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Abstract

In a Shout-Echo network, processors communicate by means of broadcast messages
(shout) and replies to received messages (echo). Performance is measured in terms of communi-
cation cycles, where each cycle consists of one broadcast message and the replies to it from all
other processors. In this paper we consider the problem of selection by rank in a set distri-
buted among the processors of a Shout-Echo network. We show a tight lower and upper
bound of size ©(log min{ny,., k}) on the number of cycles required for selection, where npg,.
is the size of the second-largest subset of elements in any processor, and k is the rank of the
element to be selected. We first show the lower bound, then give an efficient algorithm which
achieves this bound in a wide range of cases. The algorithm improves the previous best upper
bound [Rote83] by a factor of O(logp), where p is the pumber of processors in the network.

1. Introduction

A Shout-Echo network [Sant83a] is a distributed computation model in which a collec-
tion of independent processors communicate by means of broadcast messages (shout) and
replies to received broadcast messages (echo). The performance of algorithms in this model is
measured in terms of the total number of communication cycles required by the computation,
where a communication cycle consists of one broadcast message and the replies to it from all

processors.

In this paper we consider the problem of selecting the k'th largest element in a set of n
clements distributed arbitrarily among the processors of a Shout-Echo network. The problem
was previously investigated in the context of this model by Santoro and Sidney [Sant82,
Sant83a, Sant83b], who presented two different selection algorithms which run in

O(min {&, plog—} ) cycles, where p is the number of processors in the network. They also

showed a lower bound of ((logk) cycles for the case where the set is evenly distributed (i.e., all

t This research was supported by an IBM Faculty Development Award.
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processors have the same number of elements) and ks-i. The lower bound is a generalization
of the N(logn) bound on finding the median when p=2, shown by Rodeh [Rode82]. Rotem,
Santoro and Sidney [Rote83] gave an O(logp 103%) algorithm for finding the median of an

evenly distributed set. This algorithm can be easily generalized for arbitrary (uneven) distribu-
tions and any rank k, thereby reducing the upper bound of the general problem to
O(logp log min{ny.ye, k}), Where npae is the size of the second-largest subset of elements in

il
any processor. -

Our work improves on the above results in the following way. First, we generalize the
lower bound by showing that C(log min{ng,.2, k}) cycles are required for any rank & and any
distribution of the elements. We then present a selection algorithm which runs in Oflogk) cycles
when k<npa.o, and otherwise in Oflogn) cycles. By showing that in a wide range of cases
O(log n)=O(l0g N yaxz), We prove that the upper and lower bounds on selection are tight. Our
algorithm thus improves the previous best upper bound by a factor of logp.

The remainder of this paper is organized as follows. Section 2 defines our notation. The
lower bound is shown in Section 3. Sections 4 presents the selection algorithm, and Section 5
analyzes its complexity. Concluding remarks are given in Section 6.

2, Definitions and Notition

We denote the p processors of a Shout-Echo network by Py, P,, . . . ,P,, where each P;
is a unique identifier taken from a totally ordered set of identifiers.

Let N be a collection of n elements distributed arbitrarily among the processors.
Without loss of generality (w.l.g.) we may assume that N is a set, i.e., that all elements in /N are
distinct. If not, we can replace each element £ in P, with the triple (£, P;, j¢} where j¢ is a
unique index within P;, and use lexicographic order among the triples. We denote by NJj] the
j'th largest element in N.

The subset of N at each processor P; is denoted N;, with cardinality | N;| =n;. We
assume that n;>0. The terms ny,, and fy,,, denote, respectively, the largest and the second

n-
largest n;. N|j] denotes the s'th largest element in N N,[[T"[] is called the median of N,.

Selection is defined as the task of identifying N{k], the k'th largest element in N, for a
given rank k. W.lg. we may assume 1<k< I'L;'] (if not, reverse the sorting order and select the

element of rank n-k+1).



Throughout the paper we use log to denote logarithm of base 2. We assume that each
message is of size at most O{logJ) bits, where # is the value of the largest parameter or datum
involved in the computation.

