AN APPLICATION OF KNOWLEDGE-BASED SYSTEMS TO
ELECTRONIC COMPUTER-AIDED ENGINEERING, DESIGN,
AND MANUFACTURING DATA BASE TRANSPORT

~ Richard Hooper March 1985
Report No. CSD-850011

© Copyright by
Richard Preston Hooper
1985

The dissertation of Richard Preston Hooper is approved.

Kirby A. Bak&
Bertram Bussell §

RKSQ/NA

Rakesh K. Sarin

Chand R. Viswanathan

Melkanoff, Committee Chair

University of California, Los Angeles
1985

DEDICATION

To my wife,
Denise
whose love and companionship
have sustained me, and

who has shared this experience
with me.

To my children,
Jacquelyn and Douglas

who have brought joy and
laughter into my life.

To my parents,
Fred and Shirley
who have always had faith in me,

and who have been a never ceasing
source of encouragement.

ii

TABLE OF CONTENTS

Page

1 INTRODUCTIONoiiitierctscrnrsitesestseeseeeeesese e 1
2 CAE/CAD/CAM ENVIRONMENTcooccovmieeeeeeeeenereeeeeee, 8
2.1 Custom VLSI or Gate Arrayccoeveveiieeeceeoeeeeeeeeeeeennn 9

2.2 Printed Circuit Boards ereeentb et e e a e erer e e e s braeans 15

2.3 CAE/CAD/CAM TOOI8 ..oc.ovveveeeteeceeeeeeeeeee e oo, 18

2.4 CAE/CAD/CAM Data for Electronic Designco.......... 22

2.5 CAE/CAD/CAM Data Exchange Standards 31
2.5.1 Initial Graphics Exchange Specification (IGES) 33

2.5.2 ANSI/TPC-D-350 ..conrenieeeeene et een s e C 38

2.5.3 Electronic Design Interchange Format (EDIF) 40

2.5.4 Commercial SYStemsccccoceiveiiiniiereieeiirrreeeer e, 41

3 DATA TRANSPORT METHODOLOGYoeoooeveeeeeeeeeeens 43
3.1 Media Difficultiescccoeeeoeericeiiirieeeee e 43

3.2 Differences in Electronic Design Data Representation 44

3.3 Database Organization Differencesccocoovevvverevennnnn, 48

3.4 General Approachcccooiviiiiiiii e 52

3.5 System Architectureccoocviiiiieieeeeeeeceee e T4
3.5.1 Compiler / DBIFccccooovrveeeeeeeeeeree e 7

3.5.2 Master Data Schema: Generic Predicates 78

3.5.3 Translate Enginecooovveveeeeoeeeeceeeeeeeeeeeeenns 80

3.5.4 Rules for Translation: Knowledge Base 82

3.5.5 Formatter ettt h et e e s e s s esntnraaeeseseseensrran 83

4 PROTOTYPE SYSTEM ..ot 85
4.1 Introduction to Prologcccoovvviiveiecviieeeeeeeeeeeeee e, 85

4.2 Prototype Elementsccoooooviiiviiiieoieeieeeeeeeeeeeee 92
4.2.1 Process Modulesc.ocuoovimemvincieeieeeeeeereeer e, 92

4.2.2 Data Elementscccccocoivoniniiiniiiieciee s 108

4.3 Operational Scenariocccoceecvviitieicceciieeeeee e, 116

S TEST CASES - ...ttt emce s eresse s sese e e s e s ees s ons 123
5.1 Hypothetical Cases: DR1 and DR2c.oovevvveiicvereennnn. 124

5.2 TDL to PCB CAD Data Basecccocccovvuveveereeeeeeeeeeeecvinnn 138
5.2.1 Data Mapping ..cococvivuiieeeceeeeeeee e, 139

5.2.2 Forward Ruleso......... ferreesirnerettee et aeea e naarrbrrres 144

5.2.3 Reverse Rulescccccoviiiviiiiiccccee e, © 153

5.2.4 Forward Translation Resultsccccocoevvevureeneenno, 157

5.2.5 Reverse Translation Resultsccccovvrveevvvenreennnn.. 161

5.3 CALMA to CIF oo T 164
5.3.1 Data Mappingcccoovemmenieececeeceseeeee e 164

5.3.2 Forward Rulesc..ccoveimiiiiiieeeeeeeeeeeeeeeeee o, 177

5.3.3 Reverse Rulesc.ccooiviiiiiiiciceieeceeee e, 187

5.3.4 Forward Translation Resultscccoveeeviviivvnnnnn.. - 189

5.3.5 Reverse Translation Resultsccoeovvevvevveenniin, 193

iv

Ne0) 10 R 0KC) (6) T e, 198

- Appendix A GLOSSARY ... 203
Appendix B ALTERNATIVE PROTOTYPE IMPLEMENTATIONS 208
Appendix C CALMA STREAM FORMAT DATA ... 211
Appendix D DBIF REPRESENTING CALMA STREAM FORMAT 217
Appendix E TDL DBIF ..ot 225
Appendix F DBIF REPRESENTING CIF FILE ...l 227
Appendix G SAMPLE CIF FILE ..o 233
Appendix H TDL PREPROCESSOR BNF EXCERPTccoveuiis 235
Appendix I SOURCE DBIF FOR CALMA—CIF DATA
TRANSPORT CASE ...ttt 243
Appendix J RULES FOR THE CALMA—CIF FORW:ARD
TRANSPORT TEST CASE ..ottt nesesne e 248
Appendix K RULES FOR THE CALMA--CIF REVERSE
TRANSPORT TEST CASE ...cooivriricicttcicectci e 254

Appendix L GENERIC FACTS CREATED FROM SOURCE TDL 260
Appendix M GENERIC FACTS CREATED FROM SOURCE

CALMA DATA ooeeoooereoeee oo e eetoesssereeeseessossessssssemssenessosesesessssaene 262
Appendix N CIF DATA OUTPUT FROM GENERIC FACTS 264
Appendix O GENERIC DATA FROM CIF DURING REVERSE
TRANSLATION cooorvooovvooeeeseeeeeoevesseseresssessseresssseseseseseesesmesseeessoeee 266
Appendix P CALMA OUTPUT DATA FROM REVERSE |
TRANSLATION coooovvoeeverereereessreesenenen, et er e eee e ee e 260
Appendix Q REVERSE TRANSLATION SYSTEM LOG, CIF TO

CALMA ooooeoeoevoooesveesos s s eeeem et soseseesoestesse e sesmmesseresersssestsosserossesen 271
Appendix R KEPT FACTS FROM CALMA TO CIF

TRANSLATION covoooooeooooeoeeeoe s seenesseeseesessemeeseeseesessessesesesseaeereeenee 273

REOIEICES cevnevrereeerrerraseesaesnssssssssscenssessesssensssnnssensssssessrensessnsssnessnssennaes 275

Figure 2.1.
Figure 2.2,
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.
Figure 2.8,
Figure 2.9.

LIST OF FIGURES

Sample System Level Block Diagram.cc.ocooovvvvvninn,
Typical Electronic Design Flow.coccooovvmvmrvereino.
Multi-level (Hierarchical) Design.ccccoovirerirrnnnnee.es,
Sample Schematic Diagram.ccccccovveovmenreeeseinnn
CAE/CAD/CAM Functions.cc.oovevvvveeeevenesrinnnn.
CAE/CAD/CAM Data Categories.cccooumveoerrennnn.
Build-Design Data Base Structure.c.cooovevvevveveennnnn
Build-Design Data Base for Sample Schematie.
Hewlett-Packard DTS-70 Pin-Signal Data Input Syntax.

10
11
12
16
19
23
25
26
27

Figure 3.1. The Delta Problem. ettt e s et e e e st e e et raesannesne
Figure 3.2. Hierarchical Model.ccoooovoveeemiieeeoeoee
Figure 3.3. Network Model.cocooveioieoeeeeeeeeeoeeeeeeeeeeeeeeeeee
Figure 3.4. Relational Model.cocooveveeeecieeeeeeeeeeeeeee,
Figure 3.5. Use of DBIF to Aid in Data Base Transport.
Figure 3.6. Sample Schematic Network. e
Figure 3.7. Data Base Representation 1 (DR1). ..cccoooovrrerervvonnnnn .
Figure 3.8. Data Base Representation 2 (DR2). ...ccooeovevrverenrnnn,

Figure 3.9. ELKA Diagram for the DR1 Sample Schematic
Information Modelc.ocooviiuieiviiiieeeee e

Figure 3.10. ELKA Diagram for the DR2 Sample Schematic

Figure 3.11. Alternative Translation Schemes.oooovoveveveeen.

vi

Figure 3.12.
Figure 3.13.
Figure 3.14.
Figure 3.15.
Figure 3.16.
Figure 3.17.
Figure 3.18.
- Figure 3.19.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
‘Figure 4.6.
Figure 4.7.
Figure 4.8.
Figure 4.9.
Figure 4.10.
Figure 4.11.
Figure 4.12.

Figure 4.13.
Data.

Figure 4.14.
Figure 4.15.
Figure 4.16.
Figure 4.17.

Generic Form.

Translators Needed Using a Generic Data Schema. .. 67
DBIF Encoding of DR2 Data.ccoooviiiiiniiiiiiiiies 70
DR2 Relational Data Base.ccocvviiiiciiininnincnninnns 75
System Architecture for Data Transport.ccooe. 76
Sample DBIF,. Encoding. ..coocirevciiiniiiiiiiiir e, 78
Generic Predicates for Logical Data.ccccoeeiiii. 80
Generic Predicates for Physical Data. ...cccccvvvevvenerieennnee g1
Sample Formatter Results. eerrnrenereerens 84
Prolog Terms.ccccoovvvmmmiiiiiiccccincrcc e 86
Pseudo-BNF description of the CALMA Stream Format. 94
Sample CALMA Layout.cooiiiiiiiiiicciencrce e 85
TDL Preprocessor Compiler Commands.ccccoueeeeeeee. 97
Sample TDL Input. ..o 98
Translate Engine Processing Flow. ... 100
Translate Engine Processing Flow with Kept Facts. 102
CIF Syntax Description. [T 103
Sample DBIF for DRI, ...ooooiiiecicitinncneccene 105
Prolog Code for the DR1 Formatter.cccceeinnniee, 106
Tabular Form of DR1 Data. .ceecevoreoseceeeroerrsssnseseererns 106
Prolog Encoding of Generic Predicates for Logical Data. 109
Prolog Encoding of Generic Predicates for Physical 110
DBIF for Sample DR2 Data Base.ccccooviviniiinnnnnins 111
Mapping of DR2 Terms onto Generic Prédicates. 112
Rules for Transforming DR2 into a Generic Form. 113
Different Representations Between DR2 and the s

vii

Figure 4.18.

Figure 4.19.
Engine. ...

Figure 4.20.
Figure 4.21.

Figure 4.22.
to DR1. ...

Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 5.5.
Figure 5.6.
Figure 5.7.
Figure 5.8.
Figure 5.9.
Figure 5.10

Figure 5.11.
Figure 5.12.
Figure 5.13.
Figure 5.14.
Figure 5.15.
Figure 5.18.
Figure 5.17.
Figure 5.18.
Figure 5.19.
Figure 5.20.

.......................

..
..

...

--

Source DR1 DBIF (drl.dat).
Source Input Rules for DR1 (drlin.rul).

Mapping Between DR1 and Generic Predicates.
Target Output Rules for DR2 (dr2out.rul).
*

Mapping Between DR2 and Generic Predicates for
Target DBIF for DR2.

.......
..
........

..............................

TDL Schematic Diagram.
Source TDL DBIF.
TDL Data Model.
HPC Data Model.

..

...

...

Mapping Between TDL and the Generic Form.

Mapping Between Generic and HPC Formats.
TDL Source Input Rules.

...

..........

viil

Figure 5.21.

Form.

Figure 5.22.
Figure 5.23.

Figure 5.24.
to DR1). ...

Figure 5.25.
Figure 5.26.
Figure 5.27.

TDL).

Figure 5.28.
Translation.

Figure 5.29.
Figure 5.29.
Figure 5.31.
Figure 5.32.
Figure 5.33.

Figure 5.34.
Array Reference.

Figure 5.35.
Figure 5.38.
Figure 5.37.
Figure 5.38.
Figure 5.39.

CIF).

Figure 5.40.
Generic Data.

Figure 5.41.
Figure B.1. Original DR2 Representation as a Relation.

........

Rules for Connected in Translating TDL into Generic

... 152
Target Output Rules for TDL.ccccoiviiiiiiiiininens 154
Connect Rules from the TDL Target Output Rules. 156
Prototype System Log for Forward Translation (TDL 158
TDL and GeneritJ Kept Fac.ts. TP TSI 159
Target HPC (DR1) DBIF. ..o, 160
Prototype Syste# Log for Reverse Translation (DR1 to * 162
T RR R

Target TDL DBI# Produced by the Reverse
........................... PR {
CALMAGDS II $tream Format Data Model. 165
CALMA Structure Definition.ccccoveeiveeriincccincnvnecneen. 167
CALMA Array Reference.cccoeceiiiiiciinicicicicierccenne 168
CIF Data ModeL. |coooviinieiiiiiiniiiiin e, - 170
Mapping from CALMA to Generic Predicates. 172
Angular Rotatioﬂ and Reflection Applied to a CALMA 174
Mapping from Generic to CIF Predicates. 175
Octagonal Approximation of a CIF Flash. 176
Hierarchical Rep ‘esentation of CALMA Source Data. 178
Hierarchical Rep#esentation of CIF Target Data. 179
System Log for t#e Forward Translation (CALMA to 190
Kept Facts Generated in Translating CA].:M.A into 102
The Original Item I 14 and its 90° Rotation. 197
................... 209

ACKNOWLEDGEMENTS

There can be no doubt that a doctoral dissertation is the result of
more than the work of the degree recipient. I, for one, recognize this and
would like to acknowledge the contributions of those who helped me.

I am most grateful to Prof. Michel Melkanoff for his time, interest,
support, and encouragement over the many years that I have been his stu-
dent. No doubt.this work wouldn't have been completed were it not for his
contribution. I found his advice during the course of the research to be in-
dispensable. He was always quite patient and a very good listener.
Throughout the development of the concepts and the prototype, he rein-
forced the significance of the research, and this was a strong motivating
factor in my persevering to the end. I especially appreciated his counsel on
the editing of the dissertation, during the final days of its preparation.

I also found the comments and encouragement of the other doctoral
committee members to be quite helpful. Many of their suggestions were in-
corporated into the approach taken in the research. In particular, Prof.
Bussell suggested, back in 1981, that I consider a knowledge-based ap-
proach to solving this problem, That suggestion had a dramatic effect on
the outcome of this research. '

There have been many in the UCLA School of Engineering and Ap-
plied Science who have assisted me over the years with the administrative
matters of graduate study. Special thanks to Brenda Ramsey, Verra Mor-
gan, Rosetta Lindsey, Jamie Brodie, and Rosemarie Murphy for their help.
Also, I would like to acknowledge the fine work of Doris Sublette in organ-
izing and maintaining the holdings of our Computer Science Archives.

Also, Marilyn Caro assisted in developing part of the methodology.
She built some of the formatters and compilers which were actually used to
construct some of the test cases.

There were many people at Hughes Aircraft Company, Radar Sys-
tems Group, who gave me the opportunity to do this work. Furthermore,
specific individuals shared their insights into this problem and to related is-
sues. I am grateful for their technical contributions. Specifically, I would
like to acknowledge Gloria Wilson and Grace Chen-Ellis for their assis-
tance. Above all, I acknowledge the outstanding support of Abe Ansari,
my department manager at Hughes. Not only did he share his many years
of technical experience as a pioneer in the field of electronic CAD/CAM,
but he made it possible for me to continue my studies while working.
Were it not for he and the Hughes fellowship program, I would not have
been able to pursue this degree. .

Both Addison-Wesley and the Calma Company should be ack-
nowledged for their support of academic research. Both granted permis-
sion for me to use their copyrighted material as noted in the body of this
text.

Lest we forget the importance of computers in our research, I must
thank our systems managers and programmers for their assistance. The
last year of research was performed using Prolog on the UCLA Center for
Experimental Computer Science. I am most appreciative of the outstand-
ing support by Dr. Terry Gray and his staff of the Center. Specifically,
Doris McClure and Anne Finestone were quite helpful in assisting me with
disk space and in answering system questions. At Hughes, Mike Kimura
was quite helpful with the VAX VMS system and in getting me linked to
UCLA via phone line.

Pursuing this degree was quite a burden on my family. Words can-
not express the sacrifices made by my wife, Denise. She took care of the
children, ran the household, and tried to keep order amidst the chaos.
Even still, she had time and energy to encourage and reassure me and to
share in the excitement when I would make a big break-through in this
work. 1 will be eternally grateful for all of her hard work. Also, a special
thanks to Liz and Rex Harris and Marge Fisher who often cared for the
children when Denise and I were busy and needed help.

Finally, and most important, I acknowledge that were it not for God
paving the way and giving me the strength, this work would never have
been possible. Truly, it was a miracle that many of the obstacles were
overcome. [shall be thankful to Him all of the days of my life.

xi

VITA

June 3, 1951 — Born, San Diego, California.

1972 — B.A,, Mathematics-Computer Science,
University of California, Los Angeles

1972-1975% — Teaching Associate, Department
of Computer Science, University of
California, Los Angeles

1975 — M.S., Computer Science, University
of California, Los Angeles

1975-1977 — Member of the Technical Staff,
Technology Service Corporation,
Santa Monica, California

1977-1978 — Senior Scientific Programmer, ITT
Gilfillan, Van Nuys, California

1978- — CAE/CAD Systems Development at Hughes
Aircraft Company, Radar Systems Group,
El Segundo, California.

1982- — Head, CAD Systems Engineering Section,

Radar Design Automation Laboratory,
Hughes Aircraft Company.

' PUBLICATIONS

Hooper, Richard P., "Artificial Pattern Generation,” Proceedings of the
Conference on Computer Graphics, Pattern Recognition, and Data
Structures, May 14-16, 1975, with A. Klinger.

Xit

ABSTRACT OF THE DISSERTATION

An Application of Knowledge-Based Systems to
Electronic Computer-Aided Engineering, Design,

and Manufacturing Data Base Transport
by

Richard Preston Hooper
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1985
Professor Michel A. Melkanoff, Chair

The proliferation of computer-aided engineering (CAE), design
(CAD) and manufacturing (CAM) systems for electronic design has created
a excess of CAE/CAD/CAM database formats. These databases vary
from one system to the next, and yet they often carry common informa-
tion, represented in different formats. In spite of this variation, databases

must be transported between systems, since electronic design requires the

use of features from several CAE/CAD/CAM systems.

xiii

The significance of this work is underscored by other attempts to
define a transport method. Most notable is the IGES (Initial Graphics Ex-
change Specification) standard. Thus far, there are shortcomings with these
methods. The IGES standard was primarily developed to handle
CAE/CAD/CAM data used to describe mechanical designs not electronic
designs. Consequently, IGES does not address all of the data elements of
electronic CAE/CAD/CAM systems.

Commercial offerings which translate between CAE/CAD/CAM for-
mats do not translate all of the data. This is because there is usually some
data which is unique to each system and cannot be translated. Most com-
mercial transiators disregard this data. This is not satisfactory in all cases,

since important data relationships are lost in translation.

This dissei'tation defines a methodology for the transport of daté.-
bases between independent CAE/CAD/CAM systems. In order to demon-
strate the feasibility of this methodology, a prototype system was
developed. A non-traditional, expert systems approach was used to solve
the problems which have plagued ea.rlier a.ttemp;ts at a data transport
method. The prototype was implemented using PROLOG, running under
LOCUS/UNIX on a VAX network. The research has been limited in scope
to CAE/CAD/CAM systems used for the development of electronic systems

as opposed to mechanical systems.

The conclusion of this research is that a this approach can be used
to provide a method for transporting data between distinect
CAE/CAD/CAM system types. The prototype translation algorithm is
driven by knowledge bases which describe the CAE/CAD/CAM data for-

Xiv

mats and semantics. New systems can be added to the knowledge base

with a relatively minor amount of effort.

CHAPTER 1
INTRODUCTION

The purpose of this dissertation is to develop a methodology for
transporting data bases of differing form, schema, and content between dis-
tinct types of systems for computer-aided engineering (CAE), design
(CAD), and manufacturing {CAM). The focus of this work is in the elec-
tronic design field in contrast with other fields (e.g., mechanical design).
The dissertation describes electronic CAE/CAD/CAM and the requirement
for data transport, defines a data transport methodology, Ppresents a proto-
_ type system, and analyzes the application of the prototype to several test‘

cases.
Background

The need for increased productivity through the automation of elec-
tronic systems development has brought about rapid development of
CAE/CAD/CAM systems. Several companies have developed commercial
systems providing one or more CAE/CAD/CAM functions for the develop-
ment of digital/analog circuits, printed circuit boards, and VLSI chips.

New systems are constantly becoming available.

Since CAE/CAD/CAM provides a highly competitive market, most

companies have worked independently, often without regard for the prob-

lem of interfacing their system with other systems. However, the complete
cycle of electronic system development requires that features of several sys-
tems be used. No system provides all features necessary for the design, im-
plementation, and fabrication of an electronic system. Several

CAE/CAD/CAM functions are necessary, including
) graphics/drafting,
* design capture,
® analysis/simulation,
e . placement/route,
e layout and artwork generation, and
¢ manufacturing aids generation.
Usually thése functions will reside on several different computer systems. -

Without the benefit of a method for automatically transporting data
between systems in order to use each function, the only alternative is to
manually re-encode the data necessary to drive each CAE/CAD/CAM sys-
tem. This approach is expensive since the data must be verified each time
the encoding process is repeated. This approach also results in unnecessary
delay which defeats a major purpose behind the use of CAE/CAD/CAM.
Consequently, there is a strong motivation to translate databases between

systems, automatically.

Another motivation for database transport between
CAE/CAD/CAM systems is to set up libraries of common data (e.g.,
graphic symbol libraries). Once established, a single library can be shared
by different vendor systems providing that some data translation method is
available. Maintenance of libraries is thus reduced by only requiring the

update of a single common library.

However, since each brand of CAE/CAD/CAM system utilizes a
different database schema/organization, there has been no direct, general
data mapping approach available. Typically, specific point-to-point trans-
lators are developed by users as needed. The difficulty with this approach
is that when the source and/or target data formats are revised by the sys-
tem developers, the translators must be rewritten. Also, it is difficult to in-
tegrate new systems into a distributed CAE/CAD/CAM system network,
since translators must be written to move data between the new system

and each other system with which it interfaces.
Goal

An alternative data transport methodology is the goal of this doc-
toral research. The research began about six years ago, motivated by the
requirement for data transport within the CAD environment at the Radar
Systems Group {RSG) of Hughes Aircraft Company. By invest:lgat-ing the
flow of information from the inception of an electronic design to its fabrica-
tion, it was clear that several CAE/CAD/CAM systems were required, and
that the individual data bases of these systems were unique in both form
and content. Six years ago at RSG, there were a few Computervision sta-

tions, two CALMA's, a DECsystem-10 (running Hughes-developed CAD

software}, and a Hughes schematic capture (graphics} system. At that
time, data was not easily transported between systems. For example, data
entered on the Hughes schematic capture system was used to facilitate
changes to the drawing and subsequent re-draw. Once the design was
final, the drawing was released. In order to get a schematic database onto
the DECsystem-10 CAD system, the data on the schematic drawing was
re-encoded for data entry directly onto the DECsystem-10.

In the years which followed up to the present, this requirement
remains. CAE/CAD/CAM technology has undergone many improvements,
but the need for a data transport methodology has not been eliminated.
The same CAD organization at Hughes RSG has grown and in addition to-
the systems available six years ago, there are more CV’s, more CALMA’s,
two DECsystem-20's (the DECsystem-10 was converted), two VAX's (run-
ning VLSI/VHSIC CAD system), 16 VALID Logic Wbrkstai:ions, and two
DAISY systems. Because the number of distinct types of CAE/CAD sys-
tems has increased, the data transport problem has become more complex.
Attempts at identifying standards within classes of CAE/CAD/CAM data

(e.g., schematic, layout, artwork) have succeeded on a limited basis.

Indeed, within the last five years there has been an effort to estab-
lish an international CAD data standard, "Initial Graphics Exchange
Specification (IGES)." This standard has developed slowly and the majér
emphasis has been on graphics information and the mechanical
CAE/CAD/CAM application. Finally, in 1980, version 1.0 of this standard
was accepted and released as an ANSI standard. The intent of the stan-

dard is ‘that all systems will provide interfaces to and from their internal

formats into the IGES format. There is no date yet projected for when
this might be feasible. Also, there is uncertainty as to whether all commer-
cial systems will adhere to this standard for economic reasons. The emer-

gence of alternative CAD data standards add to the uncertainty.

This year, a new format was introduced for CAE/CAD/CAM data
transport. As yet, version 1.0 of this Engineering Design Interchange For-
mat (EDIF) has not been formally released. The inclusion of EDIF in this
dissertation occurred recently. The contribution of this potential standard
as described in ité preliminary release will still not address many of the
problems described in Chapter 3. However, as new standards arise, they
may add to the growing superset of all data entities which describe elec-

tronic designs.

This dissertation. will attempt to further clarify the problems of
CAE/C‘AD/CAM data transport, define a solution to the problems, and
‘deseribe a prototype which demonstrates the feasibility of the concepts
developed. To begin with, the CAE/CAD/CAM environment is described
in Chapter 2. This includes a description of how data flows between
CAE/CAD/CAM processes in both microelectronics (chip) design and
printed circuit board design. The categories of this data and differences in
its representation between systems are presented. This chapter concludes

with a review of existing standards for CAE/CAD/CAM data exchange.

Chapter 3 defines the proposed data transport ‘methodology. First,
the difficulties in transporting data between systems are described. Then,
the general approach to overcoming the difficulties is presented. Finally, a

systems architecture is defined.

Chapter 4 describes the prototype system. The proposed system has
been implemented using PROLOG. This chapter contains a brief introduec-
tion to PROLOG, a description of the PROLOG programs used to proto-
type the proposed system, and an explanation of how the prototype

operates.

[

Chapter 5 dleiescribes several test cases which demonstrate the feasi-
bility of the prototype. One case is the transport of a hypothetical
schematic data base into another, different hypothetical format. The
second case involves translating an actual schematic data base (TEGAS
description language - a.k.a. TDL} into a Hughes PCB CAD data base for-
mat. In this second case, not only is the data base translation demonstrat-
ed, but also, a compiler was written and is presented to demonstrate the
feasibility of translating an arbitrary CAE/CAD/CAM data language into
a generic fbrmat. Finally, a third eicample, two widely recdgnized, but dis-
tinct data formats used for VLSI layout description (CALMA Stream For-

mat and CalTech Intermediate Form) are transformed both ways.

Chapter 6 summarizes the work and states the conclusions which

were drawn during the conduct of the experiments.

Appendix A contains a glossary of terms to aid the reader and to

clarify the intent of the author.

Appendix B discusses an earlier prototype implementation approach
which was attembpted using data base technology. This approach was sub-
sequently abandoned due to inherent problems with translation rule

representation. This decision led to the use of a knowledge-based systems

approach using Prolog.

Appendices C through G show sample CAE/CAD data bases which

were used as test cases for the prototype described in Chapter 4.

Appendix H shows an excerpt of the syntax for the TEGAS Design
Language (TDL). The excerpt is included so that the TDL sample of

Chapter 4 can be better understood.

Appendices I, J, and K provide a data base and rules used as inputs

in a CALMA to CIF test case described in Chapter 5.

Finally, Appendices L, M, N, O, P, Q, and R provide the various
oﬁtputs from the prototype implementation for the CALMA to CIF test

case.

CHAPTER 2
CAE/CAD/CAM ENVIRONMENT

To illustrate the data transpox;t problem, consider a representative
CAE/CAD/CAM environment for electronic design. The design process
consists of several stages of definition, simulation, analysis, and mechaniza-
tion until the design goal is reached. The process is iterative and
CAE/CAD/CAM tools are utilized at all stages of this design process to
perform computationally corﬁplex tasks, improve the quality and reliability
of the design, and to verify consistency between the various stages of
design. Each CAE/CAD/CAM tool/system has unique data input/output
formats. A more in-depth look at the electronic design process, the
CA.E/CAD/CAM tools, the data used by the tools, and data standards will

make this more apparent.

The first step in the electronic design process is the conceptual
design of the system. This is a top-level definition which identifies the ma-
jor functions to be performed by the system. All of the requirements are
allocated to one of the various functions. System performance parameters
are related to the funct.ions which affect their outcome. Conforming to
performance requirements and environmental considerations, the selection
of electronic circuit technology will be made (e.g., TTL, Shottky, ECL,
CMOS, Custom VLSI, Gate Array, etc.) and the physical packaging will be

established. Once the functional specification is established, each function
is defined in terms of processes to be performed, inputs, outputs, and the
functions with which they interface. Usually this relationship is illustrated
with a system-level block diagram. Figure 2.1 shows an example of a block
diagram for a hypothetical computer system. This conceptud.deﬁnition of
the system and;‘top-level functional decomposition is éenerally performed
without the user: of a CAE system, although several computer simulations

and other analyses are used.

