A CONSTRAINT-PROPAGATION APPROACH
TO PROBABILISTIC REASONING

Judea Pearl June 1985
CSD-850020






Technical Report
CSD-850020
R-44

Revision II
October 1985

A CONSTRAINT - PROPAGATION APPROACH
TO PROBABILISTIC REASONING*

Judea Pearl
Cognitive Systems Laboratory
Computer Science Department

University of California
Los Angeles, CA 90024
(judea@UCLA-locus)
(213) 825-3243

In Proceedings of Workshop ¢ =
Uncertainty and Probability
in Artificial Intelligence
UCLA
August 14-16, 1985
pp- 31-42

* This work was supported in part by the National Science Foundation, Grant #DSR 83-13875



A CONSTRAINT - PROPAGATION APPROACH
TO PROBABILISTIC REASONING

Judea Pearl
Computer Science Department, University of California, Los Angeles

ABSTRACT

The paper demonstrates that strict adherence to probability theory does not preclude the
use of concurrent, self-activated constraint-propagation mechanisms for managing uncertainty.
Maintaining local records of sources-of-belief allows both predictive and diagnostic inferences
to be activated simultaneously and propagate harmoniously towards a stable equilibrium.

1. INTRODUCTION: BAYES NETWORKS AND CONSTRAINTS PROPAGATION

Scholarly textbooks on probability theory often create the impression that to construct an
adequate representation of probabilistic knowledge we must first define a joint distribution func-
tion on all propositions and their combinations, i.e., on the so-called universe of discernment.
The computational difficulties involved in articulating, validating, storing and manipulating such
distributions seem insurmountable and have discouraged many Al researchers from openly us-
ing probabilistic formalisms in expert systems. In truth, however, these difficulties are merely
mathematical fiction, and do not plague common-sensical approaches to probabilistic reasoning.
In a sparsely connected world like ours, it is fairly clear that probabilistic knowledge, in both
man and machine, should not be represented by entries of a giant joint-distribution table, but
rather by a network of low-order probabilistic relationships between small clusters of semanti-
cally related propositions. One effective representation of such relationships is provided by
Bayesian Networks: a class of networks typified by the use of "influence diagrams" in decision
analysis [Howard and Matheson, 1984] and "inference networks" in expert systems [Duda, Hart,
and Nilsson, 1976]. (The alternative network representation using Markov fields [Pearl and Paz,
1985] will not be discussed here.)

Bayes Networks are directed acyclic graphs in which the nodes represent propositions
(or variables), the arcs signify the existence of direct causal influences between the linked pro-
positions, and the strengths of these influences are quantified by conditional probabilities (Figure
1). Thus, if the graph contains the variables x,, .. ., x,, and §; is the set of parents for variable
x;, then a complete and consistent quantification can be attained by specifying, for each node x;,
an ascessment of Py, | §.) The praduct of all these assessments

...... 3

P(xy,...,x,)=T1P(x;15;) (1)

constitutes a joint-probability model which supports the assessed quantities. That is, if we com-
pute the conditional probabilities P (x; | S;) dictated by P(x,,..., x,), the original assessments
are recovered. For example, the distribution corresponding to the graph of Figure 1 can be writ-
ten by inspection:



Plxixax3X4X5x6) =P xglxs) Plxs|xpxs) Pxalxyx) Plxglx ) Plxylxy) Plxy).

Figure 1

Bayesian networks can be constructed modularly by a simple judgmental process. The
process permits people to express qualitative relationships perceived to be essential, and the net-
work preserves these qualities despite sloppy assignments of numerical estimates. The addition
of any new node x; to the network only requires that the expert identify a set §; of variables,
which "directly bear” on x;, quantify the strength of this local relation, and make no commitment
regarding the effect of x; on other variables, outside S;. Even though each judgment is pre-
formed locally, their sum total is guaranteed to be consistent.

An important feature of a Bayesian network is that it provides a clear visual representa-
tion for many independence relationships embedded in the underlying probabilistic model. The
criterion for detecting these independencies is based on graph separation: namely, if all paths
between x; and x; are "blocked"” by a subset § of variables, then x; is independent of x; given the
values of the variables in §. Thus, each variable x; is independent of both its siblings and its
grandparents, given the values of the variables in its parent set §;. For this "blocking” criterion
to hold in general, we must provide a special interpretation of separation for nodes that share
common children. We say that the pathway along arrows meeting head-to-head at node x, is
"blocked”, unless x, or any of its descendants is in S. In Figure 1, for example, x, and x, are in-
dependent given §,={x,} or §,={xx,}, because the two paths between x, and x, will be
blocked by either S, or §,. However, x, and x, may not be independent given S ={x x4}, be-
cause x4, as a descendant of x5 , "unblocks” the head-to-head connection at x, thus opening a
pathway between x, and x .

