PARALLEL ALGORITHMS FOR MULTIPROCESSQORS
USING BROADCAST CHANNEL

Rina Dechter November 1981
Leonard Kleinrock CSD-850025
(Formerly Working Paper No. 81002

November 30, 1981)

WORKING PAPER o sum

PARALLEL ALGORITHMS FOR MULTIPROCESSORS

USING BROADCAST CHANNEL

by
RINA DECHTER

& LEONARD KLEINROCK

' 11/30/81

Advanced Teleprocessing Systems Group
Computer Science Department
University of California

~ Los Angeles, California 90024

PARALLEL ALGORITHMS FOR MULT1PROCESSORS
USING BROADCAST CHANNEL®

by

Rina Dechter

ABSTRACT

Two parallel algorithms which use broadecast communication are
presented. One algorithm determiﬁes the maximum element inm a list of k
elements, using k processors; the other sorts a list of z elements into
a nonincreasing order using k processors. W¥Weo show that the average pro—
cessing time of the Max algorithm is O(log k) and the worst case pro~-
cessing time for the SORT algorithm is 0[%log%+2n-1], i.e., for large
n, the SORT algorithm achieves an asymptotic speed—up ratio of k with

respect to the best sequential algorithm.’

L J
This research was supported by the Advanced Research Projects Agency of
the Department of Defense under Contract MDA 903-77-C-0272.

Two Parsllel Algorithms for Broadcast Communication

INTRODUCTION

In the following pages we are goinmg to discuss two parallel
algorithms which take advantage of broadcast communication. The
first finds the maximum of k elements using k processors == this
is the MAX Algoritha. The second algorithm utilizes the MAX
Algorithm to sort a list of n elements into 2 noninecreasing order
using k processors. For simplicity we assume that all the o;e-
nents are distinct. The new feature of these algorithms is that
they assume BROADCAST Communication among processors which
implies that only one processor can transmit at one time and all

others can hear the broadcasted message.

The algorithms we propo:od' are synchronized and can be
categorized as a SIMD (Single Input stresm, Multiple Data stream)

with small module granularity (Kaung 79%).

We preseat an analysis of the complexity of the algorithms,
We show that the average processing time of the MAX Algorithm is
o (log k) and the worst case processing time for the SORT Algo-
rithm is o(%log%-PZn-l) i.e. for large n the SORT~Algorithm
achieves an asymptotio sp?ed-up raetio of ¥ with respect to the
best sequential algorithm, which is optimal in the number of pro-
cessors used._Anothor parallel sort Algorithm which exhibit the
same porformance was presented by Baudet et. al. (Baudet, 78),

however, with a different communication scheme among processors,

T
- 4
-
bl

ALGORITHM VIA BROADCASTING

i PSS

a. The aslgorithm

Machine:

Input:

Output:

Procedure:

k+1 processors communicate by broadcssting, one of

which 1is a designated as the '‘Output processor’’.

a list of t distinct nummerically valuned elements
distributed among the X processors such that each

processor has one element.

the mazximum value of the eloments. This value {s

stored in the Output Processor.

the procedure can be considered as a sequence of
steps in which each processor performs two kinds of

operations:

2. Listen to broadcasted values by other proces-

sors and compare them to its own value,

b. Broadcast its value when its turn comes only if
it wasn’t dominated by any of the vaines broad=
casted preyioumsly.

Tﬁe sequence ends whem all processors have been

given their chance to broadcast. The maximum value

is the last one to be broadcasted. This value is
recorded in the Ontput Proocessor which is listening

to the whole process.

b. Complexity of MAX Algorithm

We assume that an empty time siot (which occurs when a pro-
cessor remains silent during its turn to broadcast) is muckh
shorter thenm the time to perform s comparison. Thus in the
analysis we <choose the '’'anumber of comparisons’’ as the measure
of complexity. This analysis does not take into account varia-
tions in computing time among processors, nor does it consider
communication time, Ve see, however, that cacﬁ ''real’’ broad-
cast is followed by a comparison performed in paraliel by some of
tpe processors. Therefore the number of comparisons performed is

a reasonable measure of complexity.

Let T(k) be the average number of comparisons performed by

the algorithm. T(k) obeys the following recurzence equation,

k_ .
T(k) = 1+§ T T(x-1)

=1 (1)

since if the first element to be brosdcast is the ith order ele-
ment, then exactly i-1 smong the rest of the k-1 processors will
remain silent and will not participate in the rest of the pro-
cess. We assume a homogeneous distribution of the elements among
the processors and thus the above event has probability of 1/k

and the recurrence follows, (1) counld be rewritten as:

k-1
T(k) = 142 ¥ 1(4)
1m0

with T(0)=0, T(1)=0, Solving this recurrence yields

T(k) < logk

Example

assnme we have =8

25 17 34 45 12 70 83 73
P1 P2 P3 P4 PS P6 P7 Ps
The processors start broadcasting from left to right. In
this case 5 Processors will . broadcast in the order

Pl - P3 - P4 - P6 - P7. The series of elements broadcasted
is s nondecreasing series 25, 34, 45, 70, 83 in which the last
olement to be brosdcasted 1i1s the max (83). The number of

'*"real’' broadcasts performed is 5§ in this case,

2. Parsllel MERGE-SORT Via Brosdcasting

a, The algorithm

Machine: k+1 processors communicate by broadcasting, one of which

is designated as the '’'Output processor'’.