3. Lower Bounds

To show the lower bounds we use an adversary argument adapted from Frederickson
[Fred83). The discussion is limited to comparison-based algorithms. :

Theorem 1. Let nMQSkS[-;']. The number of communication cycles required to select the

k'th largest element in a Shout-Echo network is O(log nmaxo)-

Proof. We devise an adversary that, given the cardinalities n; and a selection algorithm, pro-
vides input sets N; such that the algorithm requires {l(logny,) cycles when executed on that
input. The adversary is free to make each element arbitrary large or small, as long as the rela-
tive order in each N; is maintained consistently. Initially, none of the elements has a fixed
magnitude. The adversary follows the execution of the algorithm, fixing the magnitude of ele-
ments as the algorithm proceeds. Elements not yet fixed are candidates for selection. Fixed
. elements are made either "very small” or "very large”, in the sense that they are smaller or
larger than all the remaining candidates in the network. By keeping fewer thar k very large
clements and fewer than n-k very small elements at all times, the adversary excludes such ele-
ments from being selected. Clearly, the algorithm cannot terminate before the number of can-
didates is reduced to one. Total order is maintained among the fixed elements of all processors
by making each new very small element (very large element, resp.) larger (smaller) than all the
existing very small (very large) elements.

Let Pp,c and Pp,., denote two processors which have, respectively, ny,, and n,,., ele-
ments. The adversary initializes the elements of N as follows. np,. elements in each of Pq,,
and Py, are made candidates. Among the remaining n-2nq,, elements, an arbitrary k-np,.o
elements are made very large and the rest very small. With this setup, the problem of selecting
N[k] reduces to finding the median of the 2ny,e candidates.

Whenever a message is sent which contains a candidate of Pp,y that is smaller or equal
(larger, resp.) than the median of the candidates in P,,, the adversary fixes this candidate
and all those smaller (larger) than it in Py, to be very small (very large), and an equal number
of candidates in P, to be very large (very small). From now on, these elements are no longer
candidates. When the message contains a candidate of Pp,x, the same action with the roles of
Ppa. and Pp,,, reversed is taken. No action is taken by the adversary if the message does not

contain a candidate. Concurrent messages are handled in some arbitrary order.



Let 2m be the number of remaining candidates immediately before a message contain-
ing one of the candidates is sent. It can be seen that no more than m+1 candidates are fixed
by the adversary as a result of that message. Since there are initially 2ny,,» candidates, all of
them located in P,y and Ppays, (H(log2np,x,) messages originating from either P,y or Py,
are needed to reduce the number of candidates in the network to one. Clearly, this requires
Nlognp,o) cycles. ®

We now show a lower bound for the case k<npy,y;.

Theorem 2. Let k<ng,;. The number of communication cycles required to select the k'th
largest element in a Shout-Echo network is (Ylogk).

Proof. We use the same adversary argument as in Theorem 1. The only difference is in the
initial choice of candidates and fixed elements. Here, only k elements in eack of Pp,, and
P, are made candidates, and all the remaining elements in the network are made very small.
The result follows from a similar analysis to that of Theorem 1. ®

Corollary 1. The number of communication cycles required to select the k’th largest element
in a Shout-Echo network is {}(log min{k, ng.yo}). ®

4. The Selection Algorithm

A naive approach to selection is to sort all elements, then retrieve the selected element
directly by rank. This, however, is inefficient because the extra information provided by sort-
ing comes at a cost and is not really needed. A more promising approach is the following.
Reduce the number of candidates for selection by repetitively applying some filtering mechan-
ism. When the number of remaining candidates gets below a specified threshold value, sort the
remaining candidates and retrieve the selected element by rank. In the sequel we present a
selection algorithm which follows this approach. The algorithm works for arbitrary distribution
of the input. We first give the algorithm and show its correctness, then describe the implemen-
tation in the Shout-Echo model. The complexity is discussed in Section 5.

4.1. Description of the Algorithm

Let us demote the number of remaining candidates for selection at each stage of the
algorithm by m. The subset of remaining candidates in each P; is denoted M;, with cardinality
| M;|=m;,. The threshold value discussed above is denoted m*, and k is the rank of the ele-
ment to be selected. The algorithm consists of three stages: imitialization (step 1); iterative
filtering (steps 2-8); and termination {step 7).