Each system function to be performed is sufficiently described so
that the next level of detail can be defined. In the case of the hypothetical
computer system (Figure 2.1), the next step of refinement might break
down the "Instriction Decoder & Control” into sub-functions. Refinement
and functional decomposition continue until a leve] is reached which can be
implemented on a standard physical device such as a gate array, custom
wafer, or a printed circuit board (PCB). At this point, the development of
the device begins. The development flow comsists of the several steps
shown in Figure 2.2: logic/circuit design, physical design, manufacture, and

test.
2.1 Custom VLSI or Gate Array

When a logic function is to be implemented into a gate array or cus-
tom VLSI chip, the design may have several levels of hierarchy. The lowest
level refers to primitive cells {macros). These are implemented using analog
devices which are built into the semiconductor medium. This hierarchical
design style is shown in Figure 2.3. In this example the functions "NAND"
and "INV" are primitive cells.

Address MEMORY
MEMORY ¢ ADDRESS
REGISTER
Read/ T
write Address
¢
Data INSTRUCTION
8 DECODER
Data 4 o
MEMORY |, CONTROL
BUFFER
| o Operator l
Data.l T Data —'ﬂ ALU
1/0
BUFFER

Data | T

Control

Figure 2.1. Sample System Level Block Diagram.

10

Schematic
Drawing
Schematic
Database

Layoyt
" Databese

JL |

LOGIC / CIRCUIT
DESIGN

h

PHYSICAL
DESIGN

v

Assembly
File

Test Pattern
Database

Figure 2.2. Typical Electronic Design Flow.

MANUFACTURE

CAE Tools:

- Graphics Capture
- Simulation

- Timing Analysis

CAD Tools:
- Placement
- Route
- Layout Analysis
(DRC, ERC,
Schem. Check)

CAM Tools:

- Artwork
Generation

- 0rill Tape

- Auto Assembly

Test Tools:
- Auto Pattern
Generation

- Fault
Simuiation

11

MEMORY BUFFER (LEVEL 2)

Memory MUX
A
1/0 Buffer MR Q[
B MUX DFF
SEL A Out
: MC Q INR Q
B
ALU MUX SEL EN
A
Instruction MB O |
Decoder B
SEL

MUX (LEVEL 1)
A A
NR)Jo a:D°_ Q
SP_I;_._J_DO_LJ :,;9% Q NAND
5 ‘ (LEVEL 0)
NB
A—{>0— g

INV
(LEVEL 0)

DFF (LEVEL 1)

IN NA

Figure 2.3. Multi-Level (Hierarchical) Design.

12

Typically, when a gate array or custom VLSI design begins, a library
of standard primitive cells is formed from basic logic functions as those in
the preceding example ("NAND" & "INV"). In some cases, the primitives
may be quite intricate, utilizing > 100 transistors. These standard primi-
tives are analog designs whose functions can be verified by a circuit simula-
tor. This simulation will verify E,he proper voltage levels, voltage transi-
tions, and timing. At the end of this activity, the library of primitive cells
will be available as a foundation upon which logic design will be built. The
circuit simulation will also generate the necessary data tQ formulate logic
models for higher level logic simulations, working with digital (Boolean) sig-

nals rather than analog simulations.

Once the primitive cell library is available, attention turns back to
the top-level block diagram. Each function at this level is decomposed into
sub-functions, and these sub-functions are sub-divided again. This fune-
tional decomposition repeats until the primitive cell level is reached. Once
a sub-function can be expressed in terms of primitive cells which have logice

simulation models, the sub-function can be verified using a logic simulator.

~ As sub-functions are simulated and verified, they can be combined
to form larger functions. The larger functions can then be verified by

simulation. This process is repeated until the entire gate array or custom

VLSI device is verified.

In conjunction with logic simulation, timing verification is used at
each level in the hierarchy. The signal propagation delays are computed.
using timing models for all cells and the signal media itsell. A network

analysis of these propagation delays will verify that signals arrive at the

13

proper time at the various nodes in the path.

When the gate array or custom VLSI device has a completed logic
design which has been verified, then the logic design must be mechanized
into interconnected physical cells within a wafer geometry. The CAD tools
identified in Figure 2.2 are used to achieve this. First, the primitive cells
are placed according to routability criteria, taking into consideration any
thermal restrictions and/or timing constraints. Cell placement can be ac-

complished either manually or semi-automatically.

With the cells placed, signal routing proceeds. Using the available
conductor layers in a gate array or custom VLSI device, paths are selected
according to the routing algorithm deployed. After automatic routing is
finished, there are often signa.lé for which a path could not be found by the
router. These "route fails” must be resolved by ripping up routed lines,
and manually re-routing the "route fails” and any ripped-up lines. After
manual re-route, a design rule check is performed to determine if any
geometric spacing constraints, imposed by the circuit and process technolo-
gy (e.g., CMOS), have been violated. Electrical rules must also be checked
to determine layout correctness with regard to electrical parameters, such
as loading. Another check performed after any re-routes is a schematic
check. This verifies that all signals in the logic design have a physical
counterpart in the layout. Once the layout passeé all of the post-route
checks, a pattern generator tape is produced. This tape is used to guide

the various steps in the fabrication process.

14

When all of the gate-array and custom VLSI devices have been
designed and fabricated, they can be combined to construct a printed cir-

cuit board, implementing still a larger scale function.

2.2 Printed Circuit Boards In the case of a PC board implementation,
this level of functional decomposition constitutes the first level above the
components which have been selected by the circuit technolog’yﬁ decision at
the conceptual design step. Examples of components might be logic ele-
ments {e.g., NAND gates, counters, and‘regi’ssters), integrated circuit chips

(IC’s), or discrete analog parts (e.g., resistors, transistors, capacitors, etc.).

Each PC board is finally defined in sufficient detail so that a com-
pleted design can be carried through to fabrication. The PC board is do-
cﬁmented in terms of a block diagram showing subf{xnctional areas (ie.,
macros). As the PC board is refined, various subfunctions are designed us-
/ing components from the set of the selected circuit technology. buring this
refinement a logic schematic is developed, detailing all of the logical ele-
ments and how they are interconnected to perform the specified function

(see Figure 2.4).

As portions of the logic are defined, simulation is performed to in-
sure the proper logic functioning of the désign before it is implemented us-
ing actual components. Timing analysis is performed to insure that there
were no incorrect assumptions made about the delays in signal propagation
through various logic elements or errors in clocking. - Signal loading and
drive capacity are also checked to insure compliance with electrical rules.
Any prqblems detected are corrected before the logic design is released for

physical design.

15

‘weabeig 211ewayds ajdwes 'z aunbiy

mw.

NNOJ

zzoon |;
9I1S1N0 07\ 2005WS
=z=z~_ JIN410N ND| toon
601SWS
417440)
d3471) A
34v31) O

1592013 9
zaals |S
18915 |V
1 ¢v9IS |&
1 1v9IS |C

ONUNZ

toon

gops [I 13538 ||
UANI NNDJ| |

16

When the PCB design activity is completed, each logic element is as-
signed to a physical component or chip. In small scale integrated circuitry,
chips often contain multiple logic elements of the same type (e.g., 4 NAND
gates). After the assignment of logic elements to components, the com-
ponents are located on the PC board. At this time the placement is
an.alyzed before signal routing to insure correct thermal distribution over
the PC board. Once the design passes these validation tests, the next step
is to route the interconnections between components upon the remaining
PC board area not taken up by components and other obstacles. _After
route, a final analysis is performed to determine if the paths chosen violate
signal length requirements thus causing timing problems or whether there
is too much parallelism among adjacent signals to constitute inductive
noise problems. Assuming the selected route Paths pass these critical tests, .

the design is complete and ready for manufacture.

Manufacturing consists of etching and drilling the printed circuit
boards, generating continuity tests for the etched board, inserting com-
ponents upon the board, soldering the components in place, and wiring the
ba.ckpla_.ne which contains slots for the individual printed circuit boards.
In addition to these processes associated just with the electronic aspects of
the design, there are many other fabrication processes necessary to assem-

ble all of the mechanical parts into a final system.

The use of CAE/CAD/CAM tools has had a significant impact on
this overall design process. Figure 2.2 shows where data bases and au-

tomated tools are used to assist in the electronie design.

17

2.3 CAE/CAD/CAM Tools

The intent of CAE/CAD/CAM is to off-load any processes which do
not require human judgement and experience onto automated processes,
i.e., to effectively utilize man and machine resources. Automation is ap-
plied to the design and manufacturing cycle in several areas. Figure 2.5
lists several CAE/CAD/CAM functional areas with examples of tools in

each area.

Logic Design Aids. From the time a designer receives a requirement
specification until a prototype is developed, logic design aids facilitate deci-
sion making. To begin with, graphics editors allow a designer to enter,
edit and display his evolving logic schematic. As the design proceeds,
design aids software indicates any deviation from standards and warns the
designer about .potential logic errors, producibility problems, and testing
difficulties. This feedback speeds up the development cycle by calling to
the attention of the designer details that he might have discovered at a less

opportune time during development.

Logic simulators and test pattern generators can also Be used incre-
mentally as a designer adds more of his logic to the emerging design.
These tools help the designer evaluate trade-offs and select the best of
design alternatives. In general, the designer gains confidence in his design
because the tools identify logic errors and measure how easily the design

can be tested once fabricated. .

Analysis Tools. Along with logic design aids, analysis tools also raise

confidence that the design is correct and will function properly once it is

18

Logic Design Aids Analysis Tools

. Graphic (Schematic) . Thermal Analysis
Editor . Propagation Delay &
. Logic Simulator Timing Analysis
. Test Case Generator . Noise Margin Analysis
. Loading Analysis
Physical Design Aids Drawings & Reports
. Routing _ . Assembly Drawings
. Gate Assignment . Schematic Drawings
. Component Placement . Pin/Signal Lists
. Design Rule Checks . Parts Lists
Post Route Analysis - . Test Case Data
Line Lengths, Sig-
nal Parallel Runs
Manufacturing Aids Libraries/Data Bases
. Numerical Control . Graphies Capture
Machinery Data - . Logic Design (Schematic)
Drill, Auto Data Base
Component Inser- . Configuration Management
tion Status
. LSI Mask File - Standard Components/
. PCB Artwork File Parts Layout Library
- Layout/Route Data Base
- LSI Macro Cell Library

. Drawing Symbol Library
. Simulation/Timing
Models Library
Component Packages
Library

Figure 2.5. CAE/CAD/CAM Data Funections.

19

iniplemented into a physical design. For example, lcading analysis will in-
dicate whether there.are too many components being driven from a single
signal source. Analysis of the physical design before fabrication will often
prevent costly errors. For example, once components have been placed on a
printed circuit board (PCB), a thermal analysis will indicate whether
overheati‘ng is likely to occur from the placement of too many "hot" parts

in close proximity of one another.

Physical Design Aids. Once the logic design is complete, the
mechanical, geometrical, and other non-electrical constraints must be used
to determine how to implement the design. The steps involved include
placement and route. Once standards for board /wafer geometry and ther-
mal requirements are established and defined in libraries, placement and
route can proceed automatically, driven by the logic design data base and a
few directives which define router strategies and priorities to be considered

during these processes.

Drawing/Report Generation. The output of CAE/CAD/CAM
processes is typically a report or a drawing. Following the schematic cap-
ture, a pin/signal report is written which contains all of the information
pertaining to which components are interconnected. A schematic drawing
is the best format to display and verify the logi_c design data following
design capture. The designer can make design changes to the schematic
and have a clean drawing produced with the new changes reflected. An as-
sembly drawing can be generated automatically o;lce the components

have been placed. This can be used by manufacturing planners to provide

instructions on how to build a PC board. In general, CAE/CAD/CAM

20

processes create, use, and update design data which is then presented in

the form of drawings or reports.

Libraries/Data Bases The CAE/CAD/CAM processes require a large
volume of data in order to describe the designs under development. Li-
braries of standard parts or cells and board/wafer geometrieé are main-
tained to mipimize the amount of data that must be re-entered each timé a
new design is created. Libraries are created for simulation and timing
models, drawing symbols, cell layout patterns, component package
specifications, and component artwork (footprint) patterns. These libraries
minimize errors and insure consistency, where necessary, from one design

to the next.

A design data base is created for each design. This contains data
such as the logic network, assignment of logic gates to physical
components/cells, placement locations, and signal routing. The data base
contains references to standard library parts/cells, board /wafer geometries,
and the interconnection of parts. While the collection of data describing a
design is referred to as a data base, thé data actually may reside in a
variety of files and data bases depending upon the CAE/CAD/CAM sys-
tem. Examples include those listed in Figure 2.5.

Because of the large number of parameters in the design data bases
and libraries, changes in a design after its entry into a CAE/CAD/CAM
system can have far reaching effects. For example, the decision to substi-
tute parts in a design can affect several data bases. If a design has been
released for manufacture, it means that a significant commitment has been

made in time and money to the system configuration in which the design is

21

embedded. Still, changes are sometimes necessary after initial release and
a method is necessary to keep track of which revision of one design is to be
interfaced with other designs which together consitute a complete
configuration. This is the role of a configuration management system, and

some CAE/CAD/CAM systems provide this facility.

Manufacturing Aids. Once the design is compiete and the physical
implementation routines have obtained a feasible mapping of logic into
components and interconnections within the established constraints,
manufacturing aids are generated from the design data base. Computer-
aided manufacturing relies on these tools to improve the throughput of the
factory much the same way CAD tools improve the productivity of en-
gineers. Examples of manufacturing aids include photo-plotter tapes for
artwork generation/PCB etch, automatic assembly ﬁ.les, continuity check
tapes, and drill tapes. Each of these aids represents a final output derived
from the various CAE/CAD/CAM data elements describing the equip-

ment to be built.
2.4 CAE/CAD/CAM Data for Electronic Design

CAE/CAD/CAM data for electronic equipment, such as a radar sig-
nal processor, can be broken into several categories of information: logi-
cal, physical, electrical, thermal, and timing. In each category, the data
type may be textual, numeric, graphic, or special-purpose. Each data type
may have several variations such as floating-point and integer numeric
representations. Figure 2.6 lists the data categories, and examples of infor-
mation in each category. Usually the format of a specific category of data

varies from one CAE/CAD/CAM system to the next. There are numerous

22

LOGICAL

. Digital/Analog Function
. Schematic Drawing

. Graphic Symbols

. Logte/Circuit Network

PHYSICAL

. Component Size
. Pin Description
. Board/Wafer Geometry

. Assembly Drawing

. Pin/Signal Data

ELECTRICAL THERMAL
. Power Consumption . Heat Dissipation
. Loading
TIMING
. Rise/Fall Times

. Clock Cyecle
. Set-up/Hold Times

Figure 2.6. CAE/CAD/CAM Data Categories.

approaches to establishing a structure for CAE/CAD/CAM data bases.
Many of these have been documented, and are refel:enced here as back-
ground. [Ciam76a, Ciam76b, Gutt82, Hask82, Kawa78, Lacr81, Such79,
Vall75, Wilm79, Wong79, TDL83, Mead80] At this time there are numerous
commercial CAE/CAD/CAM systems, and each maintains a distinct data

23

base format: CAE Systems, CALMA, Computervision, Daisy, Mentor

Graphies, Silvar-Lisco, and Valid Logic to name a few.

It is precisely the wide variety of data formats which has created the
problem of CAE/CAD/CAM data transport. Two cases demonstrate the

problem.

Case 1. Consider a data base consisting of schematic interconnect
information. A sample schematic diagram was shown in Figure 24, A
data base representing this information describes how the component pins
are connected logically. This data can be represented in a variety of ways
and is referred to as ';pin-sig'nal data”, "from-to data”, and by other names

which connote the data content.

One example of the format this data takes is provided by the
Hughes DECsystem-20 CAD system [Wong79]. Here, interconnect data is
contained within the "Build-Design” data base. The structure of this data

is indicated in Figure 2.7.

Figure 2.8 shows the data content of the build-design data base for
the sample shown in Figure 2.4. This data base represents a PCB design by
describing the components, their pins; -pin function, signal names, and

other data used by a variety of CAE/CAD/CAM processes.

Another format for schematic interconnect data is that of an often
used test system at Hughes Aircraft: the Hewlett-Packard (HP) DTS-70
system [HP80]. The syntax for this data is shown in Figure 2.9. This form
is man/machine readable (ASCII) since it is also designed for direct manual

output into the system. In order to reduce error and minimize time, a spe-

24

ATTRIBUTE SIGNAL ABBREV § TEXT KEYED COL 1 8
ATTRIBUTE FEED _ THRU ABBREV FT TEXT COL 9 9
ATTRIBUTE TEST ~ POINT ABBREV TP TEXT COL 10 10
ATTRIBUTE CONNECTOR ABBREV CR TEXT COL 11 11
ATTRIBUTE COMPONENT _ NAME ABBREV CN TEXT
KEYED COL 12 15
ATTRIBUTE COMPONENT _ PIN ABBREV CP TEXT
KEYED COL 16 20
A'I(‘j’I(‘)RLIBUTE PAGENUMBER1 ABBREV PN1 TEXT
22 23
ATTRIBUTE PIN SWAP ABBREV PS TEXT COL 24 24
ATTRIBUTE SEQUENCE ABBREV SEQ TEXT COL 25 26
ATTRIBUTE CRITICALITY _ CODE ABBREV CC TEXT
KEYED COL 30 31
A’I(‘j’I(‘)}}‘IBUTE ELEMENT _PIN ABBREV EP TEXT
32 32
A’I(;I(‘)%IBUTE ELEMENT _ ADDRESS ABBREV EA TEXT
33 34
AT(;I(‘)P;‘IBUTE MULTIPLE _SOURCE ABBREV MS TEXT
35 35
ATTRIBUTE SOURCE ABBREV SR TEXT COL 38 38
ATTRIBUTE ELEMENT NAME ABBREV EN TEXT
KEYED COL 3742 —
ATTRIBUTE ELEMENT _ TYPE ABBREV ET TEXT
KEYED COL 4758
ATTRIBUTE LOAD ABBREV LD REAL COL 57 65
AT(;’IC‘)IEBUTE PIN _FUNCTION ABBREV PF TEXT
66 70
ATTRIBUTE NO CONNECT ABBREV NC TEXT COL 71 71
ATTRIBUTE SIGNAL TYPE ABBREV ST TEXT COL 72 72
ATTRIBUTE COMPONENT _ TYPE ABBREV CT TEXT KEYED
COL 81 88
ATTRIBUTE PINQUANTITY ABBREV PQ TEXT
COL 105 106
ATTRIBUTE DOC DATE OF CHANGE COL 142 149
ATTRIBUTE COMPONENT _ ADDRESS ABBREV CA TEXT
KEYED COL 161 170 -

Figure 2.7. Build-Design Data Base Structure.

25

S CN CP CT SR EN ET EP PF

CLOCK1 U001 13 54LS109 vool1 JK J CK
CLOCKI CONN 1 CONN T CONN CONN 1 O
SIGA1 CONN 2 CONN T CONN CONN 2 O
SIGA1 Uo02 1 54LS00 U0021 2NAND A |
SIGA2 CONN 3 CONN T CONN CONN 3 O
SIGA2 U002 2 54LS00 Uo021 2NAND B I
SIGB1 CONN 4 CONN T CONN CONN 4 O
SIGB1 Uoo2 4 54LS00 Uo022 2NAND A |
SIGB2 CONN 5 CONN T CONN CONN 5 O
SIGB2 U002 5 54LS00 Up022 2NAND B I
RESET CONN 6 CONN T CONN CONN 6 O
RESET U003 13 5408 Uoo3s INV A 1
SIGA Uoo2 3 54LS00 T Uo021 2NAND Y O
SIGB Uoo2 6 54LSc0 T Uo022 2NAND Y O

Figure 2.8. Build-Design Data Base for Sample Schematic.

cial purpose translator has been written to dump the DECsystem-20 based
CAD system Build-Design data base into the HP DTS-70 form suitable for
output into the HP DTS-70 system.

Case 2. Another instance of similar data content in different for-
mats is the DECsystem-20 CAD Build-Design data base versus the Compu-
tervision {CV) Electrical Schematic-Printed Circuit (ES-PC) .Data Base
[CVPC83, CVDBS83]. Ideally, the two systems should be capable of data in-
terchange so that the CV system can be used for mgraphic data entry,
display, and editing while the DEC-20 can be used for CPU-intensive com-

putation involved in highly-dense digital printed circuit board physical

26

*HEADER
MODULE: <module-name> REVISED: <date>
*LIB <model-lib-1> <model-lib-2>
*MAIN <title>$
*INPUTS -
< input-connector-name>(< pin-loc-1>, <pin-loc-2>, ...
< pin-loc-n>)$

*OUTPUTS
<output-connector-name>(< pin-loc-1>, <pin-loe-2>, ...
<pin-loc-n>)¥
*GATES

<input-connector-name>>(< connector-type>)
<signal-name-1>.<pin-loc-1>
<signal-name-2>. < pin-loe-2> ...

< output-connector-name)ﬁ<connector-type>)
<signal-name-1>. < pin-loc-1>
<signal-name-2>.<pin-loc-2> ...

* < component-name-1 >‘
< component-address >(< component-type>)
<signal-name-1>.<pin-1> <signal-name-2>.<pin-2> ...

* L component-name-2>>

< component-address >{ < component-type>)
<signal-name-1>.<pin-1> <signal-name-2>.<pin-2> ...

* <L component-ns',m&n > -
< component-address >{ < component-type>>)
<signal-name-1>.<pin-1> <signal-name-2>.<pin-2> ...

3
*END

Figure 2.9. Hewlett-Packard DTS-70 Pin-Signal Data Input Syntax.

27

design algorithms (e.g., routing}.

The DEC-20 system data base (shown in Figure 2.7) is organized in
a tabular format similar to the relational data model using System 1022™,
a data base management system from Software House [Soft84]. In addition
to the Build-Design data base, component information is stored in a library
contained in two principle data tables as shown in Figure 2.10: the Com-
ponent Index table and the Component Pin table. This data is used for
analyzing designs and for implementing a logical design into a physical lay-

out with associated interconnect etch lines.

The CV ES-PC data base is organized into a Master Index of enti-
ties which are represented in detail within a Part Data File (PDF). Each
entity represents a graphic element within a larger drawing. Parts are
comprised of these elements and may be nested in a hierarchical manner in
order to form more complex drawings. In fact, each drawing is just anoth-
er part which is stored into the PDF and pointed to by the Master Index.
Figure 2.11 lists the entities associated with the ES-PC application @1 on
the CV. The orientation of the CV data is toward graphic presentation of
the data. Even though there are analysis and some physical design funec-
tions which can be performed on the CV system, the magnitude of com-
plexity which the CV system is capable of handling is much more limited in
comparison to the DEC-20, due to CPU power differences. The CV system

is well suited to editing of logic circuits using graphic representations, with

(21) The CV system is general-purpose and supports many
other applications such as mechanical parts drawing,
surveying, architecture, etc. While each application uses the
same data base concept, the entities may be different.

28

Component Index Data Component Pin Data

DEFAULT SIGNAL NAME COMPONENT TYPE
COMPONENT TYPE PART DESIGNATOR
PART DESIGNATOR COMPONENT PIN
DESIGNATOR TYPE CONNECTOR
PACKAGE CODE TEST POINT:,
DESCRIPTION FEED THRU
REMARK ELEMENT ADDRESS

ELEMENT TYPE

ELEMENT PIN

PIN FUNCTION

SOURCE

PIN SWAP

LOAD

OVERRIDE CODE

SIGNAL TYPE

NO CONNECT

Figure 2.10. Hughes DEC-20 CAD System Data Base.

a straight-forward manipulation language entered via stylus and menu ta-

blet.

The mapping from DEC-20 to CV data bases is complex in that the
elements of a component or a schematic are not represented by unique en-
tities on the CV system. Most of the data which should be shared between
the two systems is textual in nature (e.g., signal names, pin functions, com-
ponent names, etc The use of text on the CV system is rather unrestricted,
and as a result, it is only by context that a textual data element on the cv

system can be associated with a data element in the DEC-20 data base.

29

Master Index : Part Data
Blocks File

w Connect

Node

Nedal

Connect
Node

pog

74— Line
. ¥

Figure 2.11. Computervision

30

The difficulty is shown graphically by the intersection of the sets of data
which each system maintains. This intersection represents only a fraction

of either system as shown in Figure 2.12.

As these two cases illustrate, the same conceptu‘;a.l CAE/CAD/CAM
data is represented in a variety of ways on different systems. The number
of systems is increasing. In fact, it is quite difficult to list all of the com-
mercial CAE/CAD/CAM systems. Adding to the complexity of the prob-
lem are custom, in-house systems which many electronics firms have

developed to meet their special requirements.
2.5 CAE/CAD/CAM Data Exchange Standards

Because the data transport problem is pervasive.and wide-spread, a
number of attempts have been made to standardize on neutral data base
formats. However, theser data standards do not completely address the
data transport problem. The job of translating data to and from a stan-
dard is left up to the originator and receiver of the CAE/CAD/CAM data
format being transported. The problem of what to do with data which

cannot be expressed in the standard is not addressed.

Among the attempts at standardization are the Initial Graphics Ex-
change Speciﬁcation.(IGES), ANSI/IPC-D-350, and most recently the Elec-
tronic Design Interchange Format {EDIF). The preface to the EDIF
specification [EDIF84] identifies the problems encountered by those at-

-

tempting to define a standard:

"While many interchange formats and hardware description
languages have been developed over the past decode, each has

31

Multiple Source Flag
Find Number
Pad Patterns

Component Package Codes

Source Flag
Signal Type Definition
Board Geometry Data

DEC-20 CAD System Data Base

Interconnections AR
Signal Names
Component Types SuE
Component Names S5

Computervision ES-PC Data Base

Graphic Presentation Parameters
Schematic Form
. Assembdly Drawing Form
Graphic Symbdols for Components

Figure 2.12. Comparision of DEC-20 and Computervision
CAD Data Bases.

suffered from one or more of the following drawbacks:
Narrow focus, .
Proprietary, ...
Difficult to Implement, ...
Difficult to Extend, ..."
A brief description of these standards will bring to light these drawbacks

and illustrate others as well. -
2.5.1 Initial Graphics Exchange Specification (IGES)

The formulation of IGES dates back to late 1979. The first IGES
concepts stemmed from a joint ﬁxeeting of the Air Force,’ Army, Navy, and
the National Bureau of Standards (NBS) held at the National Academy of
Sciences on October 11, 1979. Presentations by CAD/CAM systems ven-
dors, corporate systems designers, and standards groups pointed to prob-
lem in data transport between CAD/CAM systems. At this time and since
then, the emphasis has been on 3D graphics CAD/CAM systems for
mechanical design. It was generally agreed that an initial graphics ex-

change specification was needed immediately. [IGES80]

Later in 1979, a committee was formed between representatives from
the NBS, Boeing, and General Electric. The Boeing and General Electric
corporate CAD/CAM exchange systems were selected as initial systems
upon which IGES was formed. Subsequent to its first release, IGES be—
came an ANSI standard {ANSI Y14.26M-1981) issued on April 15, 1882.

Due to the rapid formulation of IGES, several misconceptions about
the intent of IGES developed even prior to its first release. In an attempt
to clarify IGES, the technical committee offered a list of statements

describing IGES in the Introduction of the first release. Several of these

33

statements point to inherent limitations built into the standard:

. IGES is designed with the technical aspects of several
CAE/CAD/CAM systems in mind. Thus the translation from
vendor systems to IGES and vice versa will not be one for

one, but should be feasible.

e IGES is not a complete spec of all the data in all
CAE/CAD/CAM systems. Thus, there may be a loss of data
or structural information in the tranmslation to and from

IGES.

o IGES is based on the Boeing CAD/CAM Integrated Informa-
tion Network, the General Electric Neutral Data Base, and a
variety of other data exchange formats which were given to

the committee.

. IGES is the best specification that could be produced in the
time frame permitted. While it is not a copy of any of the
exc;'hange formats presented to the committee, it has the ad-
vantage of the experience and knowledge gained in their pro-

duction and use.

. IGES is a set of geometrical, drafting, structural, and other
entities. Thus it has the capability to represent a majority of

the information in CAD/CAM systems. -

° IGES is extensible. Several definition mechanisms have been

provided to permit IGES to be expandable. A working com-

34

mittee has been set up to coordinate expansions and to

" ecorrect errors.

¢ IGES is not designed for the technical aspects of any one of
the currently available CAD/CAM systems.

e IGES is not perfect, or the solution to all data eichange prob-

lems between CAD/CAM systems.

° IGES is not a carbon copy ;f any of the exchange formats

given to the techrical committee.
It is clear, that the committee was attempting to deliver a spec in a short
time-frame, and that they hoped to provide an extensible framework which

- would allow future additions to cover any initial shortcomings.

The initial format of an IGES file was a numerically sequenced set of
80-column card images in ASCII. As would be expected with graphics data
bases, this file format resulted in very large IGES files. This problem
resulted in the second release of IGES including an optional binary
representation of an IGES file. The structure of the binary format is

essentially the same as the ASCII format.

An IGES file consist of 5 sections: Start Section, Global Section,
Directory Entry Section, Parameter Data Section, and Terminate Section.
The Start Section contains comments about the IGES file and the part
represented. The Global Section describes machine dependent characteris-
tics used in aﬁ IGES file, various global delimiters, and units. The Directo-
ry Entry Section contains entity descriptions and pointers to parameters,

other entities, line fonts, levels, views, translation/rotation matrices, status

35

flags. Entities are of three categories:
. Geometry: Circles, Lines, Conics, Points, ete.
. Annotation: Dimensions, Notes, Arrows, Witness Lines

. Structure: Associativity, Lig’e‘ Font, Macro, Subfigure, Text

Font, Drawing, Property, an(i View.
The Parameter Data Section contains end points, transformation matrix
values, angles, and pointers. In general, all parametric data needed to
deseribe entities defined in the Directory Entity section is contained in the
Parameter Data section. The Terminate Section contains the card counts
for each section and serves as a checksum of sorts to verify that the file has

been transmitted properly.