Once a Bayes network is established, it can be used to represent the deep causal
knowledge of a domain expert and can provide probabilistic answers to all queries regarding the
interpretation of evidential information in that domain. Ideally, however, we would also like to
treat such a network as a computational architecture that facilitates the interpretation of data a¢
the knowledge level itself, similar to the way people trace associations in long-term memory.
Accordingly, we want to view the links not merely as codes for storing factual knowledge but



also as pathways and activation centers which both direct and propel the flow of data in the pro-
cess of querying and updating that knowledge.

The process of self-activated interpretation is conveniently described in terms of
constraint-propagation or relaxation paradigm. Each link in the network represents constraints
on the possible values that the belief parameters can take at the two nodes connected by the link.
Updating is accomplished by successively finding unsatisfied constraints and modifying the be-
lief parameters, thus bringing "out of kilter" constraints back to relaxed status. Relaxing a con-
straint usually perturbs its neighbors, so relaxation results in a multi-directional propagation pro-
cess which reaches a static equilibrium when all constraints are satisfied.

The relaxation paradigm has several advantages over other mechanisms of uncertainty
management. It permits knowledge to be specified declaratively without regard for the specific
control method used. It is readily implementable by pattern-oriented rule-based languages as
well as by object-oriented languages. In the former, the antecedents of the rules can be made to
detect violations of constraints, and their consequent parts specify corrective actions. In the
latter, each node is an object of the same generic type, and the constraints are the messages by
which neighboring objects communicate. Additionally, conclusions reached by a relaxation pro-
cess can be supported by psychologically meaningful explanations because the intermediate
steps of the process involve only local information, and they proceed along familiar, prestored
pathways. Finally, relaxation can be executed in parallel by a large array of simple autonomous
processes, thus providing a reasonable model of human cognitive behavior.

While constraint-propagation mechanisms have found several applications in Al such as
vision [Rosenfeld, Hummel and Zucker, 1976; Waltz, 1972] and truth maintenance [McAllester,
1980], their use in evidential reasoning has been limited to non-Bayesian formalisms [e.g.
Lowrance, 1982].

The reason has been several-fold. First, the conditional probabilities characterizing the
links in the network do not seem to impose definitive constraints on the probabilities that can be
assigned to the nodes. The quantifier P (A | B} only restricts the belief accorded to A in a very
special set of circumstances: namely, when B is known to be true with absolute certainty, and
when no other evidential data is available. Under normal circumstances, all internal nodes in the
network will be subject to some uncertainty and, moreover, after observing evidence e the con-
ditional belief in A is no longer governed by P (A |B) but by P(A | B, e), which may be totally
different. The result is that any assignment of beliefs, P(4) and P (B), to propositions A and B
can be consistent with the value of P (A |B) initially assigned to the link connecting them; there-
fore, no violation of constraint can be detected locally.

Next, the difference between P(A |B,e) and P(A |B) suggests that the weights on the
links should not remain fixed but should undergo constant adjustment as new evidence arrives.
This would require enormous computation and would wipe out the advantages normally associ-
ated with propagation through fixed constraints.



Finally, the fact that evidential reasoning involves both top-down (predictive) and
bottom-up (diagnostic) inferences has caused apprehensions that pathological cases of instabili-
ty, deadlock, and circular reasoning will develop once we allow the propagation process to run
its course unsupervised. Indeed, if a stronger belief in a given hypothesis means a greater ex-
pectation for the occurrence of its various manifestations, and if, conversely, a greater certainty
in the occurrence of these manifestations adds further credence to the hypothesis, how can one
avoid infinite updating loops when the processors responsible for these propositions begin to
communicate with one another? Lowrance [1982] also expresses concern that if proposition B
influences the belief in A via P(A |B) and proposition A influences the belief in B via P(B {A),
then the "feedback between A and B would eventually drive the two beliefs to the marginals,”
thus preventing any further updating from occurring.