Algorithm Select(k)

(1)

(2)

(3)
(4)

()

(6)

(7)

»
M;:=N;; m;:=n; m:=)3 m,
1]
m‘
Find the median M,[[—2-""|] of each M;.t Denote this element med;.

If M; is empty, med; is set to a dummy value.

Sort the medians in descending order med,-IZmed,-zz e 2 med,-’.

Find the smallest index { with respect to the sorted medians

such that E m; >? Denote med; as med,, 3

J=1
Find the total number of candidates that are greater or equal to med, .
Denote this number m,, .

Compare my, with k and choose the appropriate case below.
Case 1- m|/.=k
" The selected element is med, /o terminate the algorithm.

(a) Purge from each M; the elements smaller or equat to med. =
(b) i‘—‘MSI’ m-_ml/,
() 1f m>m* then go to step 2; otherwise go to step 7.

Case 3. m,, <k

I./=
(a) Purge from each M; the elements greater or equal to med.h.
(b) mp=|M;|; m:=m-m, ; k:=k-m. .

{c) If m>m?* then go to step 2; otherwise go to step 7.

(a) Collect all the remaining candidates into one set M.
(b} Find M[k], which is the selected element; terminate the algorithm.

t This can be done using some efficient sequential selection algorithm (e.g., [Blum73} ) or by

sorting.

t Intuitively, med, is chosen so that sufficiently many candidates are larger than it and
sufficiently many’ are smaller. This will be further explained in Section 5.

5



We now show that the algorithm works correctly. Assume inductively that at the
beginning of the current iteration of the filtering stage {steps 2-8) the element to be selected
has not been purged, and that k is the correct rank of this element among the remaining candi-
dates. This is clearly true at the beginning of the algorithm.

In case 1 of step 6, the number of candidates greater or equal to med,/’ is found to be k.
Since w.l.g. we assume that all elements are distinct, the decision to select med,, is correct. In
case 2, since m,/'>k, the element we are looking for is greater than medlh. Thus, all candi-
dates smaller or equal to med, ,, €30 be purged. In case 3 a similar argument applies, except
that since the m, candidates being purged are greater than the selected element, the rank &
has to be reduced by the same quantity. Since at least ome candidate is purged in each
occurrence of case 2 or 3, m becomes smaller and smaller in each iteration, and the algorithm
will eventually either terminate in case 1 of step 6, or reach step 7 where the correct element is
selected by collecting all the remaining candidates into one set M and finding M[k}.

4.2. Implementation in the Shout-Echo Model

The implementation of the algorithm in the Shout-Echo model is straightforward. An
arbitrary processor is designated "supervisor”. A computation that requires local data of more
than one processor is implemented as follows. The supervisor requests the data by means of a
broadcast message, and each processor replies by sending its local data. The supervisor then
performs the computation and broadcasts the result to all processors.

In the following we give the implementation details of each step. W.l.g. let us assume
that the supervisor is P;. In step 1, P, requests m, from all processors, then computes m and
broadeasts it to all processors. Step 2 is performed locally at each processor. In step 3, proces-
sors sends med; to P, who then sorts the medians. In step 4, the values m, are sent to P, who
finds med, /o and broadeasts it to all processors. In step 5, each P; finds the number of candi-
dates in M, that are greater or equal to medv’. These numbers are then sent to P, who adds
them up and broadcasts the sum m, /s to all the processors. Step 8 is performed locally at each
processor. In step 7, all the remaining candidates are collected into one set at P,. This is done
in multiple cycles. In each cycle each processor sends one element. When all m candidates
have been collected, P, finds the selected element and notifies all the processors.

5. Complexity Analysis

In analyzing the cycle complexity of the algorithm, we must calculate the cost of each
step and determine the number of iterations performed in the filtering stage.



The analysis of the number of filtering iterations is illustrated by Figure 1, which cap-
tures the situation at the beginning of a typical iteration. The sets of candidates M’,—J are

ordered in descending order of the medians from left to right. The elements in each set are
shown in descending order from top to bottom. Since the medians are ordered, it can be seen
that for any given set M balf the candidates in M and at least half the candidates in each

set to the right of M,J are smaller or equal to mcd} Sumlarly, half the set M and at least half
of each set to the left of M'} are greater or equal to mcd,}. This is shown by the encircled areas

in Figure 1.