While the basic structure of an IGES file doesn’t appear too compli-
cated, there are 20 geometric entities, 13 annotation entities, 12 structural
entities, plus a macro capability. The majority of the entities (> 75%) are
geared for the mechanical CAD/CAM field, where the emphasis has been
since the early days of the IGES inception. The specification as issued
(both versions 1.0 and 2.0) gives only one, incomplete example of how IGES
is applied to electronic CAD/CAM systems. Much of IGES is oriented to-
ward describing drawings and not to describing the content of the draw-
ings. There is virtually no support for CAE data used in simulation and

analysis models. Presumably, CAE is treated as a user extension.

There is an IGES subcommittee which has been actively addressing
extending IGES for electronics data as recently as February 1984. Working

documents and meeting minutes indicate that there are shortcomings in

36

IGES version 2.0 which could be resolved in a number of ways, including
adding more entities to describe schematics. It appears that no single ap-
proach has been approved and that further committee discussion 1S re-

quired.

As regards the integration of IGES with other standards, the IGES
Electrical/Electronic Subcommittee is aware of the existence of
ANSI/IPC-D-350. In February 1984, the Subcommittee suggested that the
IPC standard should be regarded as any other vendor, *? Also, it was sug-
gested that IGES should consider its role as a super-set of CAD/CAM
- data (including IPC). At the other extreme, there seems to be no formal
or informal recognition of EDIF by the IGES Subcommittee to date. The
EDIF effort began in late 1983 with the 0.8 version of the specification be-
ing réleased May 14, 1984 and version 0.9 on July 16, 1984.

Aside from the lack of development in the area of electronic design
data, there are a number of other IGES deficiencies. Scowen [Scow82] indi-
cates a fundamental problem with all systems which are based upon the
transfer of drafting data. The information defines drawings of a product
and not the product itself. Scowen argues that the "full benefits” of a
standard can be realized only

"by complete integration based on a model of the product it-
self rather than a model of drawings of the product.”

(22) Unpublished minutes of the IGES Electrical/Electronic
Subcommittee Meeting of February 9, 1984.

37

Another problem Scowen identified is that some objects can be
represented in several ways in IGES. For example, a rectangle may be a
composite curve, a bounded plane, or a subfigure. The lack of a canonical
representation for objects leads to difficulty in translating data to another
system and then back again. In fact, it is difficult to check whether two

IGES files are equivalent and describe the same object.

An early criticism of IGES was that IGES files were large. This was
to a large extent a problem with the ASCII 80-column card image format.
With version 2.0, IGES now has a binary format as well. Another problem
with the IGES file format is that there is no facility for making easy correc-
tions since all internal pointers are absolute. Consequently, if a change
needs to be made to a design, a new IGES file must be written. If an IGES
translator is expensive to run (which is likely), then the purpose of facili-

tating data transport is defeated.

It is clear that while IGES is a tremendous accomplishment, it is not

a panacea.
2.5.2 ANSI/IPC-D-360

The purpose of the ANSI/IPC-D-350 [IPC77| standard is to provide
a uniform means of describing printed wiring boards in a digital (80-
column card) form. All aspects of printed wiring board designs can be do-
cumented using this standard including copper type, dielectric used, plat-
ing thickness, locations of lines, line widths, ortho:gonality restrictions,

pads, drill holes, and layering schemes.

An IPC _ﬁle contains 5 sections: Parameter Records, Comment
‘Records, Feature/Location Records, Complex or Composite Records, and
an End of Job Record. Parameter records include JOB, DIM, UNITS,
TOL, LAYER, and IMAGE records which describe global values needed to

interpret the IPC file. Within the comment record are included
* List of Features,

) Finished part descriptions - fabrication materials and special

instructions,
. Line Record Identification - structure of line records, and

) References to specification documents.
The Feature/Locations records use a pseudo-assembler language to

describe

) Op codes for continuation records, line records, point records,

and annotation or lettering records;

® Features Description Areas which depend upon the op-code
but include dimensions, layer codes, signal identification, hole

size, annotation character height; and

® Location Description Areas which contains x-y data.
The Complex or Composites records contain op-codes for subroutine

definitions and subroutine calls. .

While the IPC standard is comprehensive in its treatment of PC
board related dats, the bulk of the electronjc CAE/CAD data is not

39

covered by intent. Thus, this standard suffers from the "Narrow focus”
drawback identified by the EDIF formulating Committee, although
ANSI/IPC 350B was not specifically referenced.

2.5.3 Electronic Design Interchange Format (EDIF)

This format is the newest-attempt to develop a universally accept-
able standard for the transport of electronic design data. As indicated at
the beginning of this section on data standards, EDIF was undertaken be-
cause shortcomings were perceived with all previous efforts. Several prede-
cessors were mentioned by name, but IGES wasn’t included. It is unlikely
that IGES wouid be unknown to a committee with CAE/CAD/CAM sys-
tem houses represented. It can only be assumed that the IGES effort in
the area of electronic data is not regarded to be of importance to the EDIF

committee. -

The version 0.9 EDIF is quite comprehensive in its inclusion of all
classes of electronic design data. The classes described in section 2.4 are
addressed and to a more extensive level of detail in EDIF. The basic ele-
ment of design is the "cell”. Several "views” of a cell provide data regard-
ing the schematic, symbolic layout, masks, behavior, and documentation.

Provisions are mode for cell libraries and multiple technologies.

From a structural point of view, the EDIF file is expressed in LISP.
Provisions are included for defining variables and macros, as well as condi-

tionals. The EDIF syntax is quite extensible and ailows for growth.

40

EDIF is oriented toward gate arrays and custom VLSI designs and
provides for CAE as well as CAD/CAM data. However, some of the CAE
data (e.g., simulation models) are éxpressed as comments. Clearly, EDIF is
new and there are a number of features which are only developed
superficially (e.g.,, the documentation view). Also, there have been a

number of criticisms about some of the features of EDIF.

The source of the criticisms are the minutes of the July 16, 1984
public meeting on EDIF. Some hafe objected to the LISP syntax for
efficiency reasons. The gate array description features of EDIF are unclear
and confusing. The number of Test States is inadequate. The Behavioral
description lacks power. There are weaknesses in the mapping among the
logical, physical, and behavioral interfaces. In some cases information is
duplicated as in the redundant definition of ﬁorts between views. There
" are other minor and subtle flaws which were discussed at the meeting. The
intent of the discussion was to identify problems which need correction be-

fore the version 1.0 EDIF is released.

Because the EDIF effort is new, the issue of what to do in cases
when data cannot be represented in EDIF has not really been discussed.
- The assumption made by the committee is that the user extension feature

will cover these cases.
2.5.4 Commercial Systems

In addition to standards which are provided to assist in data tran-
sport, there has been at least one commercial offering. Octal, Inc. of Moug-

tain View, CA announced as early as October 1981 a product which con-

41

verts CALMA drawing data bases into Applicon data bases. That particu-
lar system was reported (23) to log components of the data base which were

"not exactly converted” due to differences in data representation.

Again as in the case of data standards, the problem of data which
doesn't tranmslate is acknowledged, but no obvious treatment prescribed.
This problem among others is described in the next chapter and a metho-

dology for CAE/CAD/CAM data transport is presented.

(23) The Harvard Newsletter on Computer Graphics -- Vol. 3,
No. 20 - October 19, 1981,

42

CHAPTER 3
DATA TRANSPORT METHODOLOGY

N
1

The limitations in the present data exchange standards and in com-
mercial translation software underscore the difficulty in solving the
CAD/CAM data transport problem. There are several obstacles to be

overcome in providing a data path between CAD/CAM systems.
3.1 Media Difficulties

Since each CAD/CAM system usually resides on a different comput-
er systerﬁ, data must be transported between éomputer systems. Disks are
problematic since there are several format standards. Also, not all systems
have a removable disk media. Punched cards are cumbersome and outdat-
ed; many modern computer systems do not handle punched cards. A third
option would be to use networks. This is by far the most direct method,
but as with disks, there are many network standards. Not all computer
systems have compatible network interfaces with other vendor computer
systems. The final option is to use magnetic tape. While there are a
variety of tape formats and densities, most candidate systems support in-

dustry compatible format tapes. -

3.2 Differences in Electroniec Design Data Representation

While there is, in theory, commonality across systems which perform
the same CAD/CAM function, electronic design attributes are represented
differently in different CAD/CAM systems. The design attributes describe
all aspects of the electronic system to be developed. As described in sec-
tion 2.4, this data can be categorized as logical, physical, ele?ptrical, ther-
mal, or timing-related. Examples of attributes with differing representa-
tions are logical pin names and functions,w the names of logical elements
and signals, and generic compoment types. Specific cases of differing

representation were presented in section 2.4.
The Delta Problem

Also, in comparing any two similar CAD/CAM systems, there is usu-
ally data which is stored in one system without counterpart (ir any for-
mat) in the other system. We can refer to this anomaly as the "delta”
problem (delta, me"aning difference). This problem is not easily solved and
has béen often overlooked in translators to date. Consider the scenario
represented in Figure 3.1. As this example shows, sometimes
CAE/CAD/CAM data needs to be transported {rom system A to B and
then back again to system A. When this— is done, it is important that data
relationships not be lost. If a given data element D, is related to Dy in
system A, R, (D;,Dy), and Dy cannot be translated to system B, then we
need to store the relationship Ry (D,,Dg), separately, before translating.
Upon return from system B, item Dy should again be associated with item

D, accqrding to R (Dy,Dg).

44

System A System B

RA(D,.D,)

%,

Figure 3.1. The Deiltas Prablem.

45

This problem is not straight-forward since once data is sent to sys-
tem B from system A, it may be operated upon, resulting in D; being
deleted or changed. Consequently, it is not obvious what meaning does
R5(D,,Dy) have when the database is transported back from system B to
A

An example of the delta p-roblern was shown graphically in Figure
2.12, which compares the data elements of the Computervision system with
the Hughes PWB CAD system. This problem will be addressed again in

Chapter 5 when actual transport test cases are presented.
3.3 Database Organization Differences

Another problem is that each CAD/CAM system has a unique sche-
ma or organization for design databases. Conventional data base theory
{Date82] has defined 3 basic schema types: the hierarchical, network, and
relational models. The hierarchical model is represented in Figure 3.2.
Each node has exactly one parent (except the top or root node) and may
have zero or more child nodes. The network model resembles a graph (Fig-
ure 3.3) and is less restrictive than the hierarchical model. The relational
model takes a different view of data. Data is organized into tables with
columns which represent different data t_ypes and rows which contain in-

stances (or -tuples) of data {see Figure 3.4).

In addition to these basic schema types, there are other database or-
ganizations. In fact, CAE/CAD/CAM system vendors often use the term
data base when, in reality, the correct term would be file . Consequently,.

there exist a multitude of custom data base types in this field. Further-

46

component
type

companent pin
neme function

pin
number

Figure 3.2. Hierarchical Model.

17

signel

signal defn

component pin-~signal

comp type

comp name

Figure 3.3. Network Model.

48

Component Name Component Type

Component Type | Pin ® | Pin Fynction
H—"_.h""" P . T g
e ™, P P e,
e = e P Y
e T N P P S

Component Name | Pin # | Signal
. P, S .
N —— —— —
e e W I ——

Figure 3.4. Relational Model.

49

more, each of these models can be implemented (i.e., physically stored} in

a variety of ways. This variety adds to the problem of data base transport

between distinct CAE/CAD/CAM system types.

Also, the complete semantics or meaning of a data base is not al-
ways represented in just the data model alone. Consider an example based
upon the relational data model. Figure 2.4 showed a sample schematic di-
agram. A pon-normalized relational data base representing this informa-
tion is shown in Figure 2.8. One important constraint on schematic data is
that no two signals be tied (shorted) together. This restriction is referred
to as an integrity constraint . In terms of the relational data base {Figure
2.8), it means that no two rows can have the same values for CN (com-
ponent name) and CP (component pin) and have different values for S (sig-
nal). There is no provision for storing this constraint in the relational data
base management system (DBMS), but it is still a part‘ of thi;é data base's
semantics. To overcome this inadequacy in many DBMS’s, a data base
verification program is written to insure that the data complies with all in-
tegrity constraints. Following updates to the data base, the verification

program is executed to determine if integrity violations exist.

To show how the same conceptual information is represented
differently on different systems, consider two examples: 1) logic intercon-
nection databases in both the Hughes Aircraft CAD system and Computer-
vision, and 2} layout databases in both the Hughes CAD system and the
CALMA system. .'

50

Hughes CAD System Build-Design Database [Wong79]. This data-
base describes both the logical and physical data associated with a logic
network and its printed circuit board (PCB) implementation. This is
essentially a relational data model. This CAD systems runs on a

DECsystem-20 using the System 1022™ database management system.

Computervision Schematie Database [CVPC83, CVDB83]. Like the
Hughes Build Design Database, this database describes the logical and phy-
sical data associated with a circuit. However, unlike the Build Design Da-
tabase this database also inciudes graphic schematic information. All com-
ponents used in the circuit are represented in terms of graphic elements
{e.g., line segments, arcs, circles). Signals represent not only named inter-
connections between component pins, but also lines which appear on the
schematic. This database uses a hierarchical model with all of the logic

network data intermingled with the graphic data.

Hughes CAD PCB Layout Data {Wong79]. The layout data for the
CAD PCB system consists of a matrix representing grid points in both z
and y dimension of the printed circuit board. For each grid point, there is
an indicator designating whether that grid point contains etck, a via, a
drill hole, or is vacant. There is a third dimension to the matrix represent-
ing the layer of the printed circuit board. A board measuring 5" x Q" with
a 50 mil grid would have 100 (==5/.05) by 180 {=9/.05) elements in its ma-

trix representation.

CALMA IC Leyout Data [CALMS82]. Unlike the Hughes PCB Layout
matrix, the CALMA IC layout representation uses rectangular boundaries

and paths to describe the layout pattern. Interconnections are represented .

51

as paths; vi;as, pads, or vacant regions are represented as boundaries. This
database stores actual coordinate endpoints for these geometric entities;
essentially a vector representation. The Hughes PCB Layout database, on
the other hand, uses a pixel or raster data representation to store the lay-

out patterns.
3.4 General Approach

It has been shown that the CAE/CAD/CAM data transport problem
consists of transport media difficulties, difficuities arising from differences
in data representation, and difficulties due to data base organization
differences. In order to overcome these difficulties, several elements in a

transport methodology are necessary:
° media conversion,
k]
) database intermediate format (DBIF),
e compilers/formatters,
. generic/neutral data base, and

I a translation mechanism.

Basically, the problem can be approached by providing mechanisms for 1)
translating the various formats into a standard format and 2) translating
between different sets of data base content, each represented in standard

form.

52

Conventional translations schemes have been implemented with pro-
cedural languages. Consequently, they were cumbersome to produce the
first time and difficult to change. This is because much of the knowledge
of how to translate between data bases is embedded into procedural
language statements which must be re-coded, often affecting the logic flow
of the program as well. An alternative translation scheme is a knowledge-

based systems (KBS) approach.

This approach is also referred to as an expert systems approach.
Both terms apply equally, but KBS emphasizes the collection of rules and
the architecture of the system. Ezpert systems emphasizes the fact that
the content of the knowledge base is obtained from experts who are very
familiar with the problem area. This dissertation emphasizes the architec-
tural approach of the prototype system, therefore the KBS deSIgnatlon has
been used. The complexxty of the subject data also suggests that the
methodology ¢ould be described as an expert system. Henceforth, the sys-

tem and methodology will be referred to as a knowledge-based system.

A knowledge-based system differs from conventional procedural
systems in that the algorithm for performing a task is characterized by a
database of knowledge rather than by procedural statements. Using a
KBS the procedure is to apply knowledge in the forms of rules or
assertions (e.g., "If x then ¥") and to produce the desired.results by

inference. There are numerous references on the subject of knowledge-

based systems (KBS) (McCa83, Wood83, Brac83a, Bracé3b, Mylo83].

53

A knowledge-based systems approach to the data transport problem

improves most elements of the transport methodology.

Media conversion. This is the very basic problem of overcoming
computer word length differences, 7-bit ASCII, 8-bit ASCII, and EBCDIC
character code conversions, magnetic tape formats, etc. While it is neces-
sary that this problem be addressed, it has been solved routinely in the

past. This subject will therefore not be addressed in this dissertation.

Database intermediate format (DBIF). Assuming that the media
conversion problem has been addressed, a common format is necessary so
that when data ba‘se content (including logic schema, integrity constraints,
etc.) is translated it can be accomplished without regard for format
differences. There are many possible formats which could be used as the
DBIF. For example, a relational data base could be used for this purpose.
For each CAD/CAM data base type there would be a set of relations which
would constitute its DBIF representation. The DBIF content (e.g., relation
domains, number of tuples, etc.) would be different for each CAD/CAM
data base type. The translation between CAD/CAM database types would
require rules which transform one set of relations into another. Having each
data base represented in DBIF (in this case, a set of relations), translations
would be performed independent of specific CAD/CAM database formats.
Figure 3.5 illustrates the use of the DBIF as an intermediate translation
step. In translating from data base type 1 to data base type 2, first type 1
is converted into DBIF 1. Next, a generic translatién engine is used to
translate from DBIF 1 into a generic DBIF and then into DBIF 2. Then,

DBIF 2 is converted into native data base type 2 format. In a like manner,

54

Figure 3.5. Use of DBIF as an Intermediate
Format For Data Transport.

35

data base type 3 can be transformed into data base type 4, and type 5 to
6.

Of course, a relational data base is only one possible DBIF candi-
date. There are a number of other potential DBIF’s: for example, a neutral
language or other common data base format. Using a knowledge-based ap-
proach, t‘hé; DBIF would consist of facts which express the data base con-
tent. The syntax of the knowledge base depends upon the particular

translation mechanism and its preferred input/output format.

Compilers/formatters. Compilers are n-ecoe.ssar)r to translate
CAD/CAM data bases from their native form into DBIF. Likewise, for-
matters take data in DBIF 2nd repackage it into a native CAD/CAM data
base format. For each CA.lj/CAM database type, only one compiler and

one formatter needs to be generated. (3-1)

Working in conjunction with compilers and formatters, a
CAE/CAD/CAM data description language can be used to provide
language-specific information. This can be used to identify where in a
CAE/CAD/CAM database a particular data element is found. A general
compiler might be written which maps data between a native format (after
media conversion) and DBIF using the CAD/CAM data language descrip-
tion of the native format. Similarly, a formatter can identify wixere a DBIF
item belongs in a native format using the CAE/CAD/CAM data descrip-

tion language.

31 This is very similar to the idea behind IGES.

58

A knowledge-based approach to compilation has been tried with
great success in the field of natural language understanding. Webber
[Webb83] has shown how logic and deduction are applied to this field.
Similarly for CAE/CAD/CAM data languages, syntax and semantic rules
can be expressed in terms of logic predicates. These rules are then used
by the compiler. Further e;camples of the techh-iques are given by Dahl
[Dahl83] who has shown how a knowledge base and logic programming can

be used for language processing (both French and Spanish).

Furthermore, a KBS approach allows the validity of a data base to
be checked by comparing it against a model (schema) expressed in terms
of logic predicates and their relationships. To see how a CAD data base
can be ﬁlodeled in terms of logic predicates, we shall consider below the

schematic data base represented by the network in Figure 3.8
CAD Data Base Modeling and Representation

This simple network cousists of four components A, B, C, and C1 of
types T1, T2, T2, and CONNECTOR. Seven signals S1-S7 connect the
components. Component type T1 has nodes R, S, Q, and QN. Component
type T2 has pins (or nodes) I1, I2, and Y. The connector has pins 11-13,
O1, and O2. Two possible native repres;antations of the network are 1) a
relational data base and 2) a hardware description language (HDL) encod-
ing. (see Figures 3.7 and 3.8 respectively). Call these two data representa-
tions DR1 and DR2. -

Using the Entity-Link-Key-Attribute {ELKA) [Rodr81] information

57

‘NIOMISN cmewsyss ajdwes

20

10

LS

z1
el

'g'¢ aIndig

95

Zl

€S

¥s |

£l

A

Zl

1S

o8

SIGNAL COMPONENT COMPONENT PIN

NAME TYPE

Sl A Tl R
S1 Cl . CONNECTOR 11
S2 A Tl)
32 Cl CONNECTOR 12
S Ct CONNECTOR Ig
S B T2 I

S4 A T1 Q
34 C T2 11
S A T1 QN
S B T2 Il
S C T2 12
S C T2 Y
S6 Cl CONNECTOR 01
S7 B T2 Y
S7 Cil CONNECTOR 02

Figure 3.7. Data Base Representation 1 (DR1).

39

BODIES
BODY A
TYPET!
NODER (1.9)
NODE S (1.8)
NODE Q (2.9)
NODE QN (2.8)
BODY B
TYPE T2
NODE 11 (3.4)
NODE 12 (3.2)
NODE Y (4.3)
BODY C
TYPE T2
NODE 11 (%.8)
NODE 12 (5.6)
NODE Y (6.7)
SIGNALS
SIGNAL St (0.9). (1.9
SIGNAL S2 (0,8), (1.8
SIGNAL 53 (1.2), (3.2
SIGNAL S4 (2.9). (5.8
SIGNAL S35 (2,8). (25
SIGNAL S6 (6,7). (7.7
L3

8 .6), (3.,6), (3.4)
SIGNAL S7 (4.3

)
)

Figure 3.8. Data Base Representation
2 (DR2).

60

model 3%, the semantics of this data (i.e., the schema) can be represented
by the diagram shown in Figure 3.9. The entity classes defined are: SIG-
NAL, COMPONENT, PIN-INSTANCE, PIN, and TYPE. The attribute
classes are "signalName”, "compName”, "compType”, and "pinName".
Note that some of the attribute classes are underlined. These correspond
to the key classes for the entity classeis in which they are contained. The
links in this diagram are of two tjpés, strong many-to-one (m-to-1) and
many-to-one (m-to-1) links. These links are depicted graphically by a line
joining two entity classes with a diamond on one end. The front of the

link is the end without the diamond and the back is the end with the dia-

mond.

The strong m-to-1 links (those with a solid diamond) indicate that
for every member of the back entity class there exists exactly one member
of the front entity class. Also, for everjr_member of the front entity class,
there exists one or more members of the back entity class. The m-to-1 link
{with the un-filled diamond) is like the strong m-to-1 link except that in an
m-to-1.link, for every member of the front entity class there maybe zero,

one, or more members of the back entity class.

For each representation, the essential data elements and their rela-
tionships can be expressed in terms of logic predicates or statements. As

Figures 3.7 and 3.9 indicate, for DR1, the following statements hold:

(32) The ELKA model was used extensively at Hughes for the

US Department of Defense VHSIC program. Specifically, all
of the data handled by the Hughes-developed VHSIC CAD
system, called HERCULES, was modeled using the ELKA

technique.

61

signaglName compName , compType

—

SIGNAL | COMPONENT

&

esrtocle hee

, AR

pinName , signaiName,

compNeme
hes-{nelance
PIN-INSTANCE
q 0 —-—’ sti‘ong rm-to-1
-—<> m-to-1
pinName , compType | compTyne
. hee
PIN TYPE

Figure 3.9. ELKA Diagram for the DR1 Sample
Schematic Information Model.

1. If X'is a signal, then X connects one or more pin instances.

2. If X is a pin instance, then X is connected by one and only

one signal.

3. If X is a component name, then X has one or more pin in-

stances. ’ -

4. If X is a pin instance, then there is one and only one com-

ponent name which has X.
5. I X is a component type, then X has one or more pins.

6. If X is a pin, then there is one and only one component type

which has X.

7. If X is a component type, then X has zero or more instances

of component name.

8 If X is a component name, then there is one and only one

component type which has the instance X.

9. If X is a pin, then there are zero or more pin instances where
X is used. If X is a pin instance, then there is one and only

one pin which is used as X.
This information model for schematic data has been simplified to illustrate
the point that a CAD data base can be characterized in terms of logic
predicates. This will prove useful in Chapter 4 when a more realistic

schematic data model is presented.

In a like manner, the data elements for DR2 and their relationships
can be modeled as shown in Figure 3.10. Information Model."-In this case,
the entity classes are: BODY, TYPE, NODE, VERTEX, and SIGNAL. The
attribute classes are "bName”, "bType”, "nName”, "vtx", and "sigName”.
As in the previous ELKA diagram, the underiined attribute classes are
also key class’_és. The links in this diagram are strong m-to-1, m-to-1, or
1-to-1 links. A 1-to-1 link indicates that for every member of the back en-
tity class, there exists exactly one member of the front entity class. And,

for every member of the front entity class there exists zero or one member

of the back entity class.

As Figures 3.8 and 3.10 indicate, for DR2, the following statements
hold: .

1. If Xis a body, then X has one or more nodes.
2. If X is a node, t.hen there is exactly one body which has X.
3. If Xis a body type, then X has zero or more body instances.

4. If X is a body, then there is exactly one body iype which has

instance X.

5. If X is a node, then there is exactly one vertex which locates

X.

6. If X is a vertex, then there is zero or one.node which is locat-

ed by X.

7. If X is a signal, then there are one or more vertices connected

64

bName , bType ,0 hee-imetemsa | btyne

BODY B

TYPE

*

nName , biName , vtx

NODE

. ' —’ strong m-to~-1
“m _0 m"to"
[

—P— 1 =to-1

¥ix, sighame : sigName
L g
| VERTEX SIGNAL

Figure 3.10. ELKA Diagram for the DR2 Sample
Schematic Information Model.

65

by X.

8 If X is a vertex, then there is exactly one signal which con-

nects to X.

Although these logic assertions contain the necessary information, it
is clear that they must be expressed in a more concise and regular format

in order to be useful.

Generic/neulral data schema. Assuming that all data can be com-
piled into a DBIF representation, a master data schema is needed to
represent a superset of all of the CAD/CAM data bases to be transferred.
The schema needs to include each category of CAD/CAM data: logical,
physical, electrical, thermal, and timing. Data from each native system is
first compiled into its DBIF and then it is translated according to the mas-
ter data schema into a generic DBIF. The rationale for the generic schema
is so that for each native format only two translators are needed: one from
the native format into the generic schema and one back from the generic
schema into the native format. Without a generic schema, point-to-point
translators would be needed between pair of native formats. For a collec-
tion of N native systems, 25 translators need to be written (see Figure
3.11a). Using the generic schema, only 9N translators need to be written.
This corresponds to a "star” configuration (see Figure 3.11b).

4
For a five system collection this is a difference between 20 (=2*%)

. 1=1
translators and 10 {=2*5) translators. An additional advantage is gained
when a native format cha;nges. Without a generic schema, N-1 translators

are affected. With a generic schema, only 2 translators need to be changed.

66

23! 2N

Figure 3.1la. Fi
. . igure 3.11b. Star
Point-to-Point Configuration.

Configuration.

Alternative Translationn Schemes.

Number of Gensric Deta Schema
Syatems With Witheut
3 6 - 6
4 8 12
S 10 20
6 12 . 30
? 14 42

Figure 3.12 Translators Needed Using a
Generic Data Schema.

-

67

Figure 3.12 shows how this difference varies with the number of systems

sharing data.

Assuming a generic data schema is used, it can be represented as a

set of rules in a knowledge base just as native CAE/CAD/CAM data bases

are described.

Translation Mechanism. While: several methods can be used to
translate CAE/CAD/CAM data content, a knowledge-based approach
offers more flexibility and generality. Returning to the sample schematic
network and DR1 and DR2, a translation scenario shows how rules can be
used to transform data between different representations. This translation
was developed manually to understand the algorithmic steps. In Chapter
4, a similar automatic translation is introduced. Assume that the sample
schematic network of Figure 3.6 is to be translated from DR2 into DRI.

The steps in this process are
1. Compile the native DR2 into DBIF.
2. Prepare DR2 to generic translation rules {(input rules).
3. Prepare generic to DR1 trans!at_ion rules (output rules).
4. Translate DR2 into generic data.
5. Translate Generic into DR1 data.
6. Format the resulting DR1 DBIF into DR1 na;iive form.

These steps are described in more detail in the next section (3.5) and they

are illustrated in Figure 3.15. To give a more thorough understanding of

68

these steps, the following DR2 to DR1 transport scenario is provided.

Figure 3.13 shows the DR2 data encoded in a DBIF, consisting of
factual statements. (Note that each input fact is numbered Iz for future
reference). The "TYPE" information (Figure 3.8) has been omitted in this

example to simplify the explanation.

In order to be able to translate this data into an alt&nate represen-
tation, it is important that it be defined in terms of the'generic.data sche-
ma. The following is a set of assertions which translate DR2 into the gen-
eric data schema along with the previous set of rules which operate with

DR1.

Rl. XisaDR2bodyif Xis a generic box.

R2. X is a generic box if X is a DR2 body.

R3. X'is a DR2 node if X is a generic node.

R4. X is a generic node if is a DR2 node.

R5. X is a DR2 signal if X is a generic net.

RB. X is a generic net if X is a DR2 signal.