This paper shows that coherent and stable probabilistic reasoning can be accomplished
by local propagation mechanisms while keeping the weights on the links constant throughout the
process. This is made possible by characterizing the belief in each proposition by a vector of
parameters, one for each port. Each component in the vector stands for the degree of support
that the host proposition obtains from one of its neighbors. We show that, in certain networks,
maintaining such a breakdown record of the sources of belief facilitates efficient updating of
parameters by constraint-propagation, and that the network relaxes to a stable equilibrium con-
sistent with the axioms of probability theory, in time proportional to the network diameter. This
record of parameters is also postulated as the mechanism which permits people to trace back the
sources of beliefs for the purpose of constructing explanatory arguments.

2. PROPAGATION IN SINGLY-CONNECTED NETWORKS

We shall first consider Bayes networks which are singly connected, that is, there is at
most one underlying path between any pair of nodes. Propagation algorithms for such networks
were developed by Pearl [1982] for the special case of trees and were later generalized by Kim
and Pearl [1983] to allow nodes with multiple parents. To establish the notation necessary for

- treating more general networks, we shall reiterate here the results of Kim and Pear] and cast
them in the context of constraint propagation.

Let each node in the network represent a multivalued variable which might stand for a
collection of mutuaily exclusive hypotheses (e.g., identity of organism: ORG, ORG,,...) or a
collection of possible observations (e.g. patient’s temperature: high, medium, low). Let a vari-
able be labeled by a capital letter, e.g., A,B,C, .., and its possible values subscripted, e.g.,
A A, ..A,. Each group of arrows pointing at a given node is quantified by a fixed conditional
probability matrix. For example, the arrows B =5 4 and ¢ — A in Figure 2, will be quantified
by a matrix M, with entries: M, =P (4;|8; Cy).

These matrices quantify the strength of influence between causes and their consequences.
Additionally, they contain the information for deciding how the belief in one cause is affected
by evidence bearing on another, once their common manifestation is observed. This interaction,
colloquially termed "explaining away,” is a prevailing pattern of human reasoning, and occurs
even when the causal variables are marginally independent. For example, when a physician dis-



covers evidence in favor of one disease, it reduces the credibility of other diseases, although the
patient could be suffering from two or more disorders simultaneously.

Instantiated variables constituting the incoming evidence or dara will be denoted by D.
For the sake of clarity we will distinguish between the fixed conditional probabilities that quanti-
fy the links, e.g. P(A |B), and the dynamic values of the updated node probabilities. The latter
will be denoted by BEL(4;), which reflects the overall belief accorded to proposition 4; by ail
data so far received. Thus,

A
BEL(A;,)=P(A;|D) (2)

where D is the value combination of all instantiated variables.
Fusion Equations

Consider a fragment of a singly connected network, as depicted in Figure 2. The link
B — A partitions the graph into two parts: an upper subgraph Gz}, and a lower subgraph Gg,,
the complement of Gg,. These two graphs contain two sets of data which we shall call Dg, and
Dg,, respectively. Likewise, the links C - A, A -5 X, and A — Y define the subgraphs Gg;,
Gax, and G,y which contain the data sets DZ,, Dy, and D .y, respectively. Since A is a com-
mon child of B and C, it does not separate G4} from GZ,. However, it does separate the fol-
lowing three subgraphs: G4 \ U G, Gax, and G4y, and we can write

P(Dga, Dy, Dix. Day |A;) =P (Dgy, DEa 1A P (Dix | A)) P(Dyy | A)) (3)
Thus, using Bayes rule, the overall strength of belief in A; can be written:
BEL(A;)=P (A;|Dgy, Da, Dax, Day) =0 P (A; | Dgy, D) P (Dax 1A;) P (Dgy 1A 4)
where a is a normalizing constant. By further conditioning over the values of B and C, we get
BEL (A;) =P (Dyx |A;)) P (Dgy |1A)I Zk}P(A.' |B;C) P(B;Dga) P(Cy | DELN. (3
j

Eq.(5) shows that the probability distribution of each variable A in the network can be computed
if three types of parameters are made available: (1) the current strength of the causal support, T,
contributed by each incoming link to A

T4 (B;)=P(B;|Dgy) (6)
(2) the current strength of the diagnostic support, A, contributed by each outgoing link from A

(A =P (D) A (7)
and (3) the fixed conditional probability matrix, P(A |B, C), which relates the variable A to its

immediate causes. Accordingly, we let each link carry two dynamic parameters, = and A, and let
each node store the information contained in P(4 |B,C).