In particular, since mcd./ (=med; ) was chosen such that E m; is the smallest partial
j =l

sum of candidates which is greater or equal to %, it can be seen that at least -4— candidates
are smaller or equal to med,/ o and at least -’-:— candidates are greater or equal to med./g. Con-

sequently, in each of cases 2 and 3 of step 8, at least one fourth of the remaining candidates

are purged. Thus, 0(105%) iterations suffice in order to reduce the number of candidates
m

below m*.

From the implementation in Section 4 it can be seen that each of steps 1-8 requires a
constant number of cycles. The number of cycles in step 7 is bounded by O(m*). The total

complexity of the selection algorithm is therefore 0(m*+log—n7) cycles. Choosing m* <logn,
m

the complexity of the algorithm is O(logn) cycles. The following corollary shows that this is
optimal in a wide range of cases.
2

n
Corollary 2. Let k>np..,. Given a constant 0<e<1 such that n,,>¢p and np, < n::xz ,

the complexity of selecting the k'th largest element in a Shout-Echo network is S{logny,y2)

cycles.
2 maxZ . 2nt2n.a.x2
Proof. np,.»>¢p and nm<—f— imply n<{p-1)pueF Pmax S Pt and hence

O(logn)=0(log B .yz)- The result follows from the discussion above and from the lower bound
of Theorem 1. ® ‘

We now give simple modifications to step 1 which will improve the performance of the
algorithm for ranks A<np,,,. We first discuss the case p<k<np... Clearly, only the k larg-
est elements in each set N; have the potential of being selected. Therefore, instead of initializ-

ing each M; to the entire set N;, we take only the k largest elements of N;. This can be done by



sorting N; locally at P;. The initial number of candidates is therefore at most kp. If we choose

m*<logk, the complexity of the algorithm is O(m*+log—k%-)=0(logk). Given the lower
m

bound of Theorem 2, this is optimal.

For the case k<p we use the following observation. Consider the maximum element in
each set N;. Since there are more than k sets, only the k largest among the maximum elements
have the potential of being selected. We may thus purge from candidacy in‘its entirety any set
N; whose maximum element is smaller than the k'th largest maximum elemént. To do this, we
modify step 1 as follows. The maximum element of N; is determined locally at P; and sent to
Py, who then finds the k'th largest among the maximum elements and broadcasts it to all pro-
cessors. Processors whose maximum element is smaller than the element broadcast by P, ini-
tialize M, to the empty set, whereas other processors take as initial candidates the k largest ele-
ments of N;. The computation then proceeds as before. Since now only k processors have can-
didates, the initial number of candidates is at most 2. Choosing m* <logk, the complexity is

2
O(m*+log—k-:)=0(logk) cycles, which is optimal.
m

Corollary 3. Let E<np.o. The complexity of selecting the k'th largest element in a Shout-
Echo network is O(logk) cycles.

Proof. The result follows from the above discussion and from Theorem 2. W

8. Conclusions

In this paper we have considered the complexity of selection by rank in Shout-Echo net-
works. We have first shown a lower bound, then given an algorithm which achieves this bound
in a wide range of cases, thus proving that the bound is tight. The algorithm improves by a
factor of logp the previous best upper bound, derived from the work in [Rote83).

In [Sant83c], Santoro, Scheutzow and Sidney presented a probabilistic shout-echo selec-
tion algorithm and showed that the expected complexity of the algorithm is O(logn) cycles.
The worst-case behavior of our algorithm compares favorably with the average-case behavior of

that algorithm.