R7. Xis a DRI signal if X is a generic net.

R8. X is a generic net if X is a DR1 signal.

R9. Xis a DR1 pin if X is a generic node.

R10. X is a generic node if X is a DR1 pin.

R11. Xis a DR1 compname if X is a generic box.

R12. X is a generic box if X is a DR1 compname,

R13. X connects Y if X has vertex (A,B), Y has vertex (A,B),
and X is a DR2 signal.

69

I1. A is a dr2 body. 129. C is a dr2 node.
I2. AhasR. 130. C.12 has vertex (5,6}.
I3. R is a dr2 node. I31.Bhas C.Y
14. R has vertex (1,9). _ - 132. C is a dr2 node.
I5. A has S. 133. C.Y has vertex (6,7).
I6. S is a dr2 node. I34. 51 is a dr2 signal.
I7. S has vertex (1,8). 135. S1 has vertex (0,9).
I8. AhasQ. 136. S1 has vertex (1,9).
19. Qis a dr2 node. I37. 52 is a dr2 signal.
110. Q has vertex (2,9). 138. S3 is a dr2 signal.
I11. A has QN. 139. 54 is a dr?2 signal.
112. QN is a dr2 node. 140. S5 is a dr2 signal.
113. QN has vertex(2,8). 141. S6 is a dr2 signal.
I14. B is a dr2 body. 142. 87 is a dr2 signal.
115. B has B.I1 143. 52 has vertex (0,8).
116. B is a dr2 node. 144. S2 has vertex (1,8).
117. B.01 has vertex (3,4). 145. S3 has vertex (1,2).
118. B has B.I2 146. S3 has vertex (3,2}.
119. B is a dr2 node. 147. S4 has vertex (2,9).
120. B.I2 has vertex (3,2). 148. 54 has vertex (5,3).
[21. B bas B.Y 149. S5 has vertex {2,8).
[22. B is a dr2 node. : I50. S5 has vertex (2.5,6).
[23. B.Y bas vertex (4,3). I51. §5 has vertex (5,6).
124. C is a dr2 body. [52. S5 has vertex (3,4).
125.Bhas CIN [53. 56 has vertex (6,7).
[26. C is a dr2 node. [54. 56 has vertex (7,7).
I27. C.I1 has vertex (5,8). 155. S7 has vertex (4,3).
I28. B has C.I2 I56. ST has vertex (6,3).
Figure 3.13. DBIF Encoding of DR2 Data.

Now tranpslation can occur using the input data encoded in DBIF
and the translation rules. The following notation represents an output
transaction "Oz" as a result of rules being applied to input record z, denot-

ed "Iz". The arrow indicates resulfs sn. "Rz” means rule z. So,

70

I5 — R3: fido is a dog. — R10: fido is an

animal.

says that by applying rule 3 to Input record 5, results in “fido is a dog.”
And, that by subsequently applying rule 10, "fido is a animal.” is obtained.

The following example shows the ‘translation procéss. The rules re-
garding DR1 and DR2 are applied until the facts of Figu}e 3.13 result in a
new set of facts (below) which have DR1 specified, where possible, instead

of DR2.

Ol: I1 — R2: A is a generic box.

— R11: A is s DR1 component name.
0O2: 12 — no rule (NR): A has R
03: I3 — R4: R is a generic node.

— R9: R is a DRI pin.
O4: 14 — R13(134,138): S1 connects R.
05:15 - NR: A has S.
06: 16 — R4: S is a generic node. — R9: S is a DR1 pin.
O7: 17 — R13(137,144): S2 connects S
08: I8 — NR: A has Q.
09: 19 — R4: Q is a generic node. — R9: Q is a DR1 pin.
010: 110 — R13(139,147): S4 connects Q.
O11: I11 — NR: A has QN
0O12: [12 — R4: QN is a generic node.

— R9: QN is a drl.pin.

O13: 113 — R13(140,149): S5 connects QN.
O14: 114 — R9: B is a box.

71

015:
O186:

Oo17:
O18:
019:

020:
021:
022:

023:
024:

025:
028:

027
028:
029:

030:
031:
032:

— R18: B is a DR1 compname.
115 — no rule (NR): B has B.I1
I16 — R4: B.I1 is a generic node.

— R9: B.I1 is a DR1 pin.
117 — R13(140,I52): S5 connects B.I1.
118 — NR: B has B.I2
119 — R4: B.I2 is a generic node.

~ R9: B.I12 is a DR1 pin.
120 — R13(138,146): S3 connects B.I2.
121 = NR: Bhas BY _
122 -+ R4: BY is a generic node.

— R9: B.Y is a DR1 pin.
123 — R13(142,155): S7 connects B.Y.
I124 — R9: C is a box. ‘

— R18: C is a DR1 compname.
125 — NR: C has CI1
126 — R4: C.I1 is a generic node.

— R9: C.11 is a DR1 pin.
127 — R13(139,148): S4 connects C.I1.
128 — NR: C has C.I2
129 — R4: C.I2 is a generic node.

— R9: C.12 is a DR1 pin.
130 — R13(140,I51): S5 connects C.I2.
I31 — NR: C has C.Y
132 — R4: C.Y is a generic node.

— R9: C.Y is a DRI pin.

72

033: 133 — R13(141,155): S6 connects C.Y.

0O34: 134 — R6: S1 is a generic net.
— R7: S1is a DRI signal.

035: 135 — NR: S1 has vertex (0,9).

036: see 04

037: I37 — R8: S2 is a generic net.
— R7: 82 is a DR1 signal.

0O38: I38 — R6: S3 is a generic net. |
— R7: 53 is a DR1 signal.

039: 139 — R6: S4 is a generic net.
— R7: S4 is a DR1 signal.

0O40: 140 — R6: S5 is a generic net.
~+ R7: S5 is a DRI signal.

0O41: 141 — RS: S8 is a generic net.
— RT: 58 is a DR1 signal.

042: 142 — R6: S7 is a generic net.

= R7: 87 is a DRI signal.

043: 143 — NR: S2 has vertex (0,8).

044: see O7

0O45: 143 — NR: S3 has vertex (1,2).

0486: see 020

047: see 010

048: see 027

049: see 013

050: I50 — NR: S5 has vertex (2.5,8).

0O51: see 030

73

052: see O17

053: see 033

054: 154 — NR: S6 has vertex (7,7).

055: see 023

056: 156 — NR: S7 has vertex (6,3).

A final DR1 representatioﬁ is obtained {rom the resulting output
facts. Figure 3.14 shows the relational data base. A few items of note
are that not all facts expressed in DR2 can be translated into DRI facts.
Specifically 035, 043, 045, 050, 054, and O56 are not expressible in
DR1. This is a case of the delta problem discussed previously. These facts
which do not translate must be saved as part of the resuiting DBIF. When
a revérse translation is required, these untranslated facts must be used to
derive the original data representation. A production-quality slystem needs

to provide this capability.

This example shows the basic technique of using a knowledge base
to perform translation. The six steps described at the beginning of this

example have been executed manually and the desired resuit obtained.
3.5 System Architecture

The elements needed for data transport can be integrated into a sys-
tem architecture as shown in Figure 3.15. The elements are made up of

both processes and data.

74

Component
Name

Derived From

1

1
2
3
4
P
6
7
8
9
0

OO00ODWWd > > >

NOOHWWO.0wvx
e e B
Lt S T

“K

02. C4. 01,03, 034

05, 01, 06, 07, 037

08, 01, 09. 010, 039
011,01,012, 013, 040
014, 013, 016, 017, 040
018, 014, 019, 020, 038
021, 014, 022, 023, 039
024, 025, 026, 027, 039
028, 024, 029, 030. 040
031, G24, 032, 033, 041

unused: 035, 043, 045, 050, 054. 0%6

Figure 3.14. DR1 Relational Data Base.

I

Native Form s DtBlF A
System A ystem

Rules

Kept DBIF
Ca i
Predicates

Figure 3.15. System Architecture for Data Transport.

76

3.5.1 Compiler / DBIF

The first step in transporting data between systems is the process of
compiling data from its native {source system) format. This process varies
with each native system. When the source data is in the form of a
language, then a compiler which parses the language and outputs DBIF is
appropriate. A compiler needs to be constructed for each uﬁique type of
native language. Depending on the complexity of the language and the
number of data elements to be recognized by the system, this can be a

time-consuming process.

When the native form of the source data is itself a data base, then
the appropriate data base query language statements can extract the data

and format it into DBIF. This is usually easier than parsing a language.

‘As described earlier, the DBIF format Eonsiéts of logical predicates
which assert facts from the data base. The problem with the English-like
logic statements is that they are not easily processed by a translation en-
gine. A more regular syntax for the logic predicates alleviates this
difficulty. Consider the schematic example of Figure 3.6. The DR2
representation of the schematic data can be encoded into DBIF as shown
in Figure 3.18. This exact syntax for DBIF is not important as far as the
system architecture is concerned. The actual implementation of the archi-
tecture fnto a working system will dictate the exact syntax required for

DBIF.

7

SCHEMATIC DATA BASE:

1. compname(A)}. 29. has(T2,Y).

2. comptype(T1). . 30. kas{(CONN,I1).

3. compname(B). 31. has(CONN,I2).

4. comptype(T2). 32. has(CONN, I3).

5. compaame(C). 33. has(CONN,O1).

6. comptype(T2). 34. has{(CONN,02).

7. compname(C1). 35. signal(S1).

8. comptype{CONN). 36. signal(S2).

9. has(A,T1). 37. signal(S3).

10. bas(B,T2). 38. signal(S4).

11. has(C,T2). 39. signal(S5).

12. has(C1,CONN}. 40. signal(S6).

13. node(R). 41. signal(S7).

14. node(S). 42. connects(51,C1,I1).

15. node(Q). 43. connects(S1,AR).

16. node(QN). 44. connects(52,C1,12).

17. node(I1). 45. connects(S2,A,S).

18. node(12). 46. connects(S3,C1,13)

19. node(Y). 47. connects(53,B,12).

20. node(13). 48. connects{S4,A,Q)

21. node(O1). 49. connects{S4,C,I1).
* 22 node(02). 50. connects({S5,A,QN)

23. has(T1,R). 51. connects(S5,C,I2).

24. has(T1,S). 52, connects(S5,B,11)

25. has(T1,Q). 53. connects(56,C1,01).

26. has(T1,QN). 54. connects(S6,C,Y).

27. has(T2,I11). 55. connects(57,C1,02).

28. has({T2,12). 56. connects(S7,B.Y).

Figure 3.16. Sample DBIF Encoding.

3.5.2 Master Data Schema: Generic Predicates

Assuming that all native formats can be translated into the same
DBIF, they wiil all have similar format, but unique content (i.e., the facts
or predicates will be different), as described in section 3.4. It was shown to

be an advantage, using a generic data schema for translating between N

78

unique system types.

There must be a set of generic predicates for each category of data.
Each asserts a fact about a data element or facts about data element rela-
tionships. Figures 3.17 and 3.18 show sets of generic predicates for two

categories of data: logical and physical.

One problem that has been encountered by most attempts at a neu-
tral data standard is that not all data elements are included in the stap-
dard. The goal of a standard is to have a superset of all data elements and
data relationships that are encountered in a given category. This is some-
what impractical, since it is difficult to define the universe of all native sys-
tems having a given CAE/CAD/CAM data category. Furthermore, if a
given collection of systems is augmented with a new sysiem at a later time,
then the.neutral standard may need to be augmented as well. This is
somewhat self-defeating, since the neutral data format is supposed to
influence the data base definitions for CAE/CAD/CAM systems and not

the other way around.

Rather than attempt to provide a universal, all-encompassing stan-
dard, a reasonable set of generic predicates for each CAE/CAD/CAM data
category is sufficient. If experience indicates that additions should be
made, then the set of generic predicates can be expanded accordingly. But,
the delta problem described in section 3.2 must now be addressed since not
all DBIF constructs from all native systems will be translatable into the

generic DBIF. This is one of the roles of the transiate engine

79

LOGICAL:
predicate meaning
box(X) X is a component or cell name
box_ type(X) X is a component or cell type
node(X) X is a node
node__type(X) X is a node type
node_dir(X) X is a node direction
net(X) X is a signal
net _type(X) _ X is a signal type
has__(X,Y) X has Y or Y is contained in X
connects(X,Y,Z) Signal X is connected to Corﬁponent Y
at Node Z
Figure 3.17. Geuneric Predicates for Logical Data.

3.5.3 Translate Engine

Assuming that the various data files shown as inputs into the
translate engine in Figure 3.15 are available, the next step is to translate
one DBIF into another DBIF of similar content. The first step involves
translating the predicates of the source system's DBIF into generic predi-
cates for the type of data to be translated. This requires the source DBIF
and the input rules for the source system. These rules are discussed in the
next section in more detail. An intermediate output of the translation en-

gine is the data content of the source system’s DBIF expressed in terms of

80

PHYSICAL:

predicate meaning
polygon(X) X is a polygon
wire(X) X is a wire
macro_def(X} X is a structure or macro
macro__call{X,N))I\(I is a reference or call to macro definition
scale_(X) X is a scaling factor
layer _(X,Y) X has layer Y
vertex _(S,X,Y.]) S has vertex (X,Y) as its
Ith coordinate
width __(X,Y) X has width Y
orient _(W,X,Y,Z) W is rotated X degrees about the x

axis, Y degrees about the Y axis, and 2
degrees about the Z axis.

has_ (X,Y) X has Y or Y is contained in X

magaif _ (S,M) - Magnification M is applied to the
: elements of S

relative__orient(S}) Any orientation specified for §
' : is relative to the calling frame

of reference (otherwise is is
with respect to absolute zero).

telative _ magnif(S) Any magnification specified for S
is relative to the calling macro's
magnification (otherwise it

is absolute).
text _(T) T is a text block
textval_ (T,Str) Str is the character string
for text block T
h_just(T,N) N is the horizontal justification
for text block T: left, right, or center.
v __just(T,N) N is the vertical justification
for text block T: upper, lower, or center.
tfont _ (T,F) F is the font type for text
block T

Figure 3.18. Generie Predicates for Physical Data.

81

generic predicates. A by-product of the translation is a set of facts which
cannot be translated into generic predicates. These are called kept data
and they must be preserved so that reverse transiation at a later time is

possible.

Once the generic facts are available, they are translated into the
destination DBIF using a new set of “'_'rules which indicate how to derive the
destination systeri)’s predicates from generic predicates. Again, there may
be facts which cannot be translated from the generic set into the DBIF of
the destination system. These must also be preserved as kept data so that
reverse translation is possible (34) The final output of the transiate engine
is the destination system’s DBIF and the kept data. The output DBIF is

reformatted for direct use by the destination system.
3.5.4 Rules for Translation: Knowledge Base

In order to perform any translations, a set of rules is necessary
which specify how to interpret predicates from one system to another, in-
cluding the set of generic predicates. These rules constitute a knowledge
base. The knowledge base containing the rules for translation consists of

several parts:

. rules, describing how to express generic predicates in terms of

source predicates,

B4 ¢ s necessary that the existance of kept data be
remembered when the time comes for reverse translation. It
would be possible to insert a flag to this effect into the body
of the output DBIF.

82

) rules, describing how to express target predicates in terms of

generic predicates, and

e ordered lists of source predicates, target predicates, and gen-
eric predicates.
The knowledge base must contain rules pertaining to each

CAE/CAD/CAM system to be recognized by the data transport system.

The rules are arbitrary in format, and they must be tailored to fit
the CAE/CAD/CAM system under consideration. The rules used in sec-
tion 3.4 to translate between DR1, DR2, and a generic set of predicates are

an example. Additional examples of rules are presented in Chapter 5.
3.56.5 Formatter

Once the knowledge base has been used to obtain the DBIF of the
destination system, the formatter is used to write the content of the DBIF
in the format that the native CAE/CAD/CAM system requires. This might
be a data base or language. Using the same DBIF encoding of Figure 3.16,
a relational data format can be derived to produce three tables “connects”,

"has”, and "type” which are shown in Figure 3.19.

83

CONNECTS:

Signal | CompName

C1
A
Ct

jwoooworo>wa>

Figure 3.19. Sample Formatter Results.

84

"CHAPTER 4
PROTOTYPE SYSTEM

The system architecture for CAE/CAD/CAM data transport,
presented in the previous chapter was implemented using Prolog. Alterna-
tive approaches were considered, but discarded because of the difficulties
that arise in trying to represent a knowledge base. Also, an advantage to
using Prolog is the built-in inference engine which provides for automatic
translation, once the appropriate rules (knowledge base) are defined. Ap-
pendix B describes in detail one alternative implementation considered.
The remainder of this chapter describes Prolog, the elements of the proto-

type implementation, and then a sample operating scenario.
4.1 Introduction to Prolog

This section presents the Prolog language. Readers, familiar with

Prolog, can skip this digression and proceed on to section 4.2.

Prolog is a programming language which dates back to around 1970.
Prolog has gained recent attention as a tool for artificial intelligence, par-
ticularly for Expert and Knowledge-based systems. Prolog programs con-
sist of facts and rules. Facts express information about objects and their
relationship to other objects. Rules contain the inteiligence necessary to
derive new facts. One good source for detailed information on Prolog is

Clocksin & Mellish [Cloc81]. A brief description is provided here.

85

Syntaz: Prolog programs are built from terms, which are either con-
stants, variables, or structures. Constants are atoms or numbers. Atoms
are any string of characters, enclosed in single quotes, or special Prolog
symbols, or alpha-numeric strings beginning with a lower-case alpha char-
acter. Numbers can either be integers or real numbers. 41) Varigbles are
alpha-numeric strings beginhing with an upper-case alpha character or the
underscore, " _". ‘The underscore can also be inserted in the middlie of
atoms or variables to improve readability. Figure 4.1 shows examples of

Prolog terms.

Constants
Variables
Atoms Numbers
mary 123 Gl
‘& /5*abe’ 1.05 Dogs
'Capital’ 3.14e-5 X
' Figure 4.1. Prolog Terms.

Structures consist of a functor {or predicate} which is an atom, fol-
lowed by one or more terms called arguments. A simple example of a
structure is

owns(mary,Dog).
In this case, the functor is "owns”, the first argument can be the constant
atom, "mary”, and the second argument is the variable, "Dog”. Structures
can be nested, since an argument is any term. Thus, an entry in a library

card catalog might be -

(.4'1) The Prolog definition presented in ElCiocSl doesn’t
include real numbers. However, the VAX CProlog does.

86

book{author{'J. Doe’g;‘
publisher(name('McGraw-Hill"),
loc{’New York’)),

date(1983),

title('Abstract Data Structures’)).
It should be noted that the order of the arguments is important. The
significance of the atoms and structures is strictly the decision of the pro-
g'ramml.er. But, consistency in definition is required in order to be able to

obtain the expected results.

One special type of structure is that created by the special functor

dot or "." . This structures is referred to as a fist. This s the same as the
list data structure in the programming language LISP. In Prolog, the lists
containing members a, b, and ¢ is represented as {a,.(b,.(¢,[]})) , where |]
represents the empty list. The same list can also be represented in Prolog

using a special list notation: (a,b,¢].

Using these basic elements of Prolog syntax, not only can fact.s be
asserted, but also rules can be defined. Rules are logic clauses which ex-
press an assumption and the conditions which must be true in order for
the assumption to be true. For a more in depth discussion of the relation-
ship of Prolog to predicate calculus and Horn clauses, consult Chapter 10

of Clocksin & Mellish [Cloc81].

To clarify the basic concepts, consider the following logic problem

and the usage of Prolog to solve it.

Three students recently graduated from a college and
want to attend graduate school. Each student will attend a
different university next year, each in a different major field.
The strong point in favor of each student being accepted is
different. Determine the school, major, and strong point of
each-student, considering the following clues:

87

1. The student who applied to Yale will not be
studying business.

2. Brown and the student going to Harvard, who is
not Jones, had marginal G.P.A.’s.

3. Jones will not be attending UCLA.

4. The students with good references and high
G.R.E. scores will not be studying History.

5. Smith, who had mediocre G.R.E.’s, doesn’t in-
tend to study Computer Science.

The following set of Prolog statements express the same information,

and they can be used to arrive at an answer to the problem.

/* Facts */
name(brown) na.me(_]ones) name(smith).

sp(& sp(refs).
-sch uc!a) Bara.le sch harvard)
mjr{comp _ SCI) m]r(mtory) mjr{business).

/* Rules */ .

strong(B,J,S):-
SP(B),

73, -

S\====gre, /* clue 5 */
S\==B, S\==1].

major(B,J,S,SB,SJ,SS):-
mjr(S), ,
S\==comp sci, /* clue 5 */
clue 4(S,SS},
mjr{J)'] ==8, clue 4(J SJ),
mjr{B), B S B\==],
clue 4 SB)

history,refs):-! fail.
history,gre):-! fall

—
—

clue 4
clue™ 4
clue 4

school(B,J,S,MB,MJ MS,SB,SJ,5S):-
sch B
B\==nharvard, /* clue 2 */

88

clue _ 1(B,MB),
sch(J) 7\——B
J\==ucla, /* clue 3 */
=harvard, /* clue 2 */

cIue 1(J, M),
clue ™ 2(J, SJL
sch(S), S\===B, §\==],

clue 1(S MS)

clue 2(S,SS).
clue _ 1(yale,business): 'fall
clue ™ 1(
clue™2 h_a.rvard ,gpa):-!,fail.’

clue "2 o

The facts are self-explanatory. The rules can be interpreted as fol-
lows. The definition for "strong” indicates that three variables are to be
instantiated. There is no significance to the letters chosen (B, J, and S) ex-
cept that they are mnemonics chosen to stand for the la&t names of the
students. The Prolog atom ".-" can be read "is true if." The definition for
"strong” contains a series of structures on the right-hand side of the ":-"
symbol,. This series represents a conjunction of clauses, each of which
must be true in order for the entire definition to be evaluated as true. The
first clause."sp(B)” will cause "B" to be instantiated to the first constant
found such that "sp()" is true. In this case, "sp(gre)” is a fact, and "B" is

instantiated to "gre.”

In each succeeding clause of the conjuhction, all possible definitions
are tried until one evaluates true. Any variables instantiated in this pro-
cess remain with their set value and processing continues with the next

clause in the series. .

In this example, the next clause is "B\===gpa” which reads "B" is

not equal to “gpa.” If this check is true, processing continues. But, once a

39

clause cannot be evaluated true, backtracking begins. Working backward
from the point of failure, clauses are re-examined to look for alternative
definitions which evaluate true. In this case, "B\==gpa” is true since "B"
is currently instantiated to "gre.” Note that “/* clue 2 */" is merely a

comment.

The next clause is "sp(J)" which is satisfied by "sp(gre).” The next
clause, "J\==B", now checks to see if "J" (=gre) is not equal to "B"
(==gre). This check evaluates false, and backtracking begins with "sp{J).”
This clause also evaluates true by instantiating "J” with "gpa” instead of
"gre.” Now, "J\==B" is true since "gre” is not equal to "gpa.” In this
maanner, the remainder of the conjunction series is evaluated. Upon invo-
cation of “strong,” the first successful evaluation returns

"strong(gre,gpa,refs)

The definition of "major” contains a reference to "clue_4." The
first definition of "clue _4" assumes that both arguments have already been
instantiated. In this case, if the two arguments match "history” and "refs”,
then "clue 4" fails. The ™" also called "the cut” prevents backtracking
from proceeding backward over the "!" symbol.. In this case, the cut
prevents alternative definitions to "clue - 4" from being evaluated. If the
arguments do not match "history” and "refs”, then the next definition is
evaluated. The last definition for "clue 4" contains two instances of the
anonymoué variable " _". This variable is used when no further remember-
ing of the variable is necessary. Each occurrence of " _" is a unique vari-
able. The definitions for "clue_ 4" indicate that it is false if “history” is

paired with "refs” or "gre” in the definition of "major.” Any other pairing

90

is true; ie., "clue_4(_,_)." is a true statement without any condition be-

ing imposed by the ":-" symbol.

In order to solve the logic problem, a question needs to be posed
once the facts and rules have been entered. Prolog prompts with | ?-" and
the question is posed:

| - strong(SB,SJ,SS),major(MB MJ MS SB,SJ,SS),
school(B,J,S, MB,MJ MS,SB,SJ,SS).

In this question, the variables SB, SJ, and SS correspond to the strong

points of Brown, Jones, and Smith, respectively; MB, MJ, and MS, their

majors; and B, [, and S their schools. The answer Prolog returns is
CProlog version 1.4d.edai

l ?- ['logprob.pro’].
ogprob.pro consulted 2120 bytes 0.8 sec.

es
?- strong(SB,SJ,S8),

major(MB,MJ MS SB,SJ,SS),
school(B,J,S, MB,MJ,MS,SB,SJ,SS)

S = harvard

J = yale

B = ucla

MS = business

MJ = history

MB = comp _sci

SS = refs

SJ == gpa

SB = gre ;

no

| - halt.

[Prolog execution halted]

Prolog contains quite a few more built-in predicates and operators.
As necessary to explain the knowledge base and translation process, these
additional Prolog features will be described. This simple example merely il-

lustrates how Prolog works.

91

4.2 Prototype Elements

With a proper understanding of Prolog, the knowledge-based ap-

proach to the prototype system and its elements can be described.

As presented in section 3.5, the system architectulie for
CAE/CAD/CAM data transport consists of three process modules: com-
piler, translate engine, and formatter. Several data bases feed these
processes: source CAE/CAD/CAM data, generic predicates, source to gen-
eric rules, and generic to target rules. The resulting outputs are target
CAE/CAD/CAM data and kept data in DBIF. Each of these elements will
be described.

4.2.1 Process Modules

Compsler: This module may be implemented a number of ways.
Conventional compiler techniques are appropriate for language translation
or alternatively Prolog can be used. For a CAE/CAD/CAM data base, a
data base dump routine can be written to produce a DBIF rendition of the

data. For each native data source, a separate compiler is required.

To insure the feasibility of this methodology, two compilers were
produced as part of this research. The first compiler was written to
translate an industry standard, CALMA GDS II, data base into its ap-
propriate DBIF. This work was performed by Marilyn Caro as part of a
Master’s Comprehensive Examination at UCLA [Caro83]. The binary input
was read into Ms. Caro’s compiler, written in FORTRAN, and the output
was an early version of the data base intermediate format as described in

section 3.5 and described in further detail in this section. The compiler

02

was written in FORTRAN on a VAX 11/780 running VMS. Approximately

600 lines of code were needed to implement the compiler [Caro83].

The input to the compiler was a standard CALMA GDS II Stream
Format tape, which contains binary data. Appendix C shows a hex dump
of a CALMA Stream Format file which was used for this purpose. .The
meaning of the Stream Format tape is described in Figure 4.2 which shows
a pseudo-BNF description of its syntax. Further desciption of this data is
contained in Chapter 5. The terminals in this description are actually
binary records of variable length. Each binary record starts with 2 bytes
containing a count of the total record length in bytes (8-bits). The third
byte is the record type (e.g., BGNLIB = type 1). The forth byte is the
type of dat; contained within the record (e.g., 2-byte integer, 4-byte real,
bit array, etc.). Starting with the fifth byte, begins any data associated
with the record type. A

Figure 4.3 shows a sample CALMA Layout that was used as input to
the compiler. The first step involved taking the CALMA Stream Format
data and reading it from the CALMA system onto a VAX 11/780. Appen-
dix D shows the output of the compiler in the form of a file of assertions or
facts that represent the data in the Stream Format file from the CALMA
system (see Appendix C). A somewhat exhaustive, manual comparison of
the annotated hex dump of the stream format file with the assertions file
shows that there has been no loss of data in the translation. This example
- illustrates the feasibility of representing a native C:AE/CAD/CAM data
base in terms of DBIF.

093

<library >::== HEADER BGNLIB LIBNAME REFLIBS& FONTS |
ATTRTABLE | [STYPTABLE G TIONS |
NITS { <structure> }* ENDL

<structure>::== BGNSTR STRNAME [STRCLASS | [STRTYPE |
{<element>}* ENDS

<element>::= {<boundary> | <path> | <sref> | <aref> | <text> | <node>
| <box>H ELKEY {<link>}+ | {<property>}* ENDEL

<boundary >::= BOUNDARY | ELFLAGS | [PLEX] LAYER DATATYPE XY

<path>:= PATH | ELFLAGS)“ PLEX | LAYER DATATYPE | PATHTYPE |
WIDTH |

<sref>:== SREF | ELFLAGS | [PLEX | SNAME |<strans>] XY
<aref>:=x ARFF [ELFLAGS | [PLEX | SNAME [<strans>| COLROW XY
<text>:= TEXT | ELFLAGS] | PLEX | LAYER <textbody>
<node>::= NODE [ELFLAGS | [PLEX | LAYER NODETYPE XY
<box>::== BOX [ELFLAGS] | PLEX | LAYER BOXTYPE XY

<textbody>::= TEXTTYPE [PRESENTATION ‘l‘ LPATHTYPE |
[WIDTH | | <strans> | XY STRING

<strans>:= STRANS [MAG | [ANGLE |
<link > = LINKTYPE LINKKEYS
< property >::m PROPATTR PROPVALUE

NOTE: " denotes an entity occurring zeto ot one time.
L] " .
denotes pick one of the entities.
*" denotes entities can occur an arbitrary number of times.

" denotes at least one of the entities must be present.

“Repriated with permission by the Calma Company”

Figure 4.2. Pseudo-BNF description of the CALMA Stream Format.