With these parameters at hand, the fusion equation (5) becomes

BEL(A)) =0 A (A;) Ay(A)) T P(A;|B;Cy) ma(B)) 14 (Cy) (8)
J

Alternatively, from two parameters, n and A, residing on the same link we can compute the be-
lief distribution of the parent node by the product

BEL(B;)=am,(B;) h4(B;) (9

Figure 2

Updating Equations

Assume that the vectors n and A are stored with each link, = at the tail of the arrow and A
at its head. Our task is now to prescribe how the values of = and A at a given link are con-
strained by the corresponding parameters at neighboring links.

Updating A: Starting from the definition of X, (B;) =P (Dg, | B;), we partition the data Dg, into
its components: A, D, D4y, D&y, and summing over all values of A and C we get

Aa(B;)=0X[ms (C3 Ax(Ap) Ay(Ay) P (A, |B,C)). (10)
j k

Eq.(10) shows that only three parameters (in addition to the conditional probabilities
P(A |B,()) need to be involved in updating the diagnostic parameter vector A,(8): m,4(C),
Ax{A), and Ay(A). This is expected, since Dy, is completely summarized by X, ¥, and C.



Updating n: The rule for updating the causal parameter nty(4) is expressed by the formula:
Ty (A;) = ahy (A TP (4; 1B;Cy) m4(B;)ma(C)] (11)
&

Thus, ny(A), like A4 (B), is also determined by three neighboring parameters: Ay(A), ®4(B), and
7y (C).

The boundary conditions are established as follows:

1. Data-nodes: If the j* state of B is known to be true, we add to 8 a dummy son Z and
set Az(B)=(0,...0,1,0,...,0) with 1 at the j* position.

2. Anticipatory nodes: If B is a childless node that has not been instantiated, we set
Az(B)=(1,1,.,1).

3. Root-nodes: If B is a node with no parents, we add to B a dummy father Z instantiated
to Z=TRUE and set the link matrix P(B|Z=TRUE) equal to the prior P (8).

Constraints Propagation

So far we have viewed the links of the network as message-carrying devices through
which the node processors communicate. They can also be viewed as constraint-maintaining
agents. Imagine that each node is characterized by several parameter vectors, one for each of its
ports. The n’s are placed on the outgoing ports and the A’s on the incoming ports. In node A of
Figure 2, for example, the parameters my(A) and my(4) will be placed on the lower two ports
(facing the children X and Y) while A,(8) and A,4(C) will be placed on the upper ports (facing
the parents). Imagine also that a node is permitted to compare its own set of parameters with
those of its neighbors. Equations (10) and (11) then dictate how the link matrices P(A|B,C) im-
pose equality constraints between the parameters of one node and those of its neighbors. If
these equalities are satisfied (within some reasonable tolerance), no activity takes place. Howev-
er, if any of these equalities is violated, the responsible node is activated to revise its violating
parameter and set it straight. This, of course, will activate similar revisions at neighboring
nodes and will set up a multidirectional propagation process.

Eqs.(10) and (11) demonstrate that a perturbation of the causal parameter, n, will not af-
fect the diagnostic parameter, A, on the same link, and vice versa. The two are orthogonal to
each other since they depend on two disjoint sets of data. Therefore, no feedback or "circular
reasoning” can take place -- any perturbation of beliefs due to new evidence propagates through
the network and is absorbed at the boundary without reflection, resulting in a new equilibrium
state compatible with the newly observed evidence.

In summary, we see that the architectural objectives of propagating beliefs coherently
through an active network of primitive, identical, and autonomous processors can be fully real-
ized in singly-connected graphs. Instabilities due to cyclic inferences are avoided by using mul-
tiple, source-identified belief parameters, and equilibrium is guaranteed to be reached in time
proportional to the network diameter.



The primitive processors are simple and repetitive, and require no working memory ex-
cept that used in matrix multiplications. Thus, this architecture lends itself naturally to hardware
implementation, capable of real-time interpretation of rapidly changing data. It also provides a
reasonable model of neural nets involved in cognitive tasks such as visual recognition, reading
comprehension [Rumelhart, 1976}, and associative retrieval [Anderson, 1983], where unsuper-
vised concurrent processing is an uncontested mechanism.

3. PROPAGATION IN MULTIPLY-CONNECTED NETWORKS

The efficacy of singly-connected networks in supporting autonomous propagation raises
the question of whether similar propagation mechanisms exist in less restrictive networks (like
the one in Figure 1), where multiple parents of common children also possess common ances-
tors, thus forming loops in the underlying network. If we ignore the existence of loops and per-
mit the nodes to continue communicating with each other as if the network were singly-
connected, it will set up messages circulating indefinitely around the loops and the process nor-
mally will not converge to a coherent equilibrium.