Santoro and Sidney [Sant83b] showed that for a threshold value of m*=0(p), the
expected number of filtering iterations in the selection algorithm of [Sant83b] is O(log logk).
Also, in [Sant83c] it is shown that by combining the algorithm of [Sant83b| with the probabilis-
tic algorithm of [Sant83c¢], an expected complexity of O(logp+log logk) cycles is achieved. [t is
interesting to see how an average-case analysis of our algorithm would compare with these

resuits,
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Abstract

In a Shout-Echo metwork, processors communicate by means of broadcast messages
(shout) and replies to received messages (echo). Performance is measured in terms of communi-
cation cycles, where each cycle consists of one broadcast message and the replies to it from all
other processors. In this paper we consider the problem of selection by rank in a set distri-
buted among the processors of a Shout-Echo network. We show a tight lower and upper
bound of size ©(log min{ny,,z, k}) on the number of cycles required for selection, where ng, .
is the size of the second-largest subset of elements in any processor, and k is the rank of the
clement to be selected. We first show the lower bound, then give an efficient algorithm which
achieves this bound in a wide range of cases. The algorithm improves the previous best upper
bound [Rote83] by a factor of Oflogp), where p is the number of processors in the network.

1. Introduction

A Shout-Echo network [Sant83a) is a distributed computation mode! in which a collec-
tion of independent processors communicate by means of broadcast messages (shout) and
replies to received broadcast messages (echo). The performance of algorithms in this model is
measured in terms of the total number of communication cycles required by the computation,
where a communication cycle consists of one broadcast message and the replies to it from all

processors.

In this paper we consider the problem of selecting the k'th largest element in a set of n
elements distributed arbitrarily among the processors of a Shout-Echo network. The problem
was previously investigated in the context of this model by Santoro and Sidney [Sant82,
Sant83a, Sant83b], who presented two different selection algorithms which run in

O(min { &, plog%}) cycles, where p is the number of processors in the network. They also

showed a lower bound of £)(logk) cycles for the case where the set is evenly distributed (i.e., all

t This research was supported by an IBM Faculty Development Award.
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processors have the same number of elements) and ks-z'. The lower bound is a generalization
of the N(logn) bound on finding the median when p=2, shown by Rodeh [Rode82]. Rotem,
Santoro and Sidney [Rote83] gave an O(logp log—:-) algorithm for finding the median of an

evenly distributed set. This algorithm can be easily generalized for arbitrary (uneven) distribu-
tions and any rank k, thereby reducing the upper bound of the general problem to
O(logp log min{n,yq, k}), where ng,,; is the size of the second-largest subset of elements in

any processor.

Our work improves on the above results in the following way. First, we generalize the
lower bound by showing that Q(log min{ng,.o. k}) cycles are required for any rank k and any
distribution of the elements. We then present a selection algorithm which runs in O(logk) cycles
when k<n_,., and otherwise in O(logn) cycles. By showing that in a wide range of cases
O(log n}=0{log np,y2), We prove that the upper and lower bounds on selection are tight. Our
algorithm thus improves the previous best upper bound by a factor of logp.

The remainder of this paper is organized as follows. Section 2 defines our notation. The
lower bound is shown in Section 3. Sections 4 presents the selection algorithm, and Section 5
analyzes its complexity. Concluding remarks are given in Section 6.

2. Definitions and Notation

We denote the p processors of a Shout-Echo network by Py, Py, . . ., P, where each P;
is a unique identifier taken from a totally ordered set of identifiers.

Let N be a collection of n elements distributed arbitrarily among the processors.
Without loss of generality (w.l.g.) we may assume that N is a set, i.e., that all elements in N are
distinct. If not, we can replace each element § in P; with the triple (§, P;, j¢} where j¢ 1s a
unique index within P;, and use lexicographic order among the triples. We denote by N[;j] the
j'th largest element in N.

The subset of N at each processor P; is denoted N;, with cardinality |N;l=n; We

assume that n;>0. The terms n,,, and ng,,, denote, respectively, the largest and the second

nn
largest n;. N;[j] denotes the j'th largest element in N, N,[[-Q—']] is called the median of N;.

Selection is defined as the task of identifying N[k], the k’th largest element in N, for a

given rank k. W.l.g. we may assume 15!:5[%] (if not, reverse the sorting order and select the

element of rank n-k+1).






Throughout the paper we use log to denote logarithm of base 2. We assume that each
message is of size at most O{log4) bits, where J is the value of the largest parameter or datum

involved in the computation.

3. Lower Bounds

To show the lower bounds we use an adversary argument adapted from Frederickson
[Fred83]. The discussion is limited to comparison-based algorithms.