The second example of using a compiler to produce DBIF, reformats
the TEGAS Design Language (TDL) into DBIF format. TDL is an industry

recognized format for describing interconnections and simulation models

94

T T T PP AP PP Y TV TV BTV TITY TR T T PP AT,
e e e o A At bbb

T Y T T I T M
A BALLIAS Uk s
frevevss o ervrn e TR

95

Figure 4.3. Sample CALMA Layout

for performing logic simulation. In this example, a schematic data base
represented in the TDL format is compiled into a set of assertions or facts
that represents the same data content. To perform this, a compiler was
produced using Prolog which contained the necessary syntax and semantic
knowledge in terms of Prolog statements. Approximately 550 lines of Pro-

log code were written to perform the compilation.
The TDL preprocessor language has four major parts:
1. Compiler Instructions
2. File Manager Instr_lctions
3. Linker Instructions

4. End
The part of interest in this example is the Compiler and its iﬁstructions,r
which contain a description of the schematic net list along with any models
used. Figure 4.4 shows the structure of the TDL Preprocessor Compiler
commands. The BNF descriptions of these commands are complex. An ex-
cerpt from the August 1983 release of the TDL Preprocessor User & Refer-
ence Manual [TDL83| is provided in Appendix H. This excerpt describes
the syntax of the DEFINE commanrd which is used to specify signals and

the interconnectivity of logic elements.

~ Figure 4.5 shows a sample TDL input to the compiler. The resulting
DBIF is shown in Appendix E. As in the preceding“compilation example
involving CALMA data, this example show the feasibility of compiling a
native CAE/CAD/CAM data format into DBIF. In this case, however,

96

LIST OF TDL PREPROCESSOR COMMANDS

COMPILE
start compiler block
DIRECTORY (DIR)
specify default directory for following modules
OPTIONS (OPT)
specify compile opticns for following modules

mOoro

MODULE (MOD)
specify name of module
INPUTS (IN)
specify names of module's external input pins
OUTPUTS (OUT)
specify names of module's external output pins
DESCRIPTION (DESC)
up to 1023 characters of description placed
in library with module
LEVEL
declares lavel name associated with module
on user library
DELAYS (DEL)
specify delays associated with primitive
type nage or delay name
USE
raferances primitives with opticns and
defined wodules (zee TDL Simulation Reference
manuall.
WIRED
specily options for wired gates
DEPINE (DEF)
define logic of module in TDL code
ERD MODOLE
end module description

WM HYEON

mEauox

ZOoOrdAdnQXH -

HOHHEAYHIZINWBLMOD

END COMPILE
end all module descriptions

"Reprinted with permission by the Calma Company”

Figure 4.4. TDL Preprocessor Compiler Commands.

rather than a binary data base, a man-readable language has been com-

piled into DBIF.

Translate Engine: Once compiled DBIF exists it is input into the
translate engine as shown in Figure 3.15. The basic translate engine con-

sists of the following nine steps:
1. Initialize

2. Read in and load source facts and input rules into Prolog da-

97

COMPILE;

OPTIONS CATALOG, XREF;

DIRECTORY RPH;

MODULE JKFF/GATE/1/RPH;

INPUTS CLOCK, I, K, PS, PC;

QUTPUTS 0Q, OQB;

DESCRIPTION THE MODULE IS A MASTER/SLAVE JK FLIP-FLOP
WITH PRESET AND PRECLEAR LINES. ;
"(SEE TDL REF. MANUAL P.71)"

DELAYS NANDEL/3,2,4/, NOT/3,2,4/;

"THE FOLLOWING TWO LINES CREATE TWO DIFFERENT TYPES
BASED ON THE PRIMITIVE ELEMENT NAND.

3-NAND IS THE SAME AS NAND.

2.NAND IS DECLARED TO BE A 2 INPUT NAND. "

USE 3-NAND == NAND(3,1) /NANDEL/,
2-NAND == NAND(2,1) /NANDEL/;

DEFINE
DEV1(NAND-A) = 3-NAND(J,QB,CLOCK);
DEV2(NAND-B) = 3-NAND(K,Q,CLOCK);
DEV3(NAND-C) = NAND(PS,NAND-A,NAND-D);
DEV4(NAND-D) = NAND{PC,NAND-B,NAND-C);

. DEVS{I} = NOT{CLOCK);
DEV6(NAND-E) = 2-NAND{NAND-CI);
DEV7{NAND-F) = 2-NAND(NAND-DIJ;
G-NAND(Q) = NAND(NAND-E,QB);
H-NAND(QB) == NAND(NAND-F,Q);
DEV8(0Q) = NOT(Q);

DEV9{OQB /1/) = NOT(QB);
END MODULE;
END COMPILE;

Figure 4.5. Sample TDL Input.

tabase.
3. Generate generic facts.
4. Create kept facts from the input to generic form translation.

5. Reset fact/rule (Prolog) database.

98

6. Read in and load generic facts and output rules into Prolog

database.
7. Generate target facts.

8 Add kept facts from the output translation to those created

in step 4. _

9. Clean-up and reset Prolog database.

Figure 4.6 shows this process and the interface with the various data files.

It is important to note that there is no knowledge of any native
CAE/CAD/CAM data format or the geﬁeric predicates embedded within
the translate engine. In fact, the same translate engine code (in Prolog)
was used with distinct sets of source/target DBIF's and two different
.classes of generic prediéa’tes. Chapter 5 describes these test cases and the.
results of translation. This translate engine requires approximately 120

lines of Prolog code.

A slightly different sequence of steps is necessary if a translation is
~ performed on not only source DBIF, but also uses previously kept facts.
This might be needed if a data base were transported from system A to
system B and then back again. Assuming kept facts were generated in go-
ing from A to B, then in order to reverse the process the same kept facts
would be needed to result in the complete database of system A. In this

case, two additional steps are added to the translate engine:

2A. Read in and load previously kept facts into the Prolog data-

base.

99

Create
Kept Facts
(Step 4)

Reset

N " Fact/Rule

Database

T

Generate
Generic
Facts
(Step 3)

T

Input
(Step 2)

T

Initialize
(Step 1)

(Step 5)

|

Load Generic

- Facts and

Qutput Rules
(Step 6)

|

Generate
Target
Facts
(Step 7)

.

Add Kept
Facts
(Step 8)

l

Cleanup
& Reset
(Step 9)

Figure 46. Translate Engine Processing Flow.

100

BA. Read in and load previously kept facts into the Prolog data-

base.
These previously generated kept facts are removed before steps 4 and 8 in
order to avoid having the previously saved data from adding to the newly
created kept facts. Figure 4.7 shows this process flow utilizing previously
kept facts. This modified translate engine consists of approximately 130

lines of Prolog code.

Formatter: Once the translate engine provides target DBIF, for-
matter moduies (one for each unique target system type) convert DBIF into
the native CAE/CAD/CAM format. Two formatters were produced in the

course of this study. Again the goal was to show feasibility.

The first formatter converts DBIF into CalTech Intermediate Form
(CIF). CIF is a file format whi'ch describes graphic features of VLSI design
layouts [Mead80]. The basic CIF commands are

P - Polygon, defined by its vertices.

B - Box, defined by its length, width, center, and orienta-
tion.
R - Round fash, defined by its diameter and center.

Wire - Wire, defined by its vertices and width.
L - Layer specification. '

DS - Define symbol.

DF - Finish symboi definition.

DD - Delete symbol definition.

Mead and Conway, INTRODUCTION TO VLSI SYSTEMS,
© 1980, Addison-Wesley, Reading, Massachusetts. Pgs. 115
through 126. Reprinted with permission.

101

Reset
s Foct/Rule
Datasbase
(Step 5}
o Fac Facts g
Kept Facts
(Step 4) Output Rules
(Ss_;ep 6)
Generate
Input
szﬁfgc Kept Facts
{(Step 3) (Step 6A)
Generate
" keot Fect Target
Kept Facts
(Step 2A) Facts
(Step 7)
Input Add Kept
(Step 2) Facts
(Step 8)
Initialize _ Cleanup
(Step 1) & Reset
(Step 9)

Figure 4.7. Translete Engine Processing Flow with Kept Facts.

102

C - Call symbol and provide transformation.
In addition to these basic commands are facilities for commenting the file
and extending the command repertoire with user extensions. A complete

syntax definition is provided in Figure 4.8 as published in [Mead80].

cifFile = - :blank i : command | semi | endCommand blank ..
command = primCommand | defDeleteCommand !
defStart Command semi | - bikak . primCommand ‘ semi defFinishCommand.
primCommand = polvgunCommand | boxCommand ! roundFlashCommand | wireCommaad !
haverCommand i callCommand ! userExtensionCommand ! commentCommand.
polygunCommand = P path. :
boxCummand = "B" integer scp integer sep point sep point .
round FlushCummand = R integer sep poimt,
wireCommand = "W integer sep path.
layerCummand = "L” blank shonname.
defStartCommand = D" blank S .integer sep integer sep:nteger
detFinshCommand = D" blank “F".
defDeleteCummand = D" blank D imeger.
callCommand = C" integer trapsformatton.
userExtemwnCommand = digan userText.
vommentCommand ® C(Ucomment Texo 'y .
endCommand = g,
ransformation = blank (T point| "M Blank TXTIUMT blank Y UR' powmt) .
path = oMt IeP point ;.
© pont = sinteger sep sinteger.
sinteger = -sep =" integerD.
nieger = . sep - integerD,
megerD = digit. digit ..
shortname =ciclcilel.
¢ = digit 1 upperChar.
userText = userChar:.
comment Text = -commentChar . commeniText ' 'sommentText™) commentText.
emi = . blank """ blank .
ep = upperChar blank.
digit I e R e B e L e SOr RRT Sy
upperChar = CATICBT QT LT,
blank = any ASCII character except digit. upperChar, =", “(". =}, or "*:™".
userChar = anv ASClI character except ;"
commentChar = any ASCII character except " {""or"t",
Figure 4.8. CIF Syntax Description.

The CIF formatter based upon this syntax, developed by M. Caro [Caro83],
consists of approximately 350 lines for FORTRAN code. The sample CIF
DBIF used to demonstrate the formatter is included in Appendix F. This
13 an earlﬁr version of the DBIF and is slightly different than the DBIF that

103

was used in experiments with the translate engine. The native CIF output

by the formatter is shown in Appendix G.

A second formatter was written for the hypothetical relational data-
base native format, DR1, described in Chapter 3. The sample DBIF for
DR1 is shown in Figure 4.9. The formatter is quite trivial due to the power
of Prolog and the simplicity of the DR1 tabular form. The Prolog code,
shown in Figure 4.10, consists of approximately 20 lines of code. The
resulting tabular form for DR1 is suitable for loading into a relational
DBMS (see Figure 4.11). Note that the order of the facts in Figure 4.9 is
immaterial. All of the facts are stored in the Prolog database and can be

accessed by the code of Figure 4.10.

A walk through the Prolog code for "driwrt”™ in Figure 4.10 illus-
trates the formatter process and also how Prolog operates in general. The
execution of the formatter begins in line 1 with the "['drl.dat’]" clause
" which consults the file "drl.dat”. This means that Prolog facts and rules
contained in this file will be added to the Prolog database. Continuing
with line 1, the "tell” clause directs any further output to the file
"drlout.dat”. The next clause, "fail”, causes Prolog to backtrack over pre-
viously encountered clauses, looking for instantiated variables which could
bg associated with a new value. In this case, there were no instantiated
variables in this line, so backtracking regresses back to the head of line 1,
"drlwrt”. Since this entire rule evaluates to false (due to the "fail” clause),

Prolog looks for another rule for "driwrt” which migh£ evaluate to true.

104

dbid(schemex1,dr1,'1.0",'1/11/84:17:06’).

content([signal(s7),comp _name(c1),pin(02),comp _ type(conn),
connect(s7,c1,02),has(c1,conn),

signal(s7),comp _ name(b),pin(y),comp _type(t2),
connect(s7,b,y) has(b,t2),

signal(s6),comp _name(c1),pin(ol),comp _ type(conn),
connect(s6,c1,01),has(c1,conn),

signal(s6),comp _name(c),pin{y),comp _ type(t2),
connect(s6,c,y),has(c,t2), :

signal(s5),comp__name(b),pin(il),comp_type(t2),
connect(s5,b,i1),has(b,t2),

signal(s5),comp _ name(c),pin{(i2),comp _ type(t2),
connect(s5,c,i2), has(c,t2),

signal(s5),comp _ name(a),pin(qe),comp _type(t1),
connect(s5,a,qn),has(a,t1),

signal(s4),comp _name(c),pin(il),comp _type(t2),
connect(s4,c,i1),has{c,t2),

signal{s4),comp _name(a),pin{q),comp _ type(t1),
connect(s4,a,q),has(a,tl),

signai(s3),comp __ name(b),pin(i2),comp _ type(t2),
connect(s3,b,i2),has(b,t2),

signal(s3},comp _ name(c 1),pin{i3),comp _ type{conn),
connect(s3,c1,i3),has{c},conn),

signal(s2),comp _ name(a),pin(s),comp _ type(t1),
connect(s2,a,3),has(a,t1),

signal{s2),comp _name(c1),pin(i2),comp _ type{conn),
connect(s2,c1,i2),has(c1,conn),

signal(sl),comp__name(a),pin(r),comp _ type(t1),
connect(sl,a,r),has(a,t1),

signal(sl},comp _name(c1),pin(il),comp _type{conn),
connect{sl,cl,il),has(c1,conn),

dummyj).

Figure 4.9. Sample DBIF for DR1.

In a like manner, line 2 begins by trying to instantiate the variable
F with something such that "content(F)" is a fact. Since the data from
“drl.dat” contains a clause “content(]...])", F is associated with the list of
terms contained between the parentheses of the 'cont;nt' term (see Figure
4.9). Continuing with line 2 of the Prolog code (Figure 4.10), the "loadfact”

term is evaluated with the current value for F, assigned in the "content”

105

/* 1 */ drlwrt-['drl.dat’] tell(’dr1out.dat’) fail.
/* 2 */ drlwrt:-content(F),loadfact(F) fail.
/* 3 */ drlwrt:-connect(S,C,P),signal(S),

Tt 21 comp _name(C),pin(P),has{C,T),
[*s5*/ comp _ type(T),putlft(S,0,12,P1),
[*6*/ putlft{(C P1,12,P2),

/7% putift(P P2,12,P3),

[*8*f putlft(T P3,12,P4),

/*9% putstring("."),ni,fail.

/*10%/ driwrt:-told.

loadfact([}).

loadfact([H|T]):-retr(H),assertz(H),loadfact(T).

retr(R):-retract{R),fail.
retr(R).

putlft(Dat,Cur,Leng,New).-name(Dat,D) fength{D L),putift2{D,Cur,Leng,L),
New is Cur+Leng.

putlft2(D,C L, L2):-L=L2,putstring(D).

putlft2(D,C,L L2):-L <L2 firstN(D,L,D2),putstring(D2).

putlft2(D,C,L,L2):-L>L2,M is L-L2,putstring(D),tab(M).

putstring([]).
putstring([H|T|):-put(H),putstring(T).

Figure 4.10. Prolog Code for the DR1 Formatter.

s7 el 02 conn

s7 b y t2

s6 cl ol conn

s6 c y t2

85 b il t2

85 c i2 t2

85 a qn tl

s4 ¢ il t2

s4 a q tl

s3 b 12 t2

s3 cl i3 conn

82 a 8 t1

s2 cl i2 conn

sl a T A .
sl el il conn .;

Figure 4.11. Tabular Form of DR1 Data.

106

clause. "Loadfact” merely picks each term in the list and appends it to the
Prolog database. The "fail” term at the end of line 2 causes this line to
evaluate false, and Prolog backtracks, looking for another "driwrt” rule

which will evaluate to true.

Line 3 begins with the term “connect(S,C,P)", and the Prolog data-
base is searched looking for a "connect® term. The first such term is
“connect(s7,¢c1,02)", and the variables "S", "C", and "P" are instantiated
with the constants "s7", "c1”, and "02", respectively. Having satisfied the
"connect” term, Prolog continues on to the "signal(S)" term. At this point,
"S" has been instantiated with "s7", so Prolog looks into the database to
see if "signal(s7)” is true. Since this is so, Prolog continues with the next

term in the series beginning with line 3 (driwrt).

Terms continue to be satisfied in this instance through the term "nl"
_ (new line). At this point, the first line of "drlout.dat” has been output (see
Figure 4.11). Upon encountering the next term, "fail” (line 9), backtrack-
ing resumes. Each term in this rule (lines 3-9) is re-examined in reverse
order to determine if an alternative value can be used to re-instantiate a
variable such that the tenﬁ containing the variable is still true. The terms
"putstring”, "plutlft", "comp _type”, "has", "pin", "comp name”, and "sig-
nal” do not instantiate any variables which can be re-assigned new values.
The backtracking process finally arrives at "connect(S,C,P)" where the

variables "S”, "C”, and "P" were instantiated.

Searching through the Prolog database from where we left off, Pro-
log encounters an alternate definition for "connect”. "Connect(s7,b,y)" in-

stantiates these values to the variables "S" "C", and "P", backtracking

107

stops, and processing proceeds forward again with the new values a
ssigned. The forward process continues until "fail” is reached. This time
the second line of "drlout.dat” is output (see Figure 4.11). The flow alter-
nates backward and forward, each time using a different instance of "con-
nect” in the Prolog database (see Figure 4.9). For each instance of "con-

nect”, a new line of "drlout.dat” (Figure 4.11) is produced.

Once the last instance of "connectf'\ has been used in this process,
backtracking back to the "connect” term in line 3 will fail, and the entire
"driwrt" rule will finally be evaluated false. Backtracking will continue to
lead to the definition for "drlwrt” in line 10. Here, the term "told” means
to stop “telling”, i.e., the file "drlout.dat” is closed since this is the file
- opened with the last previously executed "tell” term in line 1. "Told"

evaluates true, and so does "driwrt". The evaluation of "drlwrt” stops

and the processing is over.
4.2.2 Data Elements

DBIF: Thus far, the processes of the prototype have been described
and examples presented. Complementing the processes are the data bases
which provide the information to be transported and the rules to be used

to accomplish this.

The DBIF, as described earlier, provides a standard format for pro-
cessing. The syntax of DBIF in the prototype implementation is just the
syntax of Prolog terms. Any fact expressible in Prolog can be used as part

of a DBIF for a native CAE/CAD/CAM form.

108

In practice, each native format contains a number of basic data ele-
ments which are combined to form a complete native database or language
segment. For example, the fields in a relational database are candidates for
terms in Prolog. Several examples have been presented and more substan-

tial test cases will be presented in Chapter 5.

Generic Predicates: As discussed in section 3.5.2 and in 4.2.1,
describing the translate engine, generic predicates are used to assist in a
general n-way translation scheme (refer to Figure 3.11). For each class of
CAE/CAD/CAM data, a set of generic predicates is provided. Figures 3.17
and 3.18 show generic predicates for the "logical® and "physical” classes of
data. The encoding of these generic predicates into Prolog is shown in Fig-
ures 4.12 and 4.13. These predicates provide a set of reference terms in -

which translate rules are expressed.

node(X).

net(X).

box(X).
box__type(X).
net__type(X).
node __type(X).
node __dir(X).
connected(X,Y,Z).
bas_ (X,Y}.

Figure 4.12. Prolog Encoding of Generic
Predicates for Logical Data.

109

polygon _{P).

wire __{W).
macro__def(S}.
macro__call(S,N).
scale _ (S).

layer _(X.L).
vertex_(S,X,Y.1).
width _(X,W).
orient _ (X, AX,AY AZ).
has__ (X,Y).
magnil _(S,M).
relative __orient(S).
relative _ magnif(S).
text__(T).

textval __(T,Str).
h_just(T,N).

v __just(T,N).
tfont _ (T F).

Figure 4.13. Prolog Encoding of Generic

Predicates for Physical Data.

Rules: Using the generic predicates, rules are written to show how
each DBIF is re-written into generic predicates. Likewise, rules are also
prescribed for expressing each generic predicate in terms of DBIF predi-
cates. Consider an example of the use of rules and generic predicates using
the hypothetical DR2 database shown in Figure 4.14 in DBIF form. (The

corresponding schematic diagram was shown in Figure 3.8).

In order to translate this DBIF into generic predicates, rules must be
provided to indicate how the translation is performed. The set of generic
predicates used for logical data {Figure 4.12) was actually used in experi-
ments with the prototype implementation. Contrasting these predicates

with the terms used in the DR2 DBIF, Figure 4.15 shows the mapping from

110

dbid(exsch1,dr2,'3.0°,'1/4/84:16:01’).
content{[body(a),body(b),body(c),body(c1),

‘ be(t1),bt(t2),bt(conn),
ndt(i1),ndt(i2),ndt(i3),ndt(y),
ndt(ol),ndt(o2),ndt{r),ndt(s),
ndt(q),ndt{qn),
has(t1, qn),has(t1, q),hasit1, s),has(t1, r),
has(t2, i1),has{t2, i2),has(t2, Y),
has(conn,il),has(conn,i2),ha.s(conn,i.‘i),
has(coun,01),has(conn,02),
has(a, t1), has(b, t2}, has(c, 2}, has{c1, conn),
signal(sl),signal(s2),signal(s$),uigna](s4),signal(55),
signal(s6},signai(s7),
vertex(a, r, [10,90], 1),vertex(a, s, [10,80}, 1),
vertex(a, q, [20,90], 1),vertex(a, qn, [20,80], 1),
vertex(b, il, (30,40}, 1),vertex(b, i2, (30,20}, 1),
vertex(b, v, [40,30], 1),
vertex(c, il, 50,80}, 1),vertex(c, i2, (50,60, 1),
vertex(c, y, [60,70], 1),
vertex(cl, il, [0,90], 1),vertex(c1, i2, [0,80], 1),
vertex(cl, i3, [10,20], 1),vertex{cl, o1, [70,70], 1),
vertex(cl, 02, [60,30], 1),
vertex(sl, [0,90], 1),vertex(sl, [10,90], 2),
vertex(s2, [0,80], 1),vertex(s2, 10,80, 2),
vertex(s3, [10,20}, 1),vertex(s3, (30,20, 2),
vertex(s4, 20,90, 1),vertex(s4, (50,80, 2),
vertex(sS, [20,80], 1),vertex(s5, {25,60], 2),
vertex(s5, {50,60), 3),vertex(s5, [30,40}, 4),
vertex(s6, [60,70], 1),vertex(s6, [70,70], 2),
vertex(s7, [40,30], 1),vertex(s7, [60,30], 2))).

Figure 4.14. DBIF for Sample DR2 Data Base.

DR2 terms to generic predicates. Note that the term “vertex” does not
have an exact generic counterpart. Similarly, generic predicates, "node”,
"net _ type”, "node _type”, and "node__dir" do not~have equivalents in
DR2. While the concept of a "node direction” (node__dir) may not be

necessary to describe a logic network, certainly, the "node” concept is.

111

Indeed, there are implicit nodes in DR2; however, node types are used in

DR2 to refer to the nodes.

DR2 GENERIC
signal(X) - net(X)
bt{X) - - net(X)
adt(X) - net{X)
body(X) - net(X)
vertex{W,X,Y,Z) - ?
vertex(X,Y,Z) - ?
has{X,Y) - bas_ (X)
? - node(X)
? - node{X)
? - node(X)
vertex(?) - connected(X,Y,Z)

Figure 4.15. Mapping of DR2 Terms
onto Generic Predicates.

These mismatches between DR2 and a generic definition of “logical”
class data are an example of the delta problem described in previous
chapters. It is necessary that rules be written to deal with these
mismatches. Figure 4.18 shows a set of rules which not only perform the
tansformation form DR2 DBIF into a generic form, but also generates gen-
eric data without DR2 equivalent. Also,/ a provision is made to keep DR2

data which cannot be represented in terms of generic predicates.

The rules which translate the DR2 terms, "signal”, "bt", "ndt", and
“body" are straight-forward, and merely reflect a one-to-one mapping. The
rule for creating generic "nodes” is more complex. It relies upon DR2 terms

and creates the missing generic relationships. the first "node(X)" rule says

112

net{X):-signal(X).
box(X):-body(X).
box _type(X):-bt{X).

connected(Box,Signal Node):-vertex(Signal,V,I),vertex(Box,Ntype,V,1),
has_ (Node,Ntype),node(Node),has _ (Box,Bt),has_ (Bt ,Node).

keep(vertex(X,Y,V,1)):-vertex(X,Y,V,1).

node(X):-keep(node(X)).

node(X) -1,0dt(Y),bt(Z),has(Z,Y),gensym(node _ X),asserta(node(X)),
asserta(has__(X,Y)),asserta{has_ (Z,X)),retract(has(Z,Y)).

node _type(X):-keep{node _type(X)).
node_type(Y})-l,ndt(Y).

net_type(X):-keep(net _type(X)).
net__type(X):-!,signal(Y),gensym(nt _,X),assert(has_ (Y,X)).

node__ dir(X):-keep(node _ dir(X)).
node _ dir(X):-!,ndt(Y),bas_ (Z, Y),node(Z),gensym(ndt ,X),assert(has _ (Z,X)).

" has _(X,Y):-body (X),has(X,Y),bt(Y).

Figure 4.18. Rules for Transforming DR2 into a Generic Form.

that X ¢s a node if there is a kept fact that X is a node. This is for the case
that not only a DR2 data base is being input but also a data base of previ-
ously kept data. This scenario correspo:;ds to the process flow shown in
Figure 4.7 as opposed to Figure 4.6 where previo‘usly kept facts don’t exist.
The second "node(X)" rule first looks for a node type Y {ndt(Y)) and a
body type Z {bt(Z)) such that Z has Y. For each Y and Z meet this condi-
tion, the function "gensym” will generate a unique constant of the form
"node _x" where x is 1,2,3,... . The constant will then be considered a node

name and that fact inserted into the Prolog database ("asserta(node(X))").

113

Appropriate relationships between this new node, its node type, and the
containing body type will then be asserted ("asserta(has (X)Y))" and
"asserta(has _(Z,X))").

This transformation from DR2 to generic form illustrates the
different philosophy between the two systems. In DR2, each body type
(bt) has a set of node types (ndt). A body has a body type (bt). Vertices
connect signals to the node _types of a particular body (which is an in-
stance of a body type). From the generic point of view, a box (= DR2
body) has a box type, a box type has a node, and a node has a node type.

The different representations are illustrated in Figure 4.17.

One additional rule of interest is the one for the generic predicate,
"connected”. Since the generic .predicates are evaluated in sequence (as
shown in Figure 4.12), it is possible for one predicate’s rule to rely. upon-
the Prolog database facts generated by the rules for predicates processed
earlier in the sequence. Such is the case for the "connected” rule. In this
rule, the Prolog database is searched for a vertex held in common between
a signal and a node type. Then the node type is mapped to a node gen-
erated earlier by the node rule. The previously asserted "has " facts are

used in the mapping. '

In a like manner, each rule is processed and the data transformed

from the source DBIF to the target DBIF. A complete scenario follows.

114

‘WA04 2143ud9 8YY} PUR Zy(Q U3am}ag
Suo|}ejuasaiday yuaagsg 21y aunbiy

adfh |—apoN

-sey

~-sey

adfi]—3jaN

—sey

Xa)Jan

pajJauund

115

4.3 Operational Scenario

To illustrate how the various prototype processing elements func-
tion, consider the two native data formats DR2 and DR1. The native form
for the DR2 data was shown in Figure 3.8 and for DR1 in Figure 3.7. By
following the flow diagram in Figure 4.6, the DR2 DBIF can be transformed
into DR1 D:‘_TBIF. Executing the Prolog code which implements this low di-

agram results in the system log shown in Figure 4.18.

The Prolog term "translate(...)” in this figure begins the execution.
The arguments to “translate” indicate that the source DBIF is the file,
"dr2.dat”, and that the target DBIF will be written into file ,"drl.dat”, the
new data base identifier (dbid) in this. file will be "exschT", version "10.0"
written on 1/10/84 at 2:53pm. The target system is "DR1" (argument 5).
The file "dr1K.dat": (arg. 3) will be used to store any kept facts generated
in the process. The output lines in the system log which follow the

"translate” term indicate the steps in the process.

As shown in Figure 4.6, step 1 involves initialization. Step 2 reads
in the source DBIF and the source input rules. The system log (Figure
4.18) shows this action. The line "dr2.dat consulted ..." indicates that the
source DBIF (Figure 4.14) was read in. The next line after the "Trans |
a t e" banner in the system log echoes the "dbid" from "dr2.dat”. The
second argument of this "dbid” term indicates the source system "dr2”.
Based on this argument, the file (dr2)in.rul (Figure 4.18) is assumed to con-
tain the source input rules. These are read in next. This initial start up

segment encompassing steps 1 and 2 is not complete.

116

CProlog version 1.4d.edai
[Restoring file /u/aa/hooper/tranl0.env |

s
r.- {'/u/ua/hooper/pro/gensym.pro’).
/u/ua/hooper/pro/gensym.pro consulted 812 bytes 0.3 sec.

e
f?- tranalne('dr‘z.dat'.'drl.d.\t'.’drlK.d;t’.exschT,drl,’10.0',’1/10/84:!4:53'}.
dr2.dat consuited 2832 bytes 0.65 sec. -

>>Translate: VIO <<

dbid(exacht,dr2,3.0,1/4/84:16.01)

dr2in.rul consulted 1472 bytes 0.46887 sec.