A straightforward way of handling the network of Figure 1 would be to appoint a local
interpreter for the loop x,, x5, x4, x5 that will pass messages directly between x, and x4, account-
ing for the interactions between x, and x5. This amounts basically to collapsing nodes x, and x4
into a single node, representing the compound variable (x;, x;). This method works well on
small loops, but as soon as the number of variables exceeds 3 or 4, collapsing requires handling
huge matrices and washes away the natural conceptual structure embedded in the original net-
work.

A second method of propagation is based on "stochastic relaxation" {Geman and Geman,
1984]. Each processor interrogates the states of the variables within its influencing neighbor-
hood, computes a belief distribution for the values of its host variable, then randomly selects one
of these values with probability given by the computed distribution. The value chosen will sub-
sequently be interrogated by the neighbors upon computing their beliefs, and so on. This
scheme guarantees convergence, but usually requires very long relaxation times to reach a
stcady state.

Propagation by Conditioning

The method that we found most promising is based on the ability to change the connec-
tivity of a network and render it singly connected by instantiating a selected group of variables.
In Figure 1, for example, instantiating x; to some value would block the pathway x;, x,, x5 and
would render the rest of the network singly connected, where the propagation techniques of the
preceding section are applicable. Thus, if we wish to propagate the impact of an observed da-
tum, say at x4, to the entire network, we first assume x, =0, propagate the impact of x4 to the
variables x,,...,xs, repeat the propagation under the assumption x; =1 and, finaily, linearly
combine the two results weighed by the posterior probability P (x| x¢).



The legitimacy of this method is clearly seen from the ever-faithful conditioning rule of

probability:
P(xy - Ixgd =L Pxg.|xg,X) P (x| x¢)

In the normal use of the rule we seek a conditioning variable that renders some other variables
independent (separating the network into unconnected fragments), but here we settle for more
modest goals, requiring only that the resulting conditional probability P (x,,...,x¢|x,) have a
singly-connected network representation. Note that the choice of x, as a conditioning variable
would be equally adequate, but x5 is a bad choice, since instantiating this variable would not
disconnect the pathway x,, x5, x3.

The tool of conditioning is not foreign to human reasoning. The terms "hypothetical” or
"assumption-based” reasoning, "reasoning by cases,” and "envisioning” all refer to the same
basic mechanism of selecting a key variable, binding it to some of its values, deriving the conse-
quences of each binding separately, and integrating those consequences together. Reasoning by
cases is very frequently used in explanation and argumentation -- showing that diametrically op-
posed assumptions impart equal credence to a given proposition is a convincing argument for
assigning that credence to the proposition. Likewise, showing that different sets of cir-
cumstances would require the same type of action constitutes a strong argument for recommend-
ing that action.

Although conditioning was introduced here as a sequential process, it can easily be im-
plemented in parallel, to comply with our propagation paradigm. Instead of a single set of - A
parameters, each node should maintain several such sets, one for each value of the conditioning
variable. The constraint equations (Eqs. (10) and (11)) are checked for each of these sets indivi-
dually, and the appropriate parameters are updated. Additionally, the posterior probability of the
conditioning variable can also pass along from node to node so that when the overall belief in a
given proposition is required, the proper weights will be available to perform the averaging.

An Ilustration

As an example, consider the network in Figure 1 and assume that all variables are binary.
Under ordinary updating conditions, with the loops ignored, nodes x,, x5 and x, would receive
from node x, the parameters &, (x|)==, (x)) =", (x|)=P(x}), x,;=0,1, since initially, all X’s
are set to (1,1). Subsequently, x, and x; will compute for their children the parameters
., (X2), %, (x7) and m, (x4) where, using Eq. (11),

M (x3)= Y Plx3| x =i)P(x,=i)
i=0,1

T (x)=R (x)= 3 Plxy | xy=i)P(xy=i)
=01

If these parameters would later be used by x5 and x, for computing their belief distributions, er-
roneous results would ensue because the parents are not mutually independent.
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By contrast, under conditioning routines, node x, (as well as x3) will prepare for x, not
a single parameter m,, (x,), but two:

EIOS(X2)=P(.I2|11=O) I2=0,1

mL(x)=P(xy | x,=1) x,=0,1

together with the prior probability P (x,) (see Figure 3). Receiving these two forces x5 to follow
suit and compute two sets of parameters as well:

(4]
T (xs)= X Pxslxyx)md(x)ng(xs)
x,,x;:O,l

nl(xs)= 3 Plxs | x93 30 ()M, (x )
XX3= 0,1

w2 (xz) Tx(%2 /
Az (x2)
Xe A7 (xs)