Input: & list of n elements distributed among the Xt processors in
such a wasy that each processor has p/k elements. For simplicity
we assume here that n is a multiple of k (it <can Dbe extended

easily to the generszl case).

Qutput: The sorted list available iz the Output Processor.

Procedure: the procedure is decomposed into two phases - In phase

1 all processors in parallel sort their own lists. Any offi-
cient sequential sorting aslgorithm can be 1used (Quick-sort,
merge—sort). In Phase 2 all processors cooperatively participate
in the task of merging the sorted lists they possess. This phsase
is decomposed into cycles. Iz esch cycle the maximum of all the
elements at the top of each processor is determined. This ele-
ment is broadcast to the Output Processor as the next element in
the Moerged list and it is popped from the processor it belonged
to. The implementation of each list in s processor could be by a
stack, Each cycle is performed by the MAX-Algorithm opresented
_before, however, there will be some dependency between cycles in

the following way:

1) The first cycle is initiated by processor Pl'

2) The initiation of c¢cycle i+l depends on cycles 1 ++- i. Here

we distinguish some cases:

a) if cycle i consists of more than one broadcast, i.e.
the cyc¢le <c¢an be described by the processors partici-

pating in it P, P ses P P m>l with the
13 4

corresponding elements

s, .1s determined to be the Max for cycle i, it is

popped from processor Pi and is recorded as the next
®

element in the Output Processor. In this case (m>1)

3.

b)

cyele i+1 will Dbe initiated by processor Pi which
n-1

#ill zrebroadecsst the clement 11
m-1

m=]1, Theres are two casas here

b.1) a8, was not the first element inm the first cycle
1

it participated in
».2) it was

In case b.l, we have eycle 1 composed of only one

broadcast of e¢lement L which is determined to be the
1 -

Max of e¢ycle i and is popped ont of its processor and
joins as the next element in the Merged List. In this
case cycle i+l will be initiated Dby the immediate
predecessor of Pil in the first cycle ian which P11

broadcast a .
i,

If it was the first in its first cycle then <c¢ycle i+l

will be initiated by the same processor Pi , if it has
1

any more elements, otherwise by the first processor to

its right that has elements in its stack.

The algorithm ends when all processors have empty stacks,

The information needed to implement the above algorithm

(phase 2) is simply that each processor will keep the identity of

the processor who broadcast after itself in the most recent cycle

in which it perticipated. Each processor can also detect when a
cycle ends and by which processor it w;s.torminated { a cyele is
said to be terminated by processor Pi if it was the last who
broadcasted in this cycle), so he Xnows whether or not he should

initiate the next c¢cycle.

It is most convenient to follow the algorithm’s performance

by using a stack., We show it by the next example.

Example: Suppose we have n=12, k=4 and the situation in our 4

processors after phase 1 is a2s follows:

63 | {79 84 66
j t 75 65
BY; 28 32 17

P1 P2 P3 P4

The performance of the algorithm will be shown by giving the
sequence of Processors—elements ia each cycle, the element which
is determined t; be the next in the merged list and the stack by
which we view the performance of the algﬁrithn. The sign is
used to indicate empty time slots, i.e, a4 processor which

remained silent during its tura to broadcast.

The stack pushes broadcasted elements as it ‘’'hears’’ them

and pops the Max elements and them imitiates by the Top element,

Cycle 1:

Cycle 2:

Cycle 3:

Cycle 4:

64

79

64

84

66

output 84
-+

output 79
.....)

output 75§
—.).

output 66

-

84

79

63

79

.T9)

63

— popped

—~initiating

- . pop both elements
{ %

(
\

e initiating

735

64

63

63

« popped

e initising

66

64

<« popped

& injtiating

Cycle §:

Cycle 6:

Cyele 7:

Cycle B:

Cycle 9:

Cycle 10:

64 65
P2 [E— [S—
64

Pl L]

output
—)

output

output

ocoatput
_—y

output
e

output

10

65

64

63

54

32

28

65[v—popped
64| einitiating
64
64
63
163
64
1!
64
64 Rpopped
64 |
63 |« initiating
63
63
63 |)epopped
o)
l 54|« popped
32 |« popped
28|« initiating
| 25!
28-, popped
7 4
280/ initisting
s/l
| 231

Cycle 11: P1 Lot it et 25) popped
25 output 25 25}
—)
Cyele 12: (. . __ P4 117 ~ popped
17 output 17
-

In the above example we begin with the initial state when
phase 2 tbegins, The first cycle is initiated by Pys and the
broadcast turans are in order from left to right, In the first
cycle 83 was determined to be the Max element. It is popped from
processor P3 the top element of which then becomes 735. The
second c¢ycle is initiated by Processor P2 since it broadcasted
immediately before P3 im cycle 1 znd so on. A processor vwhich

has an empty stack remains sileant duriag its turs to broadcast.