Start Up 2.42 sec.
T==pode{ _903) 12 facts.
T=net{_ 993} 7 facts.
T=box(_083) 4 facts.
T=box _type{_003) 3 facta.
T=net _type(_003) 7 facts.
T=node _type{_993) 10 facts.
T=node _dir{ _993) 12 facts.

=macro_ calll_903) 0 facts.

T==macro_def(_003) 0 facts.
Tacconuected(903, 904, 095) 15 facts,
T=has_(_003, 9909) 47Tacts.
T=end _of _file™ 0 facta.
117 facts total.

Generic 8.35 sec.

Keep 0.82 sec.

Unload 1.45 sec.

drlout.rul consulted 948 bytes 0.31667 sec.
T==signal{_3071} 7 facts.
T=pin(_3071) 10 lacts.
T=comp_ same(_3071) " 4 facta.
T=comp_type(__3071) 3 facts.
T=counect(_ 3071, 3072, 3073} 15 facts.
T==has(_ 3071, _3072) 4 facta.
T=end__of _fle 0 facts.
43 facts total.

Phase 2 5.33 sec.

Output Keep 3.38 nec.

Total time is 23.13 sec.

s
- halt.

[Prolog execution halted |

Figure 4.18. System Log of the Prototype Execution.

Step 3 involves the generation of generic data. The generic predi-
cates (Figure 4.12) are read in one at a time (from ';gencon.rul"), and all
possible values for any variables contained in the generic predicate are gen-

erated. As each generic predicate is read in, it is echoed out into the sys-

117

tem log, and the number of facts generated for that predicate is printed
also (e.g., "T=node(__993} 12 facts.” (42) }, At the end of step 3, all gener-
ic data has been generated (see Figure 4.19). The system log shown that

117 generic facts were generated in total. The log also indicates that 8.35

seconds of CPU {43) time were expended in producing the generic data.

Step 4 involves creating kept facts which would be lost in transla-
tion between DR2 and the generic form. These are written into
"dr1K.dat". Additional kept facts are added in step 8. This step marked
"Keep" took 0.62 CPU seconds.

Step 5 resets the Prolog database by removing any DR2 data and
kept facts. The system log identifies this step as "Unload” and reports

that it took 1.45 seconds.

Step 6 reads in the generic data created in step 3 and also the target
output translation rules (see Figure 4.20), "drlout.rul”. This event is re-

ported in the system log, "drlout.rul.consulted ...".

Step 7 generates the target DBIF. As each DRI predicate is read, it
is echoed out and the number of facts generated is reported. The target
output rules read in from step 6 are used to map from the generic data

(Figure 4.19) into DR1 predicates. As the system log shows, 7 signals were

(42} The numbered Prolog variables (e.g., 993) beginning

with an underscore are the internal Pr?)'lpg names for
variables. '

(43) The CPU is a VAX 11/750 running LCC LOCUS, a
distributed UNIX operating system.

118

node{node _1). node{node 2). nod node__3).
nodgnode 4). node{mode”5). node{node” _8}

nodelnode 7). aode(node _8). node(node 9.
node{node ~10). node{zode _11). node(node _12}.
net{sl). net(s2). net 33} net(s4).

net(s5). net(s6). npet{s?

box{a)." box(b). box(c). box(ct).

box_ type(tl). = box_type(t2). box _type(conn).
aet t ot _ I. net _type{nt _2}).

net_typ nt . net typ | 11 4.

net _ {ype(nt 5 net _t ot 6

net __type{at 7).

node _ty tl']' node_type(i2). node type(la)
node _ty y)) node_type{ol). aede __type(o2).
node_type(r node “type(s). node _typelq).
node _ _typ qn)

node _ dir(ndr node _ dir(adr_ 2}.

node _di ndr__3 node _dir{ndr_4).

sode _dirfndr ”s node _dir{ndr —6).

node _dir(ndr_7). node dir{ndr 3.

node _dirfadr_9). node “dirladr™ 10}
vode_dir{ndr 11) node_ dir(ndr_

connected(ci,sT, node__2).
connected{cl,32,node " 4).
connectedict, s3,node _ 5
conpected(a, ﬁ node

conpected(a,ss, node 12
connected(b, 85,n0de_ 1),
connectedicl 38 node_ 7).
connected(cl, s? node _8).

connecta ; #1,n0de _9).
connected(a,s2,00de _10).
connected(b 53, node ™ 3).
connected(c,s4,m0de 1),
connected(c, 35, ‘node 3).
connected(c,38, node _E).
connected: b s7,n0de_ §).

bas_(t1,node 12 Thas_{node__ 12 qn)

has ™ (21 nodc har _(node

bas (41 node 10 bas " (node _

has _[t1, ‘ode 9) has “(node _9 rj

has " {conn,node_8). hai_(node B, 02}

has” (cona,node 7 hu node_ 7,0l

has _{t2,node 6}, as_[node G,y)

has " (conn,node__ } hu {node 5,13).
has_{conn,node " 4). has {node 4i2).

has (t2,n0de_3). has _(node_3,:2).
has_(coun,node_ 2). hu {node_2,i1).

has —(t2,node 1], node_1,i1).

bas_ a.u) Bas _(b, 32) has (c t2).

has _(cl,conn), ll_u (st,mt_ 1) has_(s2,0t_2).
has _(33,at _3). 24,06 _4) has_(s5n€_%)
has "(s8,nt _8). hu sT mt_7). has (node Z2,adr_1).
has " (node "1, ndr_2)’ node__‘l,n_dr_S
has _(node3,ndr_4). node _5.0dr_5
har _(node”6,ndr_8). node _7,ndr_7
has _(node”_8,ndr_8). _(nede _9.ndr _9).
has__[node _10,ndr_ 10 »_(node__11,adF _11)
bas__(node”_{2,ndr_

Figure 4.19. Generic Data Generated b
Translate Engine.

y the Prototype

generated. After all target facts have been generated, their number is re-
ported (43 in this case) and the end of step 7 is reported Phase 2 5.33
The 43 target DBIF facts are shown in F igure 4.21

119

signal(X):-net(X).

pin(X):-node_type(X).

comp _ name(X):-box{X).

comp __type(X):-box _type(X).

connect(S,C P):--connected(C,S,N},has_ {C,CT)has_ (CT,N),has__ (N,P),
node __type(P). '

has{X,Y):-box(X),has _ (X,Y),box_ type(Y).

keep(node _dir(X)):-node _dir{X).

keep(has_(X,Y)):-node(X),has_ (X,Y),node _ type(Y).

keep(has _(X,Y)):-node(X),has_ (X,Y),node _ die(Y).

keep(has__(X,Y))-net(X),has_ (X,Y),net__type(Y).

keep(has_(X,Y)):-box__type{X),has_ (X,Y),node(Y).

Figure 4.20. DR1 Target Output Rules.

dbid(exschT,drt,'10.0','1/10/84:14:53").

content{| signal(s7)signal(s6),signal(s5),
signal(s4),signal(s3),signal(s2),signal(sl),
pin{gn),pin(q), pin(s), pin(r), pin(o2),pin{o1},
pin(y),pin(i3),pin(i2),pin{i1),

comp _name(cl),comp _name(c),comp__name(b),
comp _ name(a),

comp __type(conn),comp _ type{t2},comp _ type(tl),
connect(s7,c1,02),connect{s7,b,y), connect{s6,cl,01),
connect(s6,c,y}, connmect(s5,b,il), connect{s5,c,i2),
connect(s5,a,qn), connect(s4,c,il), connect(s4,a,q),
connect(s3,b,i2), connect(s3,c1,i3),connect(s2,a,s),
connect(s2,c1,i2),connect(sl,a,r), connect{sl,cl,il),
has(c1,conn),has(c,t2),has(b,t2),has(a,t1),dummy]).

Figure 4.21. Target DR1 DBIF.

Step 8 adds kept facts to "dri1K.dat". These new kept facts are the

result of translating generic predicates into target predicates. Figure 4.22

shows the set of kept facts. Here, it is shown that the "vertex” predicates

were lost in transporting DR2 into the generic format and "node”,

"net__type", "node__type", "node dir", and their corresponding "has _

120

predicates were lost in transporting from generic into the DR1 format.

The system log indicates that step 8 ("Output Keep") took 3.88 seconds.

fromd exachl,dﬂ. '3.0").
todb{schemex,dr1,’1.0").
content([keep{vertex(a.r, BIO 90], 1)},
keep{vertex(a s, [10,80

keep{vertex(a,q,[20,00] I)
ib 11,130, 40}, }}

keep(vertex a,qn.[zo 80} 1 }, keeptvertex

keepivertex(b,12,[30,20],1 keep(vertex(b,y, [40,30 1)
keep{vertex(c,i1,|[50,80], l \ keep{vertex c12 50 80 1)

keep{vertex{c,y, |60 70} l) keep{node(node _ eode{node Il)).
keep{vertex(cl,11,{0,90|, g keep{node(node — kee node{gode_9))
keep(vertex(c1,i2,(0, BO keep{node{node _ 8 keep node{pode _7
keep{vertex(cl.i3, [10 ‘20] keep{node(node _8)}, keep(node{nade "5
keep(vertex(cl, ol 70,70 1 keep(node(node 4 keep(aod node 3
keep(vertex{ct,o2, 60 39|, keep(node{node”_2 kee node{node 1)},

keep(net _type{nt _ kee net t at_6)),
keep{net _type(nt _ 5 kee pet _typ nt 4
kee net_t nt ~3)) kee net % keep(net type(at _1)),
keep(node qn eep(node ¢ Q))-Eeep(node type(s)keep(node type(r)),
keep{node t ypelo2 kee node _type(ol)) keep(nods_
keep{mode _sypefi3)), kee node _type{i2) keep(node type(ll))
keep{node _ dir{adr__ 12 ee node di ndr 11
keep(node _dir{ndr_ ee ncde dir{adr D))
keep(node _dir{ndr__ 8 node _dir{ndr_7
keep(node _dir{ndr_6 vode _dir{ndr_5
keep{node _ dir{ndr 4 node _dirladr_3
keep(node _dir{ndr_ node _dit{adr_1
keeplhas _[node 12, n) kee hl.l “{no e i1 q),
keep(bas_(node_ 10, % node_ G,)]

node_ 802 kee hu node _ Tol)

node_8,y)}, “(node ~5,i3
node _ 4,2 kee hu node__3,i2
node _ 2|l kee has _(mode1,i1
sode_ 12, ndr 12)), keep{lhias _(no e 11,0dr 11)),
node _10,ndr_10 .keep(bas "(node "9, ndr 9)),
nede Sndr “8)).keep(has __(node_ 7 ndr 7)),
node Gndr 6 kee has _(node 5ndr 5
node 4ndr 3 kee has_(node 3 ndr_¢
node 2ndr Jkeep(bas _(node 1,adr”_2

keep(bas
aTat _7 a1 {IG ab_8

keep(has
35 nt_5 kee has” (s4,nt _4

53,0t __3 ,kee has_(92,n¢ 2

s1,0t _1)),keep{has_(conn no e 2)),
conn,node 4 kee u conn,node SB
conm,node 7 kee conn node 8
t2, node 1 32 node _3
t2,node 6 tl node_9
t1,n0de _ } keep(hu (tl node_ 5)
t1,node _12]),demmy]).

Figure 4.22. Kept Facts Generated in
Transporting Data from DR2 to DRI1.

Step 9 is the final clean-up, the Prolog database is reset to elim-
inate any facts from the last translation. The total time for the translation

from DR2 to DR1 was 23.13 seconds.

121

This simple example illustrates several things which are common in
transporting data between any two systems. First, the number of facts in
each system is likely to be different. Second, the data model each system
uses is likely to be different. This will necessitate that some facts be gen-
erated and ?thers be stored as kept facts. Finally, the kept data needs to
contain enough information to allow the original data format to be recon-
structed. Iﬂ the next‘chapter, the reverse translation from DR1 back to
DR2 using the kept facts is presented. Then, the DR1-DR2 example com-

plete, two additional test cases are analyzed.

122

CHAPTER 5
TEST CASES

© In the preceeding chapter, a knowledge-based prototype was
described for transporting data between CAE/CAD/CAM systems. A sim-
ple example using hypothetical data base formats, DR1 and DR2, illustrat-
ed how the prototype operates. In this chapter, the DR1-DR2 example is
completed by demonstrating the transport of the data back from DR1 into
DR2, utilizing kept data to reconstruct the original DR2 data base exactly
as it was to start. This example shows how the prototype addresses the

delta problem described in Chapter 3.

To avoid over-generalizing the significance of the DR1-DR?2 éxamplé,
two additional test cases are analyzed. The first is another example of
data belonging to the logical claas of data described in Chapter 2. The TE-
GAS Design Language (TDL), a widely recognized schematic network
description language, is translated into a Hughes PCB CAD schematic
data base and then back again. The second test case transports "physical
class” data (i.e., representing an IC layout) between the CALMA GDS II
Stream Format and the Cal Tech Intermediate Form (CIF). Asin the pre-
vious example, the data models between the two systems are not one-to-
one. The methodology of using kept data is utilized to make the bi-

directional transport possible.

123

5.1 Hypothetical.Cases: DR1 and DR2

In the previous chapter, DR2 data was translated into DR1 format
using a prototype transport system. In the process of creating the DR1
format, kept data (Figure 4.22) was created. Since DR1 does not contain all
of the data entities that are a part of DR2 (e.g., vertex), it would be impos-
sible to provide these entities without the kept data. In Chapter 4, a
translate engine process flow was presented which used the kept data (see
Figure 4.7). Using the steps in this flow diagram, the DR] data can be
translated back into DR2 format. Both the forward and reverse data tran-

sport are shown in Figure 5.1.

The Prolog system log for the processing steps of Figure 4.7, is
shown in Figure 5.2. As Figure 5.1 indicates, several input files are re-
quired. First, the source DBIF and source input rules a.re_read-in in Step 2
(Figure 4.7). {"drl.dat consulted .." and "drlin.rul consulted ..." as noted
in Figure 5.2) Figure 5.3 shows the output DR1 DBIF which was produced
in Chapter 4. This file ("drl.dat”) will now serve as the input or source for
the reverse translation (see Figure 5.1). Figure 5.4 lists the source input

rules (drlin.rul).

Next, Step 2A (Figure 4.7) reads-in the previously kepf facts (noted
as "dr1K.dat consulted -..." in (Figure 5.2). As shown in Figure 5.1, the kept
data for this reverse transport example is the same kept data created in

Chapter 4. (see Figure 4.22) -

Step 3 (Figure 4.7) creates the generic facts, using the source DBIF,

kept data, and source input rules. As each predicate in "gencon.rul” (Fig-

124

FORY ARD ,
TRANSPORT Generic
Facts

Transiste Engin
(Figure 4.6)
(No Kept Data)

Should Be
Equivalent

Rl &
Kopt
Transiste Engine
(Figure 4.7) |.
{with Kept Data)|":
Sourco
REVERSE
TRANSPORT

-

Figure 5.1. DR2-DR1 Transport Test Case.

123

CPfoIog version 1.4d.edai
{ Restoring file tranll.eav |

ﬁ'- transiate(’dri.dat’,'drtK.dat’,'"dr2.out’,'dr2K.out’ exschRT,dr2,’3.0’,
’ '1/11/84:11:55").
drl.dat consulted 2248 bytes 0.65 vec.

>>Translate: V10 <<

:dbid(schemex1,dr1,1.0,1/11/84:17:06}
drtin.rul consuited 2184 bytes 0.7 sec.
driX.dat conaulted 3648 bytes 0.06687 sec.
fromdb{exschl,dr2,3.0)
todb(schemex,dr1,1.0)
Start Up 14.03 sec.
T=node{_1781) 12 facts.
T=net(_1781) 7 facts.
T=box{_ 1781) 4 facts.
T=box _type(__1781) 3 facta,
Tampet _type{_1781] 7 facts,
T=node__Lypé _1781) 10 facts.
T==node _dir{ 1781) 12 facts.
Ta=macre_coll{_1781) 0 facts.
T==macro__def(_1781) 0 facts.
=connected(1781, 1782, 1783) 15 facts.
T==has _(_1781,_1782) 47 Tacte.
T==end _of _file "0 facts.
117 facta total.
Generic 7.87 sec.
Keep 0.88 rec.
Unload 1.35 sec.
dr2out.rul consulted 1748 bytes 0.51668 sec.
To=signal{ _4509) 7 facta.
T==ndt(__4509) 10 facta.
T=bt{ 4599) 3 facts.
T==body{ _4509} 4 facts.
Tamvertex{ _ 4500, _4600,_ 4601 _ 4602) 15 facts.
T==vertex{ _ 4599, _ 4600, _4601)" 15 facts.
T=has(__ 4590, _4600) 16 facts.
T=end _of _fle 0 facts,
70 facts total.
dbid{exschRT,dr2,3.0,1/11/84:11:55)
Phase 2 13.83 sec.
Output Keep 14.8 sec.

Total time is 87.87 sec.

ﬁ: halt.

| Prolog execution halted]

Figure 5.2. Prolog Output for DR2 to DR1 Transiation.

ure 4.12) is read-in, it is echoed out as before with the number of facts
which were generated. The rules which are contained in “drlin.rul” {Fig-

ure 5.4) are used to derive the generic facts from the source DBIF and the

kept facts.

126

dbid(exschT,dr1,'10.0°,'1/10/84:14:53").
content(sagnal(s?)

signal(s6), connect(s7,c1,02},
signal{s5), connect{s7 b,y)
signal{s4), connect(sb,cl,01),
signal{s3), connect{s6 c,y),
signal{s2), connect(s5,b,il),
signal(sl), connect s5,c,12 \
pin(qn), connect(s5,a,qn},

pin(q), connect{s4,c,il),

pin{s), connect(s4 a,q)

pin{r), connect(s3,b,i2},

pin(02), connect(s3,c1,i3),
pin(ol), connect{s2,a,3s),

piniy), connect{s2,c1,i2),

pin(i3), connect(sl,a,r),

pin(i2), connect(sl,cl,il),

pin(il), has{cl, conn),

comp __name(cl), has{c,t2),
comp _name(c), has(b, t2}1
comp __name(b), as(a,tl),
comp_ name(a), dummy]).

comp __type(conn),

comp _ typeit2),

comp _ type{tl),

Figure 5.3. Source DR1 DBIF (dri.dat).

aet{X):-signal(X).

node__type(X):-pin(X).

box(X):~comp_ name(X).

connected(CkS I:’{ keep‘(_ru (N,P)),connect(S,C,P), pin(P),has(C,T),

-}
conected(CS) o S:E:mpp) e pelB) han (3 T el b ~(N.P).

keep(has
::g:{x} -";{X} g::{Y; \:-el!.’e(ep(ltu{x(Y P)),co?n:t(:ié(s §J ;’} ,has(C,B),
B),asst _ uriq(n
Rode(X) ""‘x"""ﬁﬁﬁhﬁf)’ e E,’i‘ﬁ“’”x”

box _type(X):-comp__ type(X).
et B v, ::::ﬂ bRl k.

gea? X) useni{hu 8.X)).

node _ dir{X)-var(X) keep(rode _dir{X)}).

nede dl:{)(} :1 }pm Plhuﬁ(Y P), uode{Y),gemym(ndr X),
aysert

bas _ (X,Y):-var(X), urg) comp _ umjx) ,bas(X,Y),comp _type(Y),
has (X, Y): var(X),var(Y),ﬁ(eep(Fu () ,Y))

Figure 5.4. Source Input Rules for DR1 (drlin.rul).

127

A closer look at these source input rules (Figure 5.4) indicate how
DR1 predicates are mapped onto generic predicateé. DRI1 consists of the
following predicates: signal, pin, comp _name, comp _type, connect, and
has. The generic predicates consist of net, node, box, net_type,
node___type, box _type, node__ dir, connected, and has _. Figure 5.5 shows
the mapping between these sets of predicates. For predicates which have a
mappi:ng between the two representations, the translate rule is usually sim-

ple. (See the rule which translates "signal” to "net” in Figure 5.5}

signal - net
pin - node__type
comp__name - box
comp__type - box _type
connect - connected
has - has
? —- node
? — net _type
? - node _dir
DR1 Generic

Figure 5.5. Mapping Between DR1 and Generic Predicates.

In some cases, there is a slight difference in meaning between the
DR1 and generic predicates which map onto one another, and this is
reflected in the rule for translation. Consider the second rule for "connect-
ed” in Figure 5.4. Figure 5.6 illustrates this rule and. shows the relation-
ships and the mapping between DR1 and generic predicates. In the case of
the DR1 predicate “"connect”, a “"signal® is connected to the "pin” of a

"comp_name". However, the generic counterpart, "connected”, connects

128

connected(Box,Net Node) connect(Signal,Comp_Name,Pin)
has_(Box_type Node) has(Comp_Name,Comp_type)
L J
F
has_(Node,Node_Type)
L

Figure 5.6. Mapping Between Generic and DR
Predicates for "Connect".

129

a "pet” (S in Figure 5.4) to the "node” (N) of a "box__type" (B) which is
the type of "box" (C). In this case, there is no "node” in DRI, but rather
a "pin" instead, which corresponds to a generic "node _type". The map-
ping between "node” and pin is established by the translation rule for

*node” (explained below), before the "connected” predicate is processed.

Another type of rule which is somewhat complicéted, is that for the
generic predicates in Figure 5.5 which do not have counterparts in DR1.
Consider the rule for "node”. Figure 4.17 showed that in the generic
model, for every "box _type" there are one or more "nodes”, each of which
has a single "node_type”. In the DR1 model (refer to Figure 5.7), there is
no counterpart for "node”. The closest thing to a node is a "pin”, which
really corresponds to a "node_type”. The first rule for "node”,

*node(X):-var(X),pin(Y) keep(has _(X,Y)}."
says that

if "Y" is a "pin" (i.e., generic "node type") and there is a
kept fact that "has_ (X)Y)", then "X" must be a "node".

This is because there is only one entity in the generic model which "has” a

"node _type” (see Figure 4.17).

The second and third rules for "node” (Figure 5.4) work together in
the event that no kept facts exist for "pil;s". The second rule searches the
Prolog database, locking for all "pin” facts. Since the same pin name could
be used in different component types and there also may be more that one
instance of a given component type, the second rule finds all unique com-
ponent type-pin pairs. As each unique pair is found, the fact is entered
into the Prolog database as "nd(Body,Pin)". The "fail” clause at the end

of the second rule causes backtracking to occur until there are no more

130

RR1

connect

=

connect

Figure 5.7. DRI Data Model.

13

pins. At this point, the third rule begins. For each occurence of
"nd(B,P)", a unique node name is generated. The unique name is asserted
as a node name, it is asserted that the node name has node type "P" (the
pin name from DR1), and it is asserted that component type "B" has node

name "X" (the newly generated unique name}.

The same technique is applied to generate other data required in the
generic model, but not present in DR1: net _type and node_ dir. Once
each of the generic predicates has been translated from DRI, Step 3 is

complete and the file of generic facts is available for further processing.

Step 4 (Figure 4.7) creates any kept facts that would be lost in
translating from the source DBIF to generic facts. In this example, all data
represented in DRI can be represented in terms of generic predicates. So,
there are no rules in "drlin.rul”, the source translate rules, for the predi-
cate "keep”. And, no kept facts are written out into the new kept data

file (dr2K.out).

Step 5 consists of resetting the fact/rule data base. In the system
log of Figure 5.2, this event is marked "Unload ... sec.” Next, Step 8 reads
in the generic facts that were created in Step 3 and also reads in the target

translate rules (dr2out.rul, Figure 5.8).

In Step 7 we generate target DBIF from the generic facts. To do
this, the target predicates are read-in, one at a time, and rules for each
predicate are applied to perform the translation. As ‘was shown in Figure
4.17, all of DR2 has a counterpart in the generic model, except for the no-

tion of a vertex. However, there are some generic predicates which have no

132

signal(X):-net X)
body(X):-box
vertex(X, V1,1 -conected(z X, N),has _ (N, Nw), vertex&z N, V1,1) genvno(X 1)
geavno(Z,I):-maxsval(Z,1),1,1 is J+1,retract(maxsvai{

ulerta.(mulval (2, l))
genvno(z :~asserta{maxsval(Z, 1}(
vertex({W Y Z)-keep{vertex(W XY, 2
vertex{B,Nt, [)C Y).1}- +keep(vertex(3 Nt v.I), node type(Nt)

box(B), bas nimaz):m (Bt,N),bas _(N.Nt),
genlym(coo)(),gensyﬂcoord Y) usert;(vertex(B Nt,[X.Y],1)).

1 -nod .
b:l(t)(()}() no e ty X)

§¥ -:::{R;?:I(X))l?\" (X Z), nc;:z(z}} has _(Z,Y).node _type(Y).

node{X)}-n de(X)
kee baa (X Y)):-node(X) has_{X,Y),nede _ 1'. Y)
keep(has XY -nod X hu XY node
keep(has_ X.Y)):-net(X) Y) pet_ty pe&
keep(haa _ X.Y}):-box t.ype(x has _[(XY).no Y).

Figure 5.8. Target Output Rules for DR2 (dr2out.rul).

counterpart in DR2. This latter data will be stored away in Step 8. As
Figure 4.17 shows, the predicates "box", "box _type", net, and
"node__type" are easily translated into DR2. This is reflected in the sim-
ple target transiate rules for "body”, "bt", "signal”, and "ndt" in Figure
5.8.

The DR2 predicate “has” co;responds to a subset of the generic
"has " instances. The first "has” rule in Figure 5.8 corresponds to the re-
lationship between "bt” and "ndt”. This relationship exists for every oc-
currence of "has_(Box__type,Node),has- (Node,Node_type)” among the
generic facts. The second "has” rule in Figure 5.8 says that for every "box”
which has "box _type" then the corresponding "body" has the correspond-
ing "bt". The remaining generic "has " facts are not translated into the

target (DR2) DBIF.

133

The most complicated target output rules for DR2 are those for
"vertex". There are actually two "vertex"” predicates: one for signals which
has 3 arguments and one for node_types which has 4 arguments. The
first vertex rules processed are those with 4 arguments. These are used to
create vertices for nodes. After the vertices for nodes are processed, then

the vertex rules with 3 arguments are processed for sigmals.

The first vertex rule with 4 arguments in Figure 5.8 checks to see if
the vertices for the node were saved from a previous translation. This as-
sumes that we are performing a reverse translation, which is the case in
this example. The second vertex rule with 4 arguments assumes that there
is no previous information stored about vertices, which would be the case if
this were the original translation from DR1 to DR2. In this case, the ver-
tex for a body-node _type combmatlon is generated. Two symbohc coordi-
nates (one for X and one for Y) are generated and assigned to the node.
There is only one vertex for a node, so by definition the fourth argument is
1. After the target DBIF is created, the symbolic coordinates will need to
be assigned actual values in order to draw the schematic diagram

represented by the DR2 database.

After the 4 argument vertex rules, the 3 argument vertex rules are
processed for signals. The only "vertex” rule in Figure 5.8 used to generate
a vertex for a signal assumes that the signal is connected to a node having
a known vertex. This is illustrated in Figure 5.9. The last predicate in this
rule, "getvno”, is used to generate a series of vertext numbers for signals,

since there are at least two vertices for most legitimate signals.

134

DR2

vertex(Signal,vertex,No)

—

Generic

connected(Box,Net,Node)

|

genvno(Signal,No)

]

vertex(Body,Node_type, Vertex,1)

1

has_(Node,Node_Type)

Figure 5.9. Mapping Between DR2 and Generic
Predicates for "Vertex".

175

After all of the DR2 predicates are processed in Step 7 (Figure 4.7),
the target DBIF is written out (see Figure 5.10). This database is
equivalent to the original source DBIF that was shown in Figure 4.14 (ex-
cept for order), indica.ﬁing that no data was lost in the translation from

DR2 to DR1 and back again.

dbid(exschRT,dr2,'3.0','1/11/84:11:55").
content([signal(s1), signal(s2),

signal({s3}, signal(s4), signal(s5),

signal{s8}), signal(s7),

ndt(il), ndt r{, ndt(i2), ndt(s},

ndt(i3), ndt{q), adt(qn),ndt(y),

ndt(ol},ndt{02),

bt(conn{. be{tl), bt(t2),

body(cl), body(a), body(b}, body(c),
vertex(a,r,i10,90],1}, vertex(a,s,[10,80],1),
vertex(a,q,[20,90 vertex(a,qn,[20,80],1),

vertex(b.i1,[30,40],1), vertex(b,i2,j30,20),1),
vertex(b,y,[40,30,1), vertex(c,i,]50,80(,1),
vertex(c,i2,[50,60},1), vertex(c,y,[60,70]1),
vertexic1,i1,[0,90},1), vertexicl,i2,[0,80_},l),
vertex(cl,i3,{10,20],1), vertex(cl,01,]70,70},1),
vertex(c1,02,(60,30|d), vertex(s4, 50,'80]:1),
veriex(s5,[30,40],1), vertex(s1,{0,90],1),
vertex(s3,(30,20],1), vertex(s5,{50,601,2),
vertex(s2,(0,80],1), vertex(s3,[10,20!,2},
vertex(s6,[60,70{,1), vertex(s7,(40,30{,1},
vertex(s6,(70,701,2), vertex{s7,[60,30(,2),
vertex(sl,(10,90],2), vertex{s2,[10,80(,2),
vertexis4,/20,90|,2), vertex{s5,(20,80|,3),
has(conn,02), has(conn,0l), has(conn,i3),
has(conn,i2), has{conn,il), has(tl,qn),

has(tl,q), has(tl,s), has(tl,r), has(t2,y},
has(t2,i2), has{t2,il), has{cl,conn),

has(a,tl), has{h,t2), has{e,t2),

dummy]).