Theorem 1. Let ng,.0 SkS]'“g']. The number of communication cycles required to select the

k'th largest element in a Shout-Echo network is (}{lognp,ys)-

Proof. We devise an adversary that, given the cardinalities n; and a selection algorithm, pro-
vides input sets N, such that the algorithm requires ((lognmp,ys) cycles when executed on that
input. The adversary is free to make each element arbitrary large or small, as long as the rela-
tive order in each N; is maintained consistently. Initially, none of the elements has a fixed
magnitude. The adversary follows the execution of the algorithm, fixing the magnitude of ele-
ments as the algorithm proceeds. Elements not yet fixed are candidates for selection. Fixed
elements are made either "very small” or "very large”, in the sense that they are smaller or
larger than all the remaining candidates in the network. By keeping fewer than k very large
clements and fewer than n-k very small elements at all times, the adversary excludes such ele-
ments from being selected. Clearly, the algorithm cannot terminate before the number of can-
didates is reduced to one. Total order is maintained among the fixed elements of all processors
by making each new very small element (very large element, resp.) larger (smaller) than all the

existing very small (very large) elements.

Let Py, and Py, denote two processors which have, respectively, np,, and ng,,, ele-
ments. The adversary initializes the elements of N as follows. n.,,, elements in each of Pp,y
and P_,., are made candidates. Among the remaining n-2ny,y; elements, an arbitrary k-np,.
elements are made very large and the rest very small. With this setup, the problem of selecting
NIk] reduces to finding the median of the 2npy,,, candidates.

Whenever a message is sent which contains a candidate of Pp,, that is smaller or equal
(larger, resp.) than the median of the candidates in Pp,,, the adversary fixes this candidate
and all those smaller (larger) than it in Py, to be very small (very large), and an equal number
of candidates in Py,y; to be very large (very small). From now on, these elements are no longer
candidates. When the message contains a candidate of Pp,,,, the same action with the roles of
Po.c and Py, reversed is taken. No action is taken by the adversary if the message does not

contain a candidate. Concurrent messages are handled in some arbitrary order.






Let 2m be the number of remaining candidates immediately before a message contain-
ing one of the candidates is sent. It can be seen that no more than m+1 candidates are fixed
by the adversary as a result of that message. Since there are initially 2np,.» candidates, all of
them located in P,y and Ppaye, {log2ny,,,) messages originating from either Py, or P,
are needed to reduce the number of candidates in the network to one. Clearly, this requires

{lognpmays) cycles. B
We now show a lower bound for the case k<ny,.

Theorem 2. Let k<ng,.. The number of communication cycles required to select the k'th
largest element iz a Shout-Echo network is O(logk).

Proof. We use the same adversary argument as in Theorem 1. The only difference is in the
initial choice of candidates and fixed elements. Here, only k elements in each of Pp,, and
Poaxo are made candidates, and all the remaining elements in the network are made very small.

The result follows from a similar analysis to that of Theorem 1. ®

Corollary 1. The number of communication cycles required to select the k’th largest element
in a Shout-Echo network is {)(log min{k, ny,}). ®

4. The Selection Algorithm

A naive approach to selection is to sort all elements, then retriecve the selected element
directly by rank. This, however, is inefficient because the extra information provided by sort-
ing comes at a cost and is not really needed. A more promising approach is the following.
Reduce the number of candidates for selection by repetitively applying some filtering mechan-
ism. When the number of remaining candidates gets below a specified threshold value, sort the
remaining candidates and retrieve the selected element by rank. In the sequel we present a
selection algorithm which follows this approach. The algorithm works for arbitrary distribution
of the input. We first give the algorithm and show its correctness, then describe the implemen-
tation in the Shout-Echo model. The complexity is discussed in Section 5.

4.1. Description of the Algorithm

Let us denote the number of remaining candidates for selection at each stage of the
algorithm by m. The subset of remaining candidates in each P; is denoted M;, with cardinality
| M;|=m;. The threshold value discussed above is denoted m*, and & is the rank of the ele-
ment to be selected. The algorithm consists of three stages: initialization (step 1); iterative
filtering (steps 2-6); and termination (step 7).






Algorithm Select(k)

?
(1) Mgp=N; mgi=n; m:=3Y m,.
1=l
m.
(2) Find the median M,[[—Q-'-]] of each M;.t Denote this element med;.