[
L]

Complexity of MERGE-SORT Algorithm

Here we present a worst case analysis when again, we compute
thoe number of comparisons performed by‘thc glgorithm, Sorting
n/kX elements by a processor takes 0(%103%) using either Quicksort
or Mergesort =~ This is the complexity of phase 1. As for phasas
2, we next show that the worst case complexity is 2n-1. Ian order
to prove that we consider the following lemmas. Let #a, be the

i

number of times element i, was broasdcast,

lemma 1: if #ai >1, then 1 initiated

at least #ai-l cycles,

11

This lemma implies that whenever s, rebroadcasts after the first

i

time, it always initiates a cycle.

lemma 2: oeach time L initiates a cycle, (except for the last
¢cycle which includes only '1) the cycle is ter-—
minated by an element never broadcast before.

This lemma implies that for any broadcazst of L exclunding the

first and the last we can find =2 distinct.element wvhich broadcast

just once. This eslement is popped immediately after it is broad-

cast.

Since no two distinct eslements initiate the same .cycle. we
can partition the set {s;, ..., a] of all our elements to sub-
sets M -{SI,SZ, .o St} such that in each subset Si there is
either one element, which broadcast either once or twice orxr Si
consists of m elements one of them lj broadcast =+l times and the
rest m-1 elements are those which terminated each initiation of
the m—=1 cycles by 'j'

Conclasion 1:

2) if }SiI = m then the number of times all ihe

elements in Si broadcasted together demoted

The conclu;ion follows immediately from lemma 1, lemma 2 and
from the ©partitioning we created. Let S(n,k) be the number of

broadcssts performed by the algorithm, Obviounsly,

12

We conclude with the following theorem.

Theorem 1 n £ S(a,k) { 2n-1

Proof:

It is obvious that n{S(n,kX) since each element has to be brosd-
cast at least once. The second part S(n,k) £ 2n-1 follows quite
immediately from all the results given above, The first element
which is determined in the first gycle is broadcast just once,
We are left with n-1 elemonts for which we have shown that the
zpper bound for their total broadcast time is 2(n-1), which

yields:

S(n,k) ¢ 2(n=-1)+1 = 2n-1

We now give proofs for lemmas 1 and 2,
Proof of lemma 1
Assume to the comtrary that there are two cycles in botkh of which

li is not the initiating element.

and assumeé that cycle Ci was croated before cycle Ci . However,
b - 2

13

by the nature of the algorithm after cycle Ci , no element to the
1

left of 8, in cycle C, can be broadcast before &, is popped and
1

merged to the output list. So we get a contradiction.

Proof of lemma 2

Assume #'i > 2 and we arbitrarily choose the 2t? broadecast

of s, 1<m(#ai. The cycle which is initiated by the mth brosdcast

of :, is denoted by C? and the element to terminate the cycle is

n m- ® 8 9 L I m n
denoted by ti. So acycle Ci L ‘j ti. However, if ti
participated previously in a cycle, it should initiate all other
cycles according to lemma 1, a contradiction.

Conclusion:

The worst case performance of Algorithm MERGE-SORT presented

here is given by

nlogns _ nlogk . 4 .4
) J n
or*simply
T = (nlega)/k + o(n)

¥e know that the maximum number of comparisons required for sort-
ing a sequence of n elemonts on a sequential computer is asymp-
totically nlogn. Therefore, when k is smaller than 1log = (in
order of nagn;tude),tha asymptotic speed-up ratio of our algo-
fithm over the optimal sequential slgorithm is k, which is

optimal. In particular, when k=log n, the ratio of this parallel

14

algorithm to the optimal sequential algorithm is of order log =n,
the number of processors. On the other hand, when k is greater
than log n, the total execuntion time required is asymptotically

linear in n.

NOTE: The MAXI algorithm andl the MERGE~-SORT algorithm
presented here <could be modified to work asynchro-
nously., This is a result of the fact that the order by
which processors broadcast is maintained only for the
purpose of preventing collisions; however, for the
correctness of the algorithm, the order by whichk pro-—
cossors broadcast in each cycle is not sffecting the
results., The only important thing is to be able to
determine 1) when a8 cycle ends and 2) who initiates the

next cycle,

Refsrences

[1] EKung, H.T. Synchronized and' asynchronous parallel algo-
rithms for multiprocessors in Algorithms and Complexity: New
Directions and Recent Results, (T. F. Troub, ed.}, Academic
Press, New York, pp. 153-200, 1976.

[2] Baudet, Gersrd and David Stevénson. '’'Optimal Sorting Algo-
rithms for Parallel Computers’’, IEEE Transactiops oz Com-—
puters, Vol., C-27, No. 1, JTanuary 1978.

[3] Deo, Narsengh, C. Y, Pang and R, E., Lord. **Two Parallel
Algorithms for Shortest Path Problems’’, proceedings of 1980
international conference on parallel processing.

[4] Kung, H.T. ''The Structurs of Parallel Algorithms '°
Advances in Computers, Vol. 19,

15