Figure 5.10 Target DBIF for DR2.

Next any rules for kept data are processed in Step 8 (Figure 4.7).
There are several "keep” rules in Figure 5.8, which indicate that there is
generic data which cannot be expressed in DR2. Any "node” facts are kept

along with 4 types of "has " facts: node-node_type, node-node_dir,

136

net-net__type, and box_ type-node. These facts are stored in "dr2K.out”,
the fourth argument of the "translate” call in the system log (Figure 5.2).

These facts are shown in Figure 5.11.

fromdb%schemexl dr1,’1.0").todb(exschRT,dr2,'3.0'),

content([keep(has__ {t2 node _ 1)), keep(has (t2,00de__3}),
keep(has _ (t2,node _ 6)), keep has _(tl,node_9))
keep(has _(tl,node IOB keeplhas _(t1,node ll))
keep(has_{t1,node 12 keep{has _(conn,node__
keep(has _(conn,node 4 keep(has_ (conn,node _ 5
keep(has__(conn,mode_7 keep(has _ conn node_8

keep(has _(s7.at 7)), keep has _ (s6,at_6)),
keep(has ss.nt_s , keep(has (s4.nt_ 4
keeplhas _(s3,nt_3)), keep has 82,nt__ 2
keep(has_ (sl,nt_1)), keep(has™— node 8, ndr _8)),

keep(has ~(node ~7,ndr 7)), keep(has_ (node_ 6,ndr 6))
keep{has _(node_ 12 ndr__12)), keep(has node _ 1 ,adr_
keep(has _(node _5,ndr 3 , keep(has_ (node_10,ndr_ 10)
keep{has __ node 4 ndr , keep(has__ node 3 ndr 4
keep(has __(node _9,ndr_ 9 , keep(has_(node” 2,ndr
keep(has _ (node_1,ndr_2)), keep has__{node_8,02)),
keepthas_ (node 7 ol)) keep{has _(node O,y))
keep(has_(node _12,qu)), keep(has _(node _11,q)),
keep(has__(node__5, i3 keep(has_ (node _10,s

keep(has _(node_4,i2)),keep(has node_3,i2

keep(has _(node Or) keep{has_(node " 2,i1

keep(has_ (node _ 1,il) keep(node{node "8
keep(node({node 7)) keep(node{node 6
keep(node(node _12)), keep(node(node _ 11)
keep(node{node _5)), keep{node node 10
keep(node{node _4)), keep{node(node _3)),
keep(node(node _9)), keep(node node 2
keep(node node 1)),

dummy]).

Figure 5.11. Kept Data from the Generic to DR2 Translation.

The final step just resets the Prolog database and prints out the to-

tal CPU time taken for the translation.

This example is now complete. Several of the" techniques required
for handling the mis-matches between data representations have been
presented. The remainder of the chapter describes additional test cases

which are more complex and show additional methods for defining transla-

137

tion rules. The knowledge-based prototype steps are the same as used in

this example and shown in Figures 4.6 and 4.7.
6.2 TDL to PCB CAD Data Base

This second example concerns the transport of a TDL database to
the Hughes PCB CAD (HPC) system. The TDL language, described in sec-
tion 4.2.1, is used to describe schematic networks for logic simulation. The
HPC system data base is used to describe schematic networks for PC board
routing. While there is data in common, not all TDL entities are described
in the HPC system and vice versa. Figure 5.12 shows the source TDL file
in native format. The portion of the ﬁie of interest is in the "DEFINE"
section, which describes the network. Figure 5.13 shows the schematic di-
agram corresponding to this network. Using the TDL compiler described
in section 4.2.1, a DB[F' representation of the TDL was produced as shown
in Figure 5.14. A few syntactical changes were made to the native data
such as converting TDL names (e.g., NAND-A) into legitimate Prolog con-
stants ("nand _ _a"). At the expense of additional coding, these changes

could be eliminated. Figure 5.15 shows the TDL data model pictorally.

The HPC native data format is a relational data table quite similar
to DR1. Figure 2.7 shows the list of entities in the HPC data base. Since
this data base has the combined function of representing logicai and physi-
cal classes of data, only a pbrtion of the entities were used in this example.
These correspond to the DR1 data entties, and Figure 5.16 illustrates this
HPC data model.

138

COMPILE;

OPTIONS CATALOG, XREF ;

DIRECTORY RPH:

MODULE JKFF /GATE/1/RPH:

INPUTS CLOCK, J, K, P , PC;

OUTPUTS 0Q, 0QB;

DESCRIPTION THE MODULE IS A MASTER/SLAVE JK FLIP-FLOP
WITH PRESET AND PRECLEAR L S.
"(SEE TDL REF. MANUAL P.71)"

DELAYS NANDEL/3,2,4/, NOT/3,2.4/:

"THE FOLLOWING TWO LINES CREATE TWO DIFFERENT TYPES
BASED ON THE PRIMITIVE ELEMENT NAND.

3-NAND IS THE SAME AS NAND.

2-NAND IS DECLARED TO BE A 2 INPUT NAND. "

USE 3-NAND = NAND(3,1) 1Gsmmam/,
2-NAND = NAND(2,1) /NANDEL/:

DEFINE | |
DEVI(NAND-A) = &NAND{J,QB,CLOCK);
DEV2(NAND-B) = 3-NAND(K,Q, CLOCK);

DEV3{NAND-C) = NAND{PS,NAND-A,NAND-D ;

DEV4(NAND-D) == NAND(PC,NAND-B,NAND-C):

DEVS5(I) = NOT(CLOCK);

DEV6{NAND-E) = 2-NAND{NAND-C,);

DEV7{NAND-F) = 2.NAND(NAND-D I};

G-N ‘(Q = NAND(NAN -E,QB))-

H-NAND(QB) = NAND(NAND-F,Q

DEV8(0Q) = NOT(Q);,
DEV9(OQB /1/) = NOT(QB);

END MODULE;

END COMPLLE;

H
1

Figure 5.12. Source TDL File in Native F ormat.

5.2.1 Data Mapping

the mapping between

The first step in transporting data between two formats is defining

their entities. From the mapping comes the rules

which are used to transport the databases. An example was shown in Fig-

ure 4.17 for the mapping between DR2 and the generic form. In this exam-
ple, mappings are needed between TDL and the generic format (

5.17) and between the generic format and the HPC (DR1) format (

139

‘wesbeig 2138wWBYIS 0L ‘€16 3unbid

Jd

A3071D

800 —

D0 —

6A30

A

/ 9A30

3-GNYN

- §A30

£A30

ZA30

8-ONVN

I A30
\

V-ONVN

Sd

140

dbid("jkfr,td),'1","2/21/84:10:05").
conlent([ducnpt _class(gate),
dir _ nun

pin_ dl

has clo .m) has(’) m)
has ’k'in) has('ps’,in),
has(’ pc Jia), plll dlr(out)

has(’oq’,0ut),

has{Toqb’,

out
desc(’T_HE MODULE IS A MASTER / SLAVE JX F‘LIP IEOP WITH PRESET

delay(nandel’ 3,2,4,"/"),

AND PRECLEAR LINES. ; '),
delay(not’,3,2,4,/"),

dig_ 3_ naad’’=’ .'nand’,3,1,n0ne,'nandel"),
uu 'dig_ 2" " aand"=""sand’ .2,1,200¢,'nandel’),

occ _nam devl"')
has{"dev1’,dig naad’),
connect(’devl ’ "?15" in,'P),

oce nme{ dev2‘
has{"dev2’,'d

conpect(’ dev‘Z'r :n. 3,
oee nameg devs
has{"devs' ‘nand’),
connect('dev3’, 'nud _a'in,’2,
oce nxme{ devd'

hu("dev{’ nnd‘)

nand’),

comnect('dev4’ 'nand _ _b'in,'2'),

occ name(devs’
haa("devs5’ "not’)

oce nmeg devﬁ'
has(Tdevs’ 'd _'_2
connect('dm‘“ 2,
occ_name{’d 7’)

zaad’),

has("dev7' 'di 2 _nand'),
conaect('dev?’ "0, 'Y,
occ _name('g nand)

bas("g nﬁ \ nandg
coenect('s _ _ nand’ '3 Jin,’2"),
occ name{’k_ _ nand’)

has pand nand’
connect{R_ _pand’,’q’ in,'?’)
occ _name{ devs’),

kas{"dev8’, "not "),

occ nllne('deﬂ'
conect('devd’,’oqb’ ont,’1)
conaect(’devd’,'qb’, in.'l'),
pln[oqb’),

3

pe)

pin{’k’),
pin{'clock’),

signal qb

signal nand 0
sigaal("i'},

signal nnd _c';,
signal{'nand
device{’not'),
device('dig naad’),

ext out_ pial’ o—b"]
in_pin zc
iz__pia
in__pin| clock’}

ext

connect(’devl’ 'aand a’,0ut,"1'),
connect('devl’ "}’ in, 7,

conpect 'devl' "tlock’ m, 3'),
connect('dev2'.'nand = b’ out, 1),
connect('dev?’, 'k'ia,1

conaect{ dev2’, 'clock' ia, '3)
connect('devd’, ‘naad_ _ ¢’ out,'1’),
connect('dev3’,'pa’,in ("),
connect('dev3’.'nand _d'in, 3),
connect{'dev4’ 'nand d’ out 17,
connect('devd’,"pc’,in, 1),
conmect('dev4’ 'nand ¢’ ,in,'3'},
conneﬁ;’dw&‘ O out 1),

connect(’devs’ 'clock' in, ‘1')
‘dev8’ ‘nand _ e’ 0ut,'1"),
'dev8’'nand _ c',in,’l'),

connect
comnect

conect('dev?’ 'aaad _ _I",out,’1"),
conpect('dev?’ 'sand _ d’ in,'l),

connect(’s _ _ nand’,’'q’,omt;'1"),
connect('s _ __nand’’nand_ ¢’ £0,'1),

connect(’h _ _ nand’,’qb’ out, ’lr)
connect ‘b __nand','nand__ [in, '1'),

couect ‘dev8’, 'oq out,'l'),
connect ‘dev@’ 'q' in '1')
delay(’deve’,'1’ l '/ 5
bas(’dev0’, 'not’)

pin oq}
pln; ps
pia(’)’),

signal q)

signal('nand _ o',
sighal(’nand ™~ d',
signal{"aand _ _b’),

devnc:f nand’)

device('dig nand’),
ext _out plﬂ‘oqf

ext m _pn

ext _in _pin J')

dummy]T.

Figure 5.14. Source TDL DBIF.

141

‘|1apold @31ed 1aL SIS aunbiy

Re|ap
sey

sy

sey
$50|3

—1dtaasap

-t
Q
Q
c
c
(=
o

aweu™ 1P aweu—220

142

connect

<

connect

Figure 5.16. HPC Data Model.

143

5.18). From the TDL to generic mapping it is clear that some TDL infor-
mation must be kept, since there is no generic counterpart (e.g., "order”).
Likewise, there are generic predicates without TDL counterparts. These

must be generated during the translation (e.g., "node”).
5.2.2 Forward Rules

With an understanding of the data models and mappings, rules can
be written for translation. The rules for transporting TDL into the
translate engine are shown in Figure 5.19. The TDL predicates with gener-
ic counterparts are relatively straight-forward (i.e, "box", "box_type",
"net”, "node _type~, "node _dir", "has”, and "connected”, see Figure 5.17).
One complication to these rules is required to handle TDL external pins,
since there is no name given to the signals which connect to these pins, and
there is no device to which these external pins are assigned in the TDL
model. This is shown pictorally in the schematic -diagram of Figure 5.13.
Consequently, the translation of "box", "box _type”, "net”, "node_ type",
and "node__dir” is more than just a series of one-to-one mappings. The
remainder of this section describes the rules for translating TDL into the

generic form.

Rules 1-9 (Figure 5.19) generate 1'10de names. Rules 2 and 3 create
.nodes for external pins. A unique node name is generated and it is assert-
ed that device "exterior” "has" the node and that the node has the pin,
which becomes the node type. Rule 4 looks for umique occurrences of
each device type. Each pin connected to a signal is associated with its ap-
propriate device. Since devices may be used more than once, the pin name,

device pair must be accounted for once. Since pin names are not always

144

uLiog 3143usg ay) pue 104 ussmiag Builddeyy /(g aunbiy

é adfi | —apop
—soy —sey
adfi j—j8N e |
“seu Paj23uuod
e adfi j—xog
—sey

umwomccou

l

seyY
: fig|ap

sey

ct

canne

L1 The
—3d140s3p

a21A8p aweu—270

sey

JLiauag

awu—1p

101

145

'S}8WLI04 JdH pue J143usq usamiag buiddey ‘gt g 8unbiy

417 9pPON
aweN ~s01)
—dwo)
138UU02

128UU09 e

e . pajoauuond

~adfij~apoN

—sey

pajdauuond | Sey

adfi |—xog

—soy

To0 WIPEDE]D]

x0g

146

- 8 * & 9 0

e e e

*
o -4 > Cn e GO B e

*
.9.

e~
-
-
e

210
it
15

* L]
5]

ey

foa e/

o0
ot

7t 28t/
/*2rey

o

/* 304/

ay

a3t

/* 380/

L] 30 L]
Jo 57+
7°38%
/439%
13404/
}" 11 ‘/

L] ‘2 L]
/43¢

i
A LA

/ net

/ keep{dela

node(X):-var(X},nd2(X).

ad2(X):-ext _in_ pin{Nt),nd3(X, axterior,Nt),

0d2(X):-ext _out__ pin{Nt) ad3(X,exterior,Nt).

node{X):-var{X),device{T),has(B, T ,connect(B,S,D,N),ud4(D,N,R},
asrt _ anig{ndsv(T,R)) fail.

node{X):-var(X),retract{ndsw(T, 5),nd3(X,T,N).

nd3(X, T,Nt):-gensym(node X).at0erta(node(X)),amerta{bhas __(X,Nt)),
ulenghu_('l'.'f()).

0d4(D,N,R}:-nd5(N),concat{D, N ,R).

nd4({D N N}:- \ﬁ-nd&

: 1(N)
0d5(N):-name(N, [H|T}), H> 48 H< 58 T==]].

net{X):-signal(X).

X}-var{X}),ext _ out _pin 8),aet2(S, B, X, D,N),asserta(connect(ext, X,out 3)).

net{X):-var(X),ext _in_pin(S ,0et2(8,B,X,D,N), asserta(connect(ext, X, in,S}).

net2(5,B,X,D,N}:-connect B,S.D,lp,;ensym{net_,X),unru(aigul(x]),
asgerta(connect(B,X,D N)).

e,

box _ type(X):-device(X).
box _type(exterior).-ext _pin{__),\.

/ ::: - :mﬁ ::ﬁ]:::ﬂﬁf;)}:{ﬁﬁ gt —X).asserta(has _(Y,X)).

=¥,

d NY«var(N),pin(N), i NJ),fail.
/ ::d:: :%N;:-vsﬂgi,z:(“lt? B'TS:]:;?:%T(};_R)‘) N‘).. asst _uwmig(n _ t(N)),Mail.
Y| B W

node _ Lype(N retract(z _t(N)),asserta(node_ type(N)).

de__di -pin__di \ i Jail.
nt:d::d;3%5:30::«:{%%%,‘;,'&“‘:3&‘:5(&0 ,:lt_uniq{n_d(x)).hil.
node _dir(X}:-retract(n__d(X)).

}éulnected&B,S.X!l:.-cennect(B.S,D.N ,ai;nl(S}.nd4;D,N.R).node_type(a).

a5(B, T}, device(T),has _ (T X),n0de(X),has (X R).

conuected(ext,S, X):-connect{ext, D, N) signal S).node _type(N),has_(X,N),
node(X),has _(exterior,X).

has _ X,{)r-hu(X,Y \0cc_ name(X),device(Y).

bhas _(N,ND):-var(N. Lvaﬂﬁ%hu(NT.ND),pm__dil{ND),hu_(N,N'l‘).
asst _ uniq{bx(N,ND)) fail.

bas_ (N ND})-var(ND),var(N .connect(B,5,ND,NT),0d4(ND NT,R}),has _(N,R),node{N),
asst __ unmiq({hx(N,ND)) fail.

has _ (N,ND):-retract(hx(N,ND}).

has _ (ext, exterior):-ext _ pin{__}.

/ ext__pin{))g::-ext__in_pin(xg(,;;!.

ext _ pin(Xj.-ext _out_ pin(

asat _ uniq{X):-retr{X},asverta(X}.

keep(dir _ name(X)):-dir _ name(X).
keep{descript _ class(X)):-descript _ class(X).
keep(deac(X))+deec(X).
keep{dela A.B.G)E—dehy(A.B,C).
keep{delay(A,B C,D)):-delay(A,B,C,D).

A,B,C,D E)):-deiay(A,B,C,D,E).
keep(delay(A,B,C.D,E,F.G H))--delay(A.B,C,D,E.F,G,H).
keep(use(A,B.C,D,E,F,G)):“use{A,B,C.D.E F.G).

keep{has(X,Y)}:-has(X,Y),ext _in_ pin{X), in_dir(Y).
keep{has(X,Y}):-has(X,Y),ext “out_ pin({X),pia_dir(Y).
keepi ext_in_pin(X)):-ext_in_pin(g().

keep{ext _out _pin(X)):-ext _cat _ pin(X).

Figure 5.19. TDL Source Input Rules.

147

provided, rule 4 invokes "nd4” to generate a pin name from the pin direc-
tion and order. Rule 5 takes each unique device/pin pair and generates a
unique node name which is linked to the device and to the node type with
a "has__" clause (using rule 6). Figure 5.20, the generic equivalent to the
TDL schematic, shows the unique node names which were assigned the

H

varous nodes in the generic form of “._.the TDL schematic.

For "net”, }_'uie 10 is a one-to-one mapping. In the event of external
pins, rules 11-13 create net names for each external pin. Rule 11 and 12
are identical, except that 11 covers external oufput pins and 12 covers input
pins. In each case, a "connect” clause which references an external pin as
its "signal” name (second argument) is converted to a connect clause which
references a unique (generated) signal name which is connected to the
external pin. A new connect clause is added whick identifies the newly
t,;reated sigﬁal name as being connected to the external pin on device "ext”

with the appropriate direction (rules 11 and 12).

Rule 14 is the simple, basi¢ rule for transforming an "occ_ name”
into a "box" as shown in Figure 5.17. Rule 15 is also needed to create a
"box” name "ext” in the event that there are any external pins in the in-
coming TDL. (The "I" at the end of rule 15 will keep the translate engine
from generating multiple occurrences of "box(ext)” due to more than one

external pin}.

Rules 16 and 17 for “box _type” are very similar to those for “box".
Rule 16 is a one-to-one mapping with "device”. Rule 17 creates a new

"box _type”, "exterior”, if there are any external pins.

148

d A2013
| —apou miouE
——0<07 61 6 19
GSA3d £—18u \
O
e_ - >
= a
=B ©
ono Fo<Z o9 I
s
-UNVYN
e o 81 _ .
=t o o £l Y L] 18
el L 91 A Gl o
bo ¢ 6l L3 / Gz A
: : >
B8A3Q S |3-oNwN pTI18U 971 |

‘weJbeig 213ewayog
701 03 yua|ealnb3 Ju8uag 0z’ aunbiy

wlmuo_;

Sd

149

Rule 19 creates net types, one for each signal. Rule 18 provides a
way of retrieving kept net types in the event that this is a reverse transla-

tion.

The rules for "node__type" look at every pin (rule 20) and every
connect clause (rule 21) for unigue "node _type” names. In this particular
exampie, only the external pins are explicitly declared to be pins in the
DBIF (Figure 5.14). No other pins are identified by name. Instead, the
pins are implicitly declared by their position in the Define statement (Fig-
ure 5.13). For example, the first clause in the Define statement identifies
three input signals, "J*, "QB", and "CLOCK". These are numbered 1-3,
respectively. This numbering is reflected in the source DBIF in the "con-
nect” clauses. The first argument of the connect clause identifies the oc-
currence name, the second argument identifies the signal, the third
identifies the direction of signal flow, and the fourth identifies the input
source. This can either be an explicit pin or implicit pin position in the
define clause (5:1). In order to create pin names (node types) for each input
and output of a device type, the pin direction and order are concatenated
(rules 21 and 7-9). Having identified all unique "node __types", rule 22 adds

these to the data base.

The rules for "node _dir” (rules 23-25) look at every pin_ dir clause
and every connect clause for unique direction values. In general, the only

two directions will be "in” and "out”. Sometimes the direction "inout” will

(51 Refer to Appendix H which describes the TDL syntax,
especially, the "<source-pin match>" vs. the "<input
source> " constructs. .

150

occur for bi-directional signals. These rules work in the same way as the

rules for "node __type”.

The rules for "connected” are illustrated in Figure 5.21. Rule 28
corresponds to pins which are not external. Rule 27 handles exterral pins.
" Note that the execution of these rules must occur after the execution of the

"node” rules which create many of the "has " facts.

Rules 28-32 create the "has " facts, except those which relaté to
"nodes” which were created in rule 6. Rule 28 is apparent from Figure
5.17; the "has” relationship between "occ_names” and "devices" is analo-
gous to the "has_ " relationship between "boxes” and "box _types". Rule
29 transiates the TDL "pin has pin _dir" into the generic "node has
node _dir". Note that since TDL “pins” are not equivalent to generic
"nodes”, the mapping must be performed via generic "node _types” (see
Figure 5.17). Rule 30 also translates the "pin has pin _dir" like rule 29,
but for thbse pins which are not explicitly declared to bave a pin direction.
This is the case when a pin is implied to have a pin direction in a cornect

clause.

The remaining rules in Figure 5.19 deal with data which must be
kept or must be created in translating from TDL into generic form. Rules
36-43 and 46-47 store as kept facts those with predicates "dir _name”,
"descript _class”, "dese”, "delay”, "use”, "ext_in_pin", and
"ext _out_pin". Rules 44-45 store "has " facts which deal with external

pins.

151

TDL

GENERIC

connect(Occ_name,Signat, Pin_dir,Order) connected(Box Net,Node)

[L
nd4(Pin_dir,Order,Node_type)

has(Occ_name,Devlice)

1
has_(Box_type,Node)

has_(Node,Node_type)

connect(E:lct,Signal,Pin_dir,Node_tgpe) ccnnected(Ert,Net,Node)

hes_(No'de,Node_tgpe)
|

has_(Exterior,Node)

Figure 5.21. Rules for “conntected” in Translating
TDL into Generic Form.

152

The rules for translating generic facts into HPC DBIF are the same
as the DR1 target output rules shown in Figure 4.20. These rules are
simpler than those for TDL and this is reflected in the data mapping
shown in Figure 5.17. These rules have already been explained in section
4.3 at the end of Chapter 4. It is noteworthy that these rules were
developed independently, without taking into consideration which system

was used to create the generic facts to begin with.
5.2.3 Reverse Rules

In order to demonstrate that no data is lost using the translate en-
gine, a set of reverse rules is also required. One set of rules converts HPC
(DR1) into generic facts, and the other creates TDL DBIF from a set of
generic facts. The source input rules for DR1 have_alrea.dy been used and
explained in section 5.1. This same set is used in this DR1-TDL case as
well. The target output rules for TDL DBIF are shown in Figure 5.22.-

The remainder of this section discusses these rules in detail.

Rule 1 maps generic "nets” onto TDL "signals™ except for the case
that the net was generated to connect an external pin to the interior of the

module,

Rule 2 creates TDL "devices” from generic "box _types” unless the

box type is the generated type "exterior”.

Rule 3 and 4 handle external input pins. Rule 3 recreates an exter-
‘nal input pin, if one exists in the file of kept facts. Rule 4 will create an
external input pin if no kept fact exists and if the convention of naming

the generic box type "exterior” is followed.

153

/* 1*/ signal(S):-net(S),\+connected(ext,5,Nt}).
/* 2*/ device(D):-box _type(D),D\==exterior.

/*3*/ ext_in_pin(EIP :-var{E[P ,keep(ext_in_l_pin(I_EIP)J)j: ,
[* 4%/ ext_in_pin(EIP)-var)),has_{exterior,N),

/*5*/ ext_out_pin(EOP -var(EOP),keep{ext_out _pin(EOP)).
/*6*] ext_out_pin(EOP):-var(EOP),\+keep{ext _out _pin(EOP}),

/* 7*/ pin(P)-node_type(P),\+ntgen(P, _,_).

/* 8 */ pin_dir(Pd):-node__dir(Pd).
* 9 */ dir _name{X):-keep(dir _name(X)).
;* 10 ‘/ descript (cl)ass(XY:(p ()
/* 11 */ dese(X):-keep(desc(X)).
[*12*/ delay
/* 13 */ delay
/* 14 %/ delay
[*15*/ delay
/* 16 */ use(A,B,C,.DE.F,G)-keep(use{A,B,C,.D.EF,

/* 17 %/ oce_name(X):-box(X),X\=m==ext.
/* 18 */ connect{W XY ,Z):-connected(W X,N),W\am=ext,signal(X),has _(N,Nt),
/* 19 */ connect(D EP.Dr

/* 20 */ has(X,Y):--has_ (exterior,N),has2(N,X,Y).
/* 21 */ has2(N,X,in):-has _(N,in),has__(N,X),node_type(X).
; : gg :; :as(QLN,X,out):-has_(N,out),ha.s (N,X{,no'a'e type(X).

/* 24 */ ntgen(Nt,in,Z):-name{Nt,Nil),append("in",Z],Ntl),name{Z,Z1),integer(Z).
/* 25 */ ntgen(Nt,out,2):-name(Nt,Ntl),append{“out”,Z],Ntl),name(Z,Z1),integer(Z).

EP ,é-]-keep(ext_m pin({E
- has_(N,in),has__ (N,EIP),node _type(EIP).

has_(exterior,N),has _(N,out),has__[N,EOP),node_ type(EOP).

-keep(descript __class(X)).

A,B,C):-keep(delay(A,B,C)).

A,B,C.D):-keep(delay(A,B,C,D)}.

A,B,C,D,.E):--keep(delay(A,B,C,D E)).

A,B,C.D EJF,GHj-keep(delay(A,B,C.D ,‘;J,F G H)).
F,G)).

node typeé’Nt},ntgen(Nt,Y,Z).

, g:-connected(D,S,N),D\==ex’t,connected(ext,S,Fp),
has__(Fp,EP),node__type(EP),has_ (N,Nt),node _ type(INt),
ntgen(Nt,Dr,P).

n,D):-occ _name(On),has_{On,D),device(D).

Figure 5.22. Target Output Rules for TDL.

pins.

Rules 6 and 7 are analogous to rules 3 and 4, but for external output

Rule 7 creates TDL "pins” from generic "node__types” umnless the

pin is a previously generated pin of the form {"in” | "out"} "integer” (e.g.,

154

"out2").

Rule 8 is a one-to-one mapping from generic "node _dirs” to TDL

"pin _ dirs".

Rules 9-18 recreate kept TDL facts if they were previously saved
and stored m the file of kept facts.

Rule 17 creates a TDL "occ _name” from a generic "box” if it isn't

the generated "ext” box.

Rules 18 and 19 translate between the TDL “connect” predicate and
the generic predicate "connected”. These rules are shown pictorally in Fig-
ure 5.23. Rule 18 deals with net-node pairs which are not on the exterior
of the module, and where the node_ type was implied in the originaJ TDL
(i.e., the node _ type was generated from the pin direction and its order).
Rule 19 reduces two generic “connected” clauses which tie an external pin
with an internal pin via a generated net into a single TDL "connect” clause
which references an external pin name instead of a signal name as its

second argument.

Rules 20-23 translate "has__" clauses back into TDL. Rules 20-92
create facts of the form "external pin has pin_dir". Rule 23 translates the
generic "box has box _type” into fhe TDL "occ _name has device”. There
is no rule to create the TDL "pin has pin_dir" for non-external pins.
However this relationship is implied in the "connect” facts where a pin is

explicitly given instead of an implied order.

155

TDL GENERIC

connect(Occ,Signal,Dir,Ord) connected(Box,Net Node)

I
\==(occ,"ext") has_(Node,Node_type)

ntgen{Node_.type,Dir,Orad)

RULE 18

connect{0cc EP,Dir,0rd) connected(B?x,Net,Node)

' connected("ext” Net,FP)
\::(UCC,'EXV)

_ has_(FP,EP)
ntgen{Node_type,Dir,Ord)
' node_tgpe(EIP)

has_(Node,Node_type)
|

RULE 19

Figure 5.23. Connect Rules from the TDL Target Output Rules.

156

Rules 24 and 25 are used by the conrect rules to determine if a node

type was generated by concatenating the pin direction with the order.
5.2.4 Forward Translation Results

Utilizing the forward rules, the translate engine first produced the
set of generic facts shown in Appendix L from tl;e source TDL DBIF l(_Fig-
ure 5.14). There are facts for every generic predicate including those for
"node” and “net _type”, which have no TDL counterpart. Also, nets were
generated for external pins, which do not have signal counterparts in TDL.
Thus the generic model is complete and ready for translation into another
CAE/CAD/CAM data format. The prototype system log is shown in Fig-
ure 5.24. The specific number of facts of each predicate type is shown and

it is reported that there are a total of 219 generic facts .