If M, is empty, med; is set to a dummy value.

(3) Sort the medians in descending order med,-‘z mcd,-zz co Z""d‘,‘

(4) Find the smallest index { with respect to the sorted medians

!
such that Y] m,-)Z%. Denote mcd,-t as mcd,/’.i
i=1
(5) Find the total number of candidates that are greater or equal to med, x
Denote this number LR

(6) Compare m: » with k and choose the appropriate case below.
Case 1. m.f,'=k
The selected element is mcd;f,’; terminate the algorithm.

Case 2. ml/’>k
(a) Purge from each M; the elements smaller or equal to mcd,/,.
(b) m,<:=|M,-|; m:=m./’—1.
(¢) If m>m* then go to step 2; otherwise go to step 7.

Case 3. m‘/’<k

(a) Purge from each M; the elements greater or equal to med,h.
(b) m:=|M;|; mi=m-my ; k:=k—m,,,’.
(¢) If m>m* then go to step 2; otherwise go to step 7.

(7) (a) Collect all the remaining candidates into one set M.
(b) Find Mk}, which is the selected element; terminate the algorithm.

t This can be done using some efficient sequential selection algorithm (e.g., [Blum73] ) or by
sorting.

t Intuitively, med,, is chosen so that sufficiently many candidates are larger than it and
sufficiently many’are smaller. This will be further explained in Section 5.
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We now show that the algorithm works correctly. Assume inductively that at the
beginning of the current iteration of the filtering stage (steps 2-6) the element to be selected
has not been purged, and that k is the correct rank of this element among the remaining candi-
dates. This is clearly true at the beginning of the algorithm.

In case 1 of step 6, the number of candidates greater or equal to med, /s is found to be &.
Since w.l.g. we assume that all elements are distinct, the decision to select med,, is correct. In
case 2, since m.h>k, the element we are looking for is greater than med,/B. Thus, all candi-
dates smaller or equal to _mca'.f,’ can be purged. In case 3 a similar argument applies, except
that since the m,, candidates being purged are greater than the selected element, the rank &
has to be reduced by the same quantity. Since at least one candidate is purged in each
occurrence of case 2 or 3, m becomes smaller and smaller in each iteration, and the algorithm
will eventually either terminate in case 1 of step 6, or reach step 7 where the correct element is
selected by collecting all the remaining candidates into one set M and finding M[k].

4.2. Implementation in the Shout-Echo Model

The implementation of the algorithm in the Shout-Echo model is straightforward. An
arbitrary processor is designated "supervisor”. A computation that requires local data of more
than one processor is implemented as follows. The supervisor requests the data by means of a
broadcast message, and each processor replies by sending its local data. The supervisor then
performs the computation and broadcasts the result to all processors.

In the following we give the implementation details of each step. W.l.g. let us assume
that the supervisor is P;. In step 1, P, requests m; from all processors, then computes m and
broadcasts it to all processors. Step 2 is performed locally at each processor. In step 3, proces-
sors sends med; to P,, who then sorts the medians. In step 4, the values m; are sent to Py, who
finds med,

/
dates in M, that are greater or equal to med.l,a. These numbers are then sent to P;, who adds

. and broadcasts it to all processors. In step 5, each P; finds the number of candi-

them up and broadcasts the sum m, /s to all the processors. Step 6 is performed locally at each
processor. In step 7, all the remaining candidates are collected into one set at P,. This is done
in multiple cycles. In each cycle each processor sends one element. When all m candidates

have been collected, P, finds the selected element and notifies all the processors.

5. Complexity Analysis

In analyzing the cycle complexity of the algorithm, we must calculate the cost of each
step and determine the number of iterations performed in the filtering stage.






The analysis of the number of filtering iterations is illustrated by Figure 1, which cap-
tures the situation at the beginning of a typical iteration. The sets of candidates M,-! are

ordered in descending order of the medians from left to right. The elements in each set are
shown in descending order from top to bottom. Since the medians are ordered, it can be seen
that for any given set M",' half the candidates in M",- and at least half the candidates in each

set to the right of M,-}_ are smaller or equal to mcd,-}. Similarly, half the set M", and at least half
of each set to the left of M", are greater or equal to med,-}. This is shown by the encircled areas
in Figure 1.