Figure 3

Now imagine that some evidence is obtained, say x4;=1. Node x4 will provide x5 with
the diagnostic parameters:

lx5(x5)=P(x6tl|x5) x5=0,1

and subsequently, x5 will deliver to x, two sets of A, (x,) parameters:

11



Apfx2) =00 (x3) 3P (x5]x0x3)A (X 5)

AMx) =l Tlx) TP (x5ix9x3)A (x5)

A similar set will be computed for x5. To calculate the overall belief in a proposition, say x,,
we make use of the posterior probability P (x,1x¢) and compute the average

BEL (x)=B°nl (x) Ao (x) P(x =0|xg=1)+B' n) (x) A, (x ) P(x ;=1 xg= 1)

where

. , . -1
p = [ z “;{,(xz)li',(xz)] ;=01
x=0,1

In general, every instantiated node x; should compute the quantity P (x;|x;.e), where ¢ is
all previous evidence, and pass it along to the other variables as a separate parameter, to be used
as a mixing weight. This computation can best be done by the product
P(xyix;,e)=kP(x;|x,e)P(x|e), because the two factors on the right hand side are available to
x; at the moment of its instantiation: the first stands for the previous conditioned parameters that
make up BEL(x;), and the second is the previous mixing weight.

It is essential to note that the conditioned parameters must propagate as separate quanti-
ties and only be averaged when the final belief measures are to be calculated. The reason is that
the conditioning variable influences the other variables in the loop along two separate paths,
clockwise and counterclockwise. Passing along the averaged quantities, instead of the individu-
al constituents, amounts to counting the prior information twice, instead of once.

CONCLUSIONS

The architectural objectives of propagating beliefs coherently by self-activated and con-
current mechanisms are fully realizable in singly-connected graphs. In multiply-connected
graphs the mechanism can still be applicable but it requires duplicating the number of messages
for each conditioning variable.

While the removal of a single node is sufficient to break up all loops in the network of
Figure 1, more complex networks may require several such nodes. When this happens, the pro-
pagation must be conditioned on all value combinations of the variables in this cutset, and their
number might be substantial. It is important. therefore. to find as small a cutset as possible,
Although the problem of finding a minimal cutset is probably NP hard, simple heuristics exist
for finding close-to-optimal sets [Levy and Low, 1983]. Moreover, the effort invested in search-
ing for a small cutset will be amortized over many propagation instances, as long as the network
topology remains the same.

12



On the whole, the capability of Bayesian networks to support propagation mechanisms
for belief maintenance neutralizes many arguments against the use of probabilities as a formal-
ism for representing uncertainty (Pear] 1985). The source-identifying parameters, n and A, pro-
vide a convenient encoding of the nature and origin of the uncertainty present and can be traced
back to produce meaningful linguistic descriptions and explanations. For example, if proposi-
tion X (see Figure 2) delivers a message Ay'(A) to A that is significantly larger than the previous
message Ay(A), it is an easy matter to generate the statement: "the belief in A has increased due
to new evidence in favor of X". If the user insists on further identifying the evidence responsi-
ble for the change in Bel (4), it is possible to trace back the support parameters down to the bare
data.

When a recommendation is finally issued by the system, it can be justified by a similar
process: tracing links with strong measures of support, thus extracting the skeleton of an expla-
nation subtree. In general, such an explanation subtree may have disconnected components (i.e.,
a forest) indicating the existence of conflicting evidence which cancel each other’s impact at
various levels of the graph. In such a case, it would be appropriate to coin a sentence such as:
"Even though the occurrence of E, constitutes a strong indication for A, having observed E,
sheds serious doubt on its significance in determining B".

The profile of the support list surrounding a given proposition can also be used to make a
proper distinction between the terms: "probable", "plausible, and "possible”. Event A is prob-
able if Bel (4) is sufficiently high. "A is plausible” usually means that there are strong argu-
ments in favor of A but not a strong evidence supporting it. Since the n parameters indicate the
degree of causal support, and since causal dependence is normally associated with predictive ar-
guments based on "first-principles”, a plausible event will be characterized by high n’s and low
A’s. A "possible” event is one that has the potential of being confirmed by some conceivable but
yet unobserved evidence. Such event can be readily identified either by simulating the effect of
future observations, or by explicitly maintaining with each proposition a parameter indicating its
potential for increased (or decreased) belief due to pending future evidence.
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