blk=11+27* if p,=—1

To obtain this result it is necessary that
k-1 .
Alk=-1]1=—qo+ ¥ q;:27 =q[k-1] ‘ 2

i=1

and



Blk-1]=A[k-1]-27¢-D 3)

The final result is obtained as
q=A[m]

We now present the recurrence to compute A [k] and B [£] forms. Since p is normalized,
the initial conditions are

{+1/2 ©.1) if p>0 (=D

A=l (L if p<0 @=-D)

1+0 (0.0) if p>0 (@ =+1)
BOl=11 @0 if p<0 (o=

Fork > 1

Alk]+ 27D 0f pry =1 (41
Alk+1] = {A (k] if pra=0 (42)
Bik]1+27* D jf p,, 1 =-1 (43)

.
Alk] if prir=1l (44
Blk+1}=<B[k]1+27%D if p,. ;=0 (45)
B[k] if pryy=-1 (46

Note that none of these requires a propagation of carries.
Proof

By induction. We assume that (2) and (3) are true for k¥ and show that they are satisfied
for k+1.

Basis,

Both (2) and (3) are satisfied for k=1 by the initial conditions.



Induction step. We consider all possible values of pg,;.

For py,1 =1, we have

Alk+1]=Ak]+27¢+D by 4.1)
=q{k]+pi,; by induction hypothesis

=qlk+1]
and
Blk+1]=A[k] by (4.4)

= A[k+1] - 27%+D by (4.1)
For p;..; =0 we have

Alk+1]=A[k] by (4.2)
=gq[k]+prs1 by induction hypothesis

=qlk+1]

and ,
Blk+1]=B[k]+ 2% by (4.5)

=A[k]-27% + 27*+) by induction hypothesis

= Alk+1]=27%D by (4.2)
For pry; =-1

Alk+1]=B[k]+27%D by (4.3)
=A[k]-27*+27%*D by induction hypothesis
=A[k] - 2—(k+1) ‘
=gq[k] +pg, by induction hypothesis

= q[k+1]

and



B[k+1]=B[k] by (4.6)

=A[k+1] - 27¢*D by (4.3)

Consequently, the recurrence satisfies the conditions of the conversion.

As an example consider the conversion of P = 0.110110011010 where 1=-1.

k | P
0 0
1 1
2 "1
3 0
4 1
5 -1
6 0
7 0
8 -1
9 1
10 0
11 1
12 0

Alk]

0.1

0.11

0.110

0.1101
0.11001
0.110010
0.1100100
0.11000111
0.110001111
0.1100011110
0.11000111101
0.110001111010

Bk]

0.1

0.10

0.101

0.1100
0.11000
0.110001
0.1100011
0.11000110
0.110001110
0.1100011101
0.11000111100
0.110001111001

The converted fraction is ¢ =0.110001111010.

qlk]

0.1

0.11

0.110

0.1101
0.11001
'0.110010
0.1100100
0.11000111
0.110001111
0.1100011110
0.11000111101
0.110001111010

Similarly, for a negative case such as P = 0.10110011 the conversion is

01O PhWLUN~ON

Px Alk]
0
-1 1.1
0 { 1.10
-1 1.011
1 1.0111
0 1.01110
0 1.011100
-1 1.0110111
1 1.01101111

Blk]

1.0

1.01

1.010
1.0110
1.01101
1.011011
1.0110110
1.01101110

The converted fraction is ¢ = 1.01101111.

q (k]

1.1

1.10

1.011
1.0111
1.01110
1.011100
1.0110111
1.01101111



3. Implementation of the Radix-2 Conversion

The implementation of the algorithm requires two registers to contain A [k] and B [k]1,
respectively, These registers can be shifted one bit left with insertion in the least significant bit
depending on the value of p;. They also require parallel loading to load A [] with B [k] and vic-
eversa. This implementation is shown in Figure 1.

4. Radix-r Conversion

We now generalize the previous algorithm to the radix-r case. That is, we want to con-
vert

m - .
p=Ypr”, pie{-a,.,0..,a} ri2s|a|sr-1

i=1
into
& i
q=~qo+ 3 qir”", q; £{0,....,r-1}
i=]

To keep the characteristics of the algorithm, the expression (1) generalizes to

| [k-1] +ppr™* if pp20
=8 o1+ (=1 i Pi<O

Consequently, to obtain this we need that
A[k-1]=q[k-1]
and
B{k—1]=A[k=1] - r~&D



The initial conditions extend to

+pr~t (Opy) if p>0
All]=1 -1 it <0

=lpylr™t (r=lpy1) if <

JHerbrT O * if p>0
FI=p st (r=1-1p,1)) ifp<0

* p >0 since p is normalized.
The recurrence presented for the radix-2 case is transformed as follows. For £ >1

A k] + pyyyr 64D if pey120
BIk] + (r=|pgey | )r &+ if pryy<0

"

Alk+1]=

Akl + (P —1)r ¢+ if pp,i>0
Bkl + ((r=1)=|pg | )r"&*D if py,y<0

-

Blk+1]=1

The proof follows the same scheme as that for the radix-2 case.