!

In particular, since mcd./=(=mcdi1) was chosen such that 3} m; is the smallest partial
=1

. C m . m )
sum of candidates which is greater or equal to —2-, it can be seen that at least -:4— candidates

are smaller or equal to med, ? and at least % candidates are greater or equal to mcd,h. Con-
sequently, in each of cases 2 and 3 of step 6, at least one fourth of the remaining candidates

are purged. Thus, O(logL*) iterations suffice in order to reduce the number of candidates
m

below m*.

From the implementation in Section 4 it can be seen that each of steps 1-6 requires a
constant number of cycles. The number of cycles in step 7 is bounded by O(m*). The total

complexity of the selection algorithm is therefore O(m*+logL*) cycles. Choosing m* <logn,
m

the complexity of the algorithm is O(logn) cycles. The following corollary shows that this is
optimal in a wide range of cases.

2
< Mmax?2

- €
the complexity of selecting the k'th largest element in a Shout-Echo network Is S(logtiy,s)

Corollary 2. Let k>n_,.,. Given a constant 0 <e<1 such that ny.o>ep and ny,,

cycles.

2 2
Bmax? Bmax2

Proof. n_,..>¢p and nmu_<_-~;-— imply n<(p-1)Ppaat Bmax < and hence

O(logn)=0(log ny,yy). The result follows from the discussion above and from the lower bound
of Theorem 1. ®

We now give simple modifications to step 1 which will improve the performance of the
algorithm for ranks k<ng,.,. We first discuss the case p<k<npy,.- Clearly, only the k larg-
est elements in each set N, have the potential of being selected. Therefore, instead of initializ-
ing each M; to the entire set N, we take only the & largest elements of N;. This can be done by






sorting N; locally at P;. The initial number of candidates is therefore at most kp. If we choose

m*<logk, the complexity of the algorithm is O(m*+logl‘%)=0(logk). Given the lower
m

bound of Theorem 2, this is optimal.

For the case k<p we use the following observation. Consider the maximum element in
each set N, Since there are more than k sets, only the k largest among the maximum elements
have the potential of being selected. We may thus purge from candidacy in its entirety any set
N; whose maximum element is smaller than the K’th largest maximum element. To do this, we
modify step 1 as follows. The maximum element of N; is determined locally at P; and sent to
P;, who then finds the k'th largest among the maximum elements and broadcasts it to all pro-
cessors. Processors whose maximum element is smaller than the element broadcast by P; ini-
tialize M; to the empty set, whereas other processors take as initial candidates the k largest ele-
ments of N, The computation then proceeds as before. Since now only k processors have can-

didates, the initial number of candidates is at most k?. Choosing m*<logk, the complexity is

2
O(m* +]og-&“:)-—-—-0(logk) cycles, which is optimal.
m

Corollary 3. Let k<ng,... The complexity of selecting the k'th largest element in a Shout-
Echo network is O(logk) cycles.

Proof. The result follows from the above discussion and from Theorem 2. ®

8. Conclusions

In this paper we have considered the complexity of selection by rank in Shout-Echo net-
works. We have first shown a lower bound, then given an algerithm which achieves this bound
in a wide range of cases, thus proving that the bound is tight. The algorithm improves by a
factor of logp the previous best upper bound, derived from the work in [Rote83].

[n [Sant83c], Santoro, Scheutzow and Sidney presented a probabilistic shout-echo selec-
tion algorithm and showed that the expected complexity of the algorithm is O(logn) cycles.
The worst-case behavior of our algorithm compares favorably with the average-case behavior of

that algorithm.

Santoro and Sidney [Sant83b] showed that for a threshold value of m*=0(p), the
expected number of filtering iterations in the selection algorithm of [Sant83b] is O(log logk).
Also, in {Sant83c] it is shown that by combining the algorithm of [Sant83b} with the probabilis-
tic algorithm of [Sant83c], an expected complexity of O(logp +log logk) cycles is achieved. It is
interesting to see how an average-case analysis of our algorithm would compare with these

results.
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Figure 1.

The Filtering Stage