The implementation is also similar. It requires a one-digit adder to compute 7 —|py,; |-



5. Conversion from Radix-4 Redundant to Conventional 2’s Complement

As a detailed example, we now apply the conversion algorithm to the radix-4 case, com-
patible with the radix-4 division scheme {4]. The conversion rules from a radix-4 redundant
representation into the conventional binary 2’s complement are specified in Table 1. The digit
appended to bit-vector A[k] is a =(a,aq) with value 2a;+ag€ {0,1,2,3}). Similarly,
b = (b1,b¢) is appended to bit-vector B [k]. '

Table 1: Radix-4 Conversion

Pl Alk+1] B [k+1]
=(A[kl,a.a0) | =Bklb1.b0)
0 (A[k1,0,0) (B{k1,1,1)
1 (A[k],0,1) (A[%),0,0)
2 | (A[110 (A[k10,1)
3 (A[k],1,1) (A[£],1,0)
-3 (B [£],0,1) (B [£1,0,0)

The implementation consists of two left-shift registers (A and B) that contain A [k] and
~ B[k] respectively. The operations on these registers are .

Shlff A with insert (a 1,&10) if CSHA=1

A < \opifr B with insert (ajaq) if Cppa=l

Shlﬁ B with insert (b l,bo) if CSHB=1

B < \shift A with insert (bbg) if Cppp=1
By definition, CLDA = CSHA’ and CLDB = CSHB ‘.

For the minimally redundant case p;e{—2,-1,0,1,2} the radix-4 digit values are represent-
ed by the following sign-and-magnitude code: . .



pi | § m My
010 0 0
110 0 1
210 1 0
-1 11 0 1
211 1 0

where s is the sign bit, and | and m are the magnitude bits.

Usmg Table 1 we determine the following switching expressions for the rightmost
radix-4 digits a =(a,ag) and b = (b,by) wherea, b €{0,1,2,3}:

a,=s+m
ag=mg
by=m,m +sm,
bo=m;+my
The shift and load control signals for the registers are
Cips =S
Csua =5’
Crpp =(s +mg'm’Y =Csyp’

CSHB =5 + mo’m 1’

6. Summary

An algorithm for converting redundant forms into range complement conventional forms
concurrently with digit-by-digit generation is presented. The algorithm has a simple implemen-
tation and a delay independent of the working precision, roughly equal to two logic levels plus a

register shift/load time. It is applicable in nonrestoring division and square algorithms, and in
producing conventional results in on-line algorithms.

Acknowledgements. This research has been supported in part by the Contract No. N00014-85-
K-0159 of the Office of Naval Research We thank Dr. J.G. Nash of Hughes Research Labora-
tories for his interest and support.



References

[1] J.E. Robertson, "A New Class of Digital Division Methods”, IRE Trans. on Electronic Com-
puters, Vol.EC-7, September 1958, pp.218-222.

[2] D.E. Atkins, "Higher-Radix Division Using Estimates of the Divisor and Partial
Remainders", JEEE Trans. Computers, Vol.C-17, October 1968, pp.925-934.

[3] G. Metze, "Minimal Square Rooting", IEEE Trans. Electronic Computers, Vol.EC-14,
February 1965, pp.181-185.

[4] M.D. Ercegovac and T. Lang, "A Division Algorithm with Predicition of Quotient Digits",
Proc. 7th IEEE Symposium on Computer Arithmetic, Urbana, Dllinois, 1985, pp.51-56.

[5] G.S. Taylor, "Radix 16 SRT Dividers with Overlapped Quotient Selection Stages”, Proc. 7th
IEEE Symposium on Computer Arithmetic, Urbana, Illinois, 1985, pp. 64-71.

[6] M.D. Ercegovac, “A General Hardware-Oriented Method for Evaluation of Functions and
Computations in a Digital Computer", IEEE Trans. Computers, Vol.C-26, July 1977, pp.667-
680.

[7] K.S. Trivedi and M.D. Ercegovac, "On-Line Algorithms for Division and Multiplication”,
IEEE Trans. Computers, Vol.C-26, July 1977, pp.667-680. '

[8] M.D. Ercegovac, "On-Line Arithmetic: An Overview", Proc. SPIE 1984, Vol.495 - Real
Time Signal Processing VII, 1984, pp.86-93.



£

Keywords Conversion, redundant number representation, 2’s complement,
most significant digit first algorithms, SRT division, square root, on-line al-
gorithms.

Captions

Figure 1: Implementation

- Table 1: Radix-4 Conversion



Authors’ Address and Affiliation

Professor Milo§ D. Ercegovac

UCLA Computer Science Department
3732 Boelter Hall

UCLA

Los Angeles, CA 90024

(213) 825-5414 or -2660

Professor Tomas Lang

- UCLA Computer Science Department
3732 Boelter Hall

UCLA

Los Angeles, CA 90024

(213) 825-6835 or -2660



P;
Register A -— -
* load/shift g ﬁ
g
1oed/shift 8 =
¥ ‘g =
Register B < Q
b

Figure 1. Implementation