In. order to be able to return back to TDL at a later time with this
database, several TDL facts were kept aside since they couldn’t Be
translated into the generic form. These are shown in Figure 5.25. Includ-
ed are facts regarding "external pins”, "has" relationships, "use”, "delay”,

"desc”, and "descript _class”.

The second phase of this transport problem is to translate the set of
generic facts into HPC (DR1). Using the forward rules (Figure 4.20) ap-
plied to the set of generic facts yields the target DBIF shown in F igure
5.26. All of the DR1 predicates in Figure 5.16 are represented. All of the
TDL symbolic names in the original TDL database are apparent in this
DR1 representation. Also, names generated in the translation from TDL to

the generic form have also carried through (e.g., "signal(net _8)"). The

157

CProlog version 1.4d.edai
[Restoring file /u/ua/hooper/tranli.env |

yer

|t trannlne('jk.dat',’jk.ont’,’ij.ont',jkl’,drl,‘2.0'.‘4/11/84:13:57').
)k.dat consuited 3148 bytes 0.35 sec.

>> Trasslate: V1.0 <<

dbid(jk#,tdl,1,2/21/84:10:05)

tdlin.rul consulted 5112 bytes 1.0 sec.

Start Up 5.05 sec.
T==node(__1021) 20 facts.
T=net{__1021) 13 facts.
T=box({_ 1021} 12 facts.
T=box__type(__1021) 5 facta.
T=net _type(_ 1021} 18 facts.
T=node _type{ _1021) 11 facts.
Taenode _dir{ 1021) 2 facts.
T=macro _cafl{ _1021) 0 facts.
T=macro _def(_ 1021} 0 facts.
T=connected(_ 1021, 1022, _1023) 43 facts.
T=has_(_ 1021, _1022) ¢0Tacta.
T=end_of _file 0 facts.
219 facts tofal.

Generic 31.15 sec.

Keep 1.72 sec.

Unload 3.72 sec.

drlout.rul consulted 920 bytes 0.33336 sec.
Tamsignal{ _4278) 18 facte.
T==pin{__4276) 11 facts.
T=comp__name{_4278) 12 facts.
Tw=comp _type{ _4276) 5 facts.
T=connect(_ 4276, 4277, 4278) 43 facis,
Taehas(4278, _4277) 12Tacts.
T==end _of _file 0 facts.
101 facts total.

Phase 2 17.03 sec.

Output Keep 8.25 sec.

Total time is 68.33 sec.

ﬁ: halt.

| Prolog execution baited]

Figure 5.24. Prototype System Log for
Forward Translation (TDL to DR1).

system log (Figure 5.24) shows that 101 DR1 facts were created from the
set of generic facts. ‘Utilizing the DR1 formatter presented in section 4.2.1,
a file of records can be -produced which is readily loaded into a native HPC

format {relational DBMS).

The data mapping of Figure 5.17 shows that there are generic facts

which do not translate into DR1. These are appended to the previous set

158

fromdb{jki,tdl, 1?
todb{jkif drt, '2.0°

content([keep(m oul. pm(cq)) keep{ext _ont _ pin(ogh)),
keep{ext _in _pin{clock]), keep{ext _in_ pin(j

keep{ext _in_piatkj), keep(ext —in_pin{pa)),

keop(ext _in — pin(pc)), keep{connect{ext,net _1,0ut,0qb)),

keep{bas{oqb,out)j, keep(has{oq,out}),

keep{has ln))) keep{has{ps,in)),

keep(has ,inL. keep(has{},in)},

keep(has(clock,in)},

keep(use{dig_ _2 _ _nand,= nnd 2,1,n0ne,nandel

keepluse{dig 3 nand,= pard, S,I,none nndel

keepidela; not 3.2.4.7)) keep{delay{undel 3,24 f))

keep{delay(devs 1,1,/),"

keep(desc{'THE MODULE IS A MASTER / SLAVE JK FLIP-FLOP WITH
PRESET AND PRECLEAR LINES. ;

descript _class(gate)),

E" -
|

not,node 20))

_ keep(has _(pot,node 10))
keep{has _ nand, node _18)}, keep(has _ nand, node_ 17
keep{bas _(nand,node_16}), keep(has_(nand,node _
keep(has _(dig_ _2_ _ naad, node_H X
keep(has _(dig_ _2_ _nand,acde_13)),
keep(has_(dig_ —2_ _nand node_l2 \
keep(has _(dig_ __3_ _ naad,node_11}),
keeplhas _(dig_ _3_ _nand,node_10}),
keep(has _|dig_ _ 3 _ _ nand node QB
keep(has _{dig___ 3 _ nud node_8
keep(has _ [exterior,n0de _7 keep(bas _(exterior,node_6
keep{has _(exterior,node__5 keep{has ~{exterior,node _4
keep{has _(exterior,node _3 keep{bas _(exterior,node 2
keep(has _ extenor node 1 keep(has _(qb.at 10)),
keep{bas ~(q,n¢ _11)), keep(hu (nand_ _fat_ 12)),
keep(has _(nand__ _e,nt 13 _k hu i, nt 14}),
keep{has _(nand _ d nb_ “inand__ et
keep(has _(nand_ b ot _ kee nand _3 nl_ls
keep(has ™ (net _T.mt_9)} ee has_ (net 2nt _B
keep(bas _(net “3,88_7)}, keep(bas_(net_4,0t_8
keep(bas " (net _5,08_5)), keep(bas (net 6.t _4
keeplhas _(net _7,nt_3)), keep(has_(net “8at_2
keep(has (net _0,nt_1)), keep(has™ node _1,in
keep(has _ node _ 2 in keep{has _ node 3, in}},
keep{has _(node _4.in keep(has _{node_5.in
keep{has _(node_6 out}) keeplhas {node_7 Joutl),
keep(bas _(node_8,in)) keep(has _(node_ 9,in)),
keep(has __ node_lﬂ mB keeplhas _ (pode 11 out))
keeplhas _(pode__12,in keep{has _(node_ 13,in
keep(bas_(node _14,0ut)), keep(has_ (node_ 15,in
keep(has _inode_16,inj}, keep(has _(pode_ 17, out))
keep(has _(node _ 183.in)}, keep(has _{node _19, m})
keep(has_ (node _20,0ut)), "keep{has_{node 1,pc
keep(has node_z pel), keep(has _(node_ 3 k)],
keep(has ™ (node_4,j)}, keep(has_(node 5 clock)),
keep(has _(node8,0qb)), keep{has _(node_7,0q)),
keep{bas_{node__8,in3) keep(has _{node_9,in2),
keep{bas _ (node__10, |n1;} keep(has _{node _ 11, ontl))
keep{bas _(node _12,in2 keep(has _{node” 13,inl
keep(has _(node_14,0utl)), keeplhas node _15,in2
keep(bas _(node__186, :nlB keep(has _(pode _17 outl}),
keeplbas _{node_18,ind keep{baz _(node _19.inl)},
keepihas _(node_20,0utl)), keep(node_dir{out)),

keep{node _dir{in}},
dummy|).

Figure 5.25. TDL and Generic Kept Facts.

159

dbid(1jkf,drt,'2.0°,'4/11/84:13:57").

content([mgn;l(net 9j, signal(net _8), signal(net_7),
signal{net _6), “signal(net _5), algnai et _4),
signal(net _3), signal(net ~ 2), signal(net 1),

signal(oand _l;, signal(nand _ _ b}, sigpat{nand _ _¢),

signal(nand signal(i}, signal(nand _ _ e},

sigaal(nand ~ _f), signal(q), signaligb),

pin(clock), pin(j), pin(k),

pin m)b pin{pc), pin{oq)

pin{ogb), pin{in3), pin mzﬁ

pin(outl}, pin(ial), comp_nam

¢5Imp _ aam evﬁ) comp _ dam, devs) comp _name(b____nand),

comp_same{g _ _nand),” comp_name(dev7}, com _ name(devs),

comp _ name{dev5 comp name(dev4), comp _ nam ev3),

comp_ name{dev2), comp _name{devl}, comp_ exterlnr)

comp_t ig___3_ __nand), comp_ t dig_ _2__ _nand) comp _ type{naad),
comp _typ not), connect(net. 1,ext,oqb), connect(?et 2 ext oq)

connect{net _3 ext,pc), conpect(net _ 4,ext, ps), comnect(net 5 ext, kl)

connect(net _6 ext.j), connect{net T ext clnck) connect{net _8,ext, clock),

conpect{net _ 9 ext, clockg connect{qb,devd,inl), connect{q,dev8 i),

connect(q,h_ _ nand,in2 conmect{nand ___fh_ _nmand, :nlg connect(qb,h_ _ sand,outl),
connect{gb,g__mand,in2), conmect(na nd” _eg_ _nand,inl

conaect{q.g_ _ nand, outl),
connect(i, dev7,in2), connect{nand _ _ d,dev7, ml} connect{nand _ _ f dev? ontl'1

connect(i,dev6 in2), connect(aand _ _c,devs inl), connect{nand _ _ e, devs,outl

conaect i,devs,ontl} connect.(nand c.dev4,in3), condect(nand b,dev4,in2),
connect{nand _ _ d,dev4,outl), condect(pand d, dev3,in3), connect nazd a,dev3 in2),
connect(naad _ ¢, devs ontl connect(q,dev?, |n2) connect(nand ,deve, onu)
connect(qb,devi 1n2) connect(pand a,devl outl) connect(net 1,deve outl),
connect{net _2,dev8,outl), comnect(net 3, a'eﬂ ial), connect(net _ 4,dev3, inl),

connect(pet _ 5,dev2, ml} connect(net _8,devl inl), connect{net 7 devl ind),

connect(net 3, ‘dev2.ind connect(net _ 9 devs :nl,, has{ext, extenor)

has(devd, not], has{devs,not), has(h _ _nand, nuda

has(g_ __ nand, nndz has(der? dig _ _nand), has(devb dig__ _2__ _ nand}
has devs §,not), a3{dev4,nand), hu-(d?vs nand),

has{dev2,dig _ _3___ nand), has(devl, dl‘

nand), dumpy]).

Figure 5.26. Target HPC (DR1) DBIF.

of TDL kept facts in Figure 5.25. Specifically, there are "has " facts and
"node _dir” facts which do not translate, so they are kept for later reverse

translation.

Once the HPC database is available, additions, changes, or deletions
may occur before the database is tl;ansported back to TDL. In this exam-
ple no changes were made in order to verify that all data was transported

forward and backward without Joss.

160

5.2.5 Reverse Translation Results

Using the same HPC results and the file of kept facts, the translate
engine is invoked again. This time, generic data is created from the HPC
(DR1) database. The logical content of the generic database created this
time is identical to that created during the forward translation. However,
the specific order of the facts is changed due to the ord;zr in which the
rules are processed. The system log for this reverse translation is shown in
Figure 5.27. Again, 219 generic facts were generated which matches the

number of generic facts created during the forward translation.

At the end of "Phase 2", it is reported that there were 100 TDL
facts generated, which again points to the differences between TDL, DRI,
and the generic form. The resulting TDL facts are shown in Figure 5.28.
While the order of the facts is diﬂ'erent than that of Figure 5.14, the source
TDL DBIF and the target TDL DBIF are logically equivalent. This proves
that the translate engine and the knowledge base (rules) work together to
transport the data without loss. In this reverse translation, no kept facts
were generated, but rules could have been added to preserve the original

generic nodes and net _types created during the forward translation.

This completes the second example of using the knowledge-based
prototype transport system. Next, the techniques shown for keeping data
and creating missing data are used on a more complex example involving

layout data.

161

CProlog version 1.4d.edai
[Restoring file /u/ua/hooper/tranll.env |

ey
{?- translate(’jk.out’ ’jkK.out’ ’jktdl. dat’,'jktdIK dat’, jkf,0d],'2.1°,'4/11 /84:15:47").

jk.out consulted 2880 bytes 0.43333 sec.
>>Translate: V9O <<

dbid(jkff,drt,2.0,4/11/84:13:57)
drlin.rul consuited 2184 bytes 0.43333 sec.
jkK.ont consulted 4088 bytes 0.63333 sec.
fromdb{jkf,tdl,1
todb{jk8,drl,2.0
Start Up 8.32 sec.
Taspode{ _ 1803} 20 facts.
=act{_1803) 18 facta.
T==box(_ 1803) 12 facts.
Ta=hox _type(_1803) 5 facts.
T==net _type(_1803) 18 lacts.
T=node_typel_1803) 11 facts.
T=node_dir{ 1803) 2 facts.
T=macro _call{__1893) 0 facts.
T=macro__def{ _1803) 0 facts.
Ta==connected(_ 1393, 1804, 18095) 43 facts.
=has _{__1893, _1804) 00Tacts. .
=end _of _file 0 facts.
219 facts total.
Generic 8.55 sec.
Keep 5.42 sec.
Unload 0.75 sec.
tdlout.rul consulted 2838 bytes 0.55001 sec.
T==signal _5650% 9 facta.
T=device{ _5850) 4 facts,
T=ext _in_ pin{__5650) 5 facts. -
Ta=ext _out _pin[_5850) 2 facta.
T=pin{_5650) 7 facts.
T==pin__dir{ _5650) 2 facts.
T=dir_pame] 5650) 1 facts.
T==descript __class{_5650) 1 facts.
T=desc{ _5650) - | Tacta.
T=delay(__5650, _5851, _5652) O facts.
T=delay{ " 5650, _5851, _ 5652, _5653) 1 facts.
Ta=delay(_ 5650, 5851, 5652, _ 5853, _5654) 2 facts.
T=dela _5650,_5651,__5652._5653._5654,_5655.__5656,_5657)
T=nuse(5650, 5851, 5652, 5653, 5654, 3655, _5658) 2 facta.
T==occ_name(_5650) 11 facta.
T=connect{ 5650, 5851, 5652, _5653) 34 facts.
T=has{ 5650, _5651) 18 facts.
T=end _of _file 0 facts.
100 facts total.
dbid(jkf,1d),2.1,4/11/84:15:47)
Phase 2 14.02 sec,
Cuiput Keep 5.18 sec.

Total time ia 44.23 sec.

ﬁ: halt.

[Prolog execution haited |

0 factas.

Figure 5.27. Prototype System Log for
Reverse Translation (DR1 to TDL).

dbid(jkfl,1d1,'2.1°,'4/11/84:15:47").

content([signal(qb), signal(q), signal{nand _ _ 1),

signal(nand _ _e), signal 3. signal(nand _ _d),

signal(nand _ _¢), signal(nand _ _b), signal{nand _ _a),

device(not), evice(nand), device{dig_ _2_ nand),

device(dig__ _3_ _ nand), ext_in_pinfclock], ext_in_ pin(j),

ext_in_pin(k),ext_in_pin{ps), ext_ia_ pin(pc),

ext _out_pin(oq), ext _out_ pin{ogb), pin{ogb),

pinfoq), pin(pc), pin{ps), : .

pin(k), pin(j), ' pin(clock),

pin_dir(in), pin_dir{out), dir_name(rph),

descript _ class(gate),

desc(THE MODULE IS A MASTER / SLAVE JK FLIP-FLOP WITH PRESET
AND PRECLEAR LINES. ; },

delay({dev9,1,1,/), delay(not,3,2,4,/), delay(nandel,3,2,4,/),

use(dig_ _2_ _ nand,=,nand,2,1,n0ne,nandel),

use(dig__ _ 3 nand,== nand,3,1,none,nandel),

occ_name(devl), occ__name(dev2), occ__name(dev3),
oce__name(dev4}, occ_name(dev5), occ__name{dev6),
occ_name(dev7), occ__name{g _ pand), occ _name{h _ _nand),
occ_name{dev8), occ _name(dev9),

connect(dev2,nand _ _ b,out,1), connect dev2,q,in,2),
connect(dev3,nand _ _c,out,1), connect(dev3,nand _ _a,in,2),
connect{dev3nand _ _d,in,3), connect{devd,nand_ _d,out,l),
connect{dev4,nand__ _b,in,2}, connect dev4,nand _ _ ¢,in,3),
connect(dev5,i,out,1), conuect(devﬁ,nand__'_e.out.,l,
connect(dev6,nand _ _«¢,in,1), connect dev6,1,in,2),
connect(dev7,nand__ _ fout,1), connect dev7,nand _ _ d,in,1),
connect(dev7,i,in 2}, connect(g _ _nand,q,out,1),

connectig _ nand,nand _ _e,in,1}, connect(g_ _nand ,qb,in,2)),
connect(h _ _ nand,gb,out,), connect{h___nan ,nand _ _f,in,1),
connect(h _ _ nand,q,in,2), coanect(dev8,q,in,1),
connect(devd,qb,in,1), connect(dev5,ciock,in,l),
connect(dev2,clock,in,3}, connect{dev1,clock,in,3),
connect(devlj,in,1), connect(dev2k,in,1),
connect{dev3,ps,in,1), connect dev4,pc,in,1),
connect(dev8,oq,out,1}, connect(dev9 oqb,out,1),

has(pe,in), has(ps,ia), has(k,in),

has(j,in), has(clock,in), has(ogb,out),

hkas(oq,out), has(devldig_ _3_ _nand), has(dev2,dig___3
has(dev3,nand), has{dev4,nand), has{dev5,n0t),

has(devé,dig _ 2 nand), has(dev7,dig_ _2_ _nand),

has(g _ _nand;nand], has(h_ _ nand,nand),

bas(dev8,not), has(dev9,not),

dummy]|).

connect(devl,na.nd a,out,l}, connect(devl,gb,in,2),

_nand},

Figure 5.28. Target TDL DBIF Produced by
the Reverse Translation. .

163

5.3 CALMA to CIF

The third and final example involves transporting a CALMA GDS II
Stream Format database into a CalTech Intermediate Format (CIF) data-
base. Both of these database formats were described in section 4.2.1. The
CALMA Stream Format is a widely recognized database format used to
transport VLSI layouts, consisting of polygons and other geometric shapes,
describing the various mask layers which are used to fabricate IC’s. CIF is
used for the same purpose as the CALMA Stream Format, but the entities
are different. Appendices C, D, F, and G. provide examples of this data and
the corresponding DBIF’s which were processed by the compilers and for-

matters described in Chapter 4.
5.3.1 Data Mapping

As in the Vprevious two test cases, the rules for tra.nslz;ltion can be
defined, data models for the CALMA, CIF, and generic formats are neces-
sary along with mappings between the data schemas. Figure 4.2 showed
the BNF-like description of the CALMA GDS II Stream Format. A graphic
equivalent of the Stream Format syntax is provided in the data model di-
agram of Figure 5.29. In general, a CALMA Stream Format (hereafter re-
ferred to as CALMA) file consists of one or more structures which are like
macros. Each structure contains one or more elements of the type: boun-
dary (polygon), path, node, box, text, structure reference, and array refer-
ence. Other CALMA data entities are modifiers which further define these

basic entities. Each entity describes some feature of the layout.

164

One distinguishing feature of CALMA in comparison with some oth-
er IC layout data models is the array reference. This provides a way of
creating a regular lattice with a structure reference (i.e., macro call) at each
lattice node. To illustrate this, we consider the example of a CALMA struc-
ture shown in Figure 5.30. A 2 x 3_a‘.1fi'ay reference using this structure
would create the lattice shown in Figu'fé 5.31. In CALMA, an array refer-
encé is defined by specifying the aumber of rows and columns and by indi-
cating the reference point and X-axis and Y-axis extrema, which contain

the lattice node origins, as shown in the illustration.

Another feature of CALMA which is not universally available in this
type of CAD system is the ability to apply magnification factors to strue-
tures either for a structure reference (sref) or an array reference (aref).
Since a CALMA data base is hierarchical, "sref"s (or "aref"s} may be nested
several levels deep. When a magnification factor is applied for an "sref” or
"aref”, the factor is, by default, relative to the next higher level in the
hierarchy. It is also possible to specify that a magnification factor be abso-
lute. In this case, any previous scaling factors in effect from higher levels

in the hierarchy are disregarded.

The CIF data model has a different set of geometric entities (see
Figure 5.32). As with the CALMA, each CIF data entity describes some
facet of the VLSI layout. As with the CALMA data model, CIF has po-
lygons, boxes, wires (paths), and a symbol {macro) definition capability.
However, CIF does not have an equivalent to the CAI-,MA array reference.
On the other hand, one feature of the CIF model not present in the CAL-

MA model is the "flash” entity. This feature is common with data formats

166

Figure 5.30. CALMA Structure
Definition

167

Rows

| | | Columns
Reference
Point

Figure 5.31. CALMA Array Reference.

168

which drive photo-plotters, having a circular aperature capability. The

CIF flash is merely a circle of given diameter.

Also absent in CIF is the ability to scale a symbol (macro) when it is
referenced. The CIF scale feature is only used during symbol definition to
avoid having to write decimal points g_h‘d/or zeros in the coordinates given
in the symbol definition. For exampie, if the coordinates 43000, 52000,
. 160000, 200000 were needed in the body of a symbol definition, then by ap-
plying a scaling factor of 1/1000, they could be written as 43, 52, 160, and
200. This makes for more compact data bases and saves typing in the data
if done manually. However, if the same basic structure is to be repeated in
different sizeé, then in CIF, two separate structures must be defined with
differently scaled coordinates. This is in contrast with CALMA which al-
lows two instances of the same macro to have different sizes by applying

scaling factors.

In Chapter 3, a set of generic predicates for physical data was
presented (see Figure 3.18). This set ig. a combination of predicates from
several different geometric data models. Alternative generic sets could be
defined, but this set is sufficient to demonstrate the knowledge-based -
methodology for CAE/CAD/CAM data transport. In general, the generic
set should be as all-inclusive as possible. However, there are some flaws in
the data models of existing CAD systems which should be avoided to facili-

tate data transfer between systems.

One anomaly in both the CALMA and CIF data models is the pres-
ence of both "polygons” and "boxes”. The problem with having both of

these entities is that the box is a special case of the polygon. A manifesta-

169

<«
(o >
Con >
a2

sey
8|eas

TOPOW Bred 410 2¢°G 9nBid

78

X31J43A

uobfijod

170

tion of the problem would be a rectangle represented as a polygon instead
of a box. There is no way to determine how to represent the data if it is
transported to another system which also has both polygons and boxes. By
looking at the vertices, the rectangle would meet the ecriteria for a box.
This translation would be flawed since the original data representation
wouldn’t be preserved. The problem is compounded as a source data base
is translated into a generic data base and then into a target data base. At
each step in the transport of the data, there is the possibility of
misrepresenting the data contents. The reverse translation is more discon-
cerning, since it is possible that the same data being represented in terms
of alternative predicates. Consequently, two equivalent data bases wouldn't
compare equal. To avoid this problem, the set of generic predicates
defined in Chapter 3 includes only the polygon entitiy, and not the box en-
tity. In this way two sets of generic data can be compared since there is

only one way of representing each data entity.

The next step in preparing for the transport of a CALMA database
to a CIF database is defining the mapping from CALMA to the generic for-
mat. Figure 5.33 shows this mapping. Many CALMA predicates map
directly onto generic predicates. Some CALMA predicates can be mapped
onto generic predicates, but a mapping other that one-to-one is required.
These predicates map onto generic predicates indicated in “"()". Still

another set of CALMA predicates have no generic counterpart.

Those predicates having a mapping which is not one-to-one, require
a special approach. The CALMA predicates "aref”, "columns”, and "rows”

rhap onto the generic "macro__call", since the generic data model has no

171

CALMA Stream Generic
boundary(B) —- polygon (B
box(B}- - polygon (B
path(P) - wire__(P
layer)&S L{ — layer _(S,L)
xy(S,X,Y - vertex TS,X Y.I)
width(S, W — width_(S, W)
text(T) - text_(T)
structure(S) - macro ~def(S)
string(T,S) — textval_ {.T S}
vert _ pres(T,V - v__just
horz_ pres T H - h_just(TH
font _ nof N) - tfont (TN
db _unit meters(S) - scale (S
“sref(S.Name) — macro_call(S,Name)
magnitude(S,M) - magnif _(S,M)
abs _mag(S - relative__magnif(S}
abs_ angl(S - refative _ orient{S)
datatypeﬁs D - 1
pathtype(S,P - ?
node - ?
nodetype — ?
boxtype - ?
texttype - ?
reflection - orient
angle — otient
aref - maero__call
columm - macro __call
row - macro __call
fontas - ?
generations - ?
propval - ?
db _user _units - ?
Figure 5.33. Mapping from CALMA to Generic Predicates.

array reference. To do the mapping, it is necesssary that CALMA "aref"s
be converted to a set of "sref”s. While the generic data is correct initially,
the potential for error exists since each individual "sref” can be changed in-
depently, but not in the original "aref”. To perform the translation, each

node in the "aref” lattice is determined and an "sref” placed at that origin.

When specifying an "aref”, it is possible to apply X-axis reflection

and/or- an angle of rotation. This presents a further complication in

172

translating "aref”s, since the origin for each individual "sref” must be com-
puted, according to the angular transformation and the row/columa posi-
tion (see Figure 5.34}). Also, the angle of rotation and reflection must be ap-
plied to the coordinates of each "sref”. The relative orientation of each

"sref” with respect to the array lattice remains fixed.

The CALMA predicates "reflection” and "angle” map onto the single
generic predicate, "orient _". The reflection predicate mirrors the data
about the "X" axis. “Angle” rotates the data about the "Z" axis (within the
X-Y plane} with a positive angle in the counterclockwise direction. The
single generic predicate, orient _, has 3 angles of rotation: about the X-
axix, Y-axis, and Z-axis. Th;erefore, the CALMA predicates, "reflection”

and "angle”, map onto the single generic predicate “orient _".

Those CALMA data items which simply do not map onto generic
predicates are stored as "kept facts". These are available for processing

during a return translation.

Having defined a mapping from CALMA to the generic form, the
second half of the translation involves mapping generic predicates onto
CIF. Figure 5.35 shows this mapping. As with the CALMA-Generic map-
ping, there are also mismatches between the generic and CIF formats.
"Two CIF entitites have no generic counterpart: "lash” and "box”. A flash
can be approximated as an octogon {a special case of polygon, see Figure
5.38). A CIF box is just a rectangular polygon. In the reverse translation
from generic data into CIF, all polygons are inspected for the special cases
octogon and rectangle. In these cases, a polygon is translated as either a

flash or a box.

173

I original

3 reflected

Figure 5.34. Angular Rotation and Reflection
Applied 1o aCALMA Array Reference.

174

CIF

polygon(P
box(B,L,W,CX,CY)
ash
wire(W,Wid)
wireW Wid)
def sym(N}
scale(N,A,B
layer(S,L)
transl(P,X,Y,]
vertex(P X,Y]
call _sym(S,Name)
’

?

Generic
polygon _ (P
polygon _{B
polygon _(F

wire
width _[W,Wid)
macto__ def(N)
scale(S)
layer (S,L){ :
vertex__{P XYl :
vertex_ {P X,Y,[
macro__call(S,Name)
magnif _(S,M)

relative _magnif(S)

? relative __orient(S

rtrrfrrttrrttrtretrerty

mirrorx(P,] orient(X,AX,AY A
mirrory(P,] orient{X,AX,AY AZ
rotate(P,A B.1) orient(X,AX,AY AZ
has{N,P) has__(N.P)
? text _(T).
? textval _ (T Str).
? h_ just(T,N).
M v _just{T N).
? tfont _{TF).

Figure 5.35. Mapping from Generic to CIF Predicates.

There are also two sets of generic predicates without CIF counter-
parts. The first stores data about text strings. CIF has no text facility.
The second set of generic predicates without CIF counterparts are “magni-
tude” and "abs _mag". In the case of text predicates, the generic data is
stored as "kept facts”. For generic magnitudes which are applied at the
time of a macro call, the lack of CIF counterpart requries that separate
macros be defined for each reference at a different magnitude. Note that
the CIF scaling feature is not equivalent to the generic magnitude feature.
CIF scaling is merely a way of reducing the numbe; of digits typed for
defining macro coordinates. Scaling is not applied when the macro is

"called”. Consequently, ail references to a macro are at the same size.

175

Figure 5.36. Octagonal Approximation of & CIF Flash.

176

To test out the solution to the CALMA-CIF data transport problem,
the sample data introduced in Chapter 4 was used. Figure 4.3 shows a plot
of this CALMA GDS II data. The data was modified slightly to make the
test case more difficult and to exhibit more of the features of CALMA. For
example, an array reference was added to the original database. Appendix I
shows the actual CALMA data which was used as the source DBIF for this
test case. This data consists of two CALMA structure definitions: "dev"
and "t18", containing several boundaries and some paths. Inside of the
structure "dev” is a structure reference to "t18" and also two array refer-
ences to "t18", one st half-size reduction and 90° rotation. Figure 5.37
shows the resuiting hierarchy which represents this CALMA database.
When translated into CIF, the database mﬁst represent the array refer-
ences as individual structure references with the appropriate orientation
and translation. Figure 5.38 shows the hierarchy as it should be represent-

ed in CIF.
5.3.2 Forward Rules

To accomplish the translation from CALMA to CIF, the first step to
to define rules for transforming the CALMA source data into generic for-
mat. Appendix J contains the Prolog rules for tranforming CA.LMA into
generic form. In order to minimize typing, several of the CALMA entities
are abbreviated {e.g., "bdry” for boundary, "stret” for structure). The first
16 rules are trivial. Rules 1-9 and 13-16 one-to-one mappings as shown in
Figure 5.33 (with the exception of abbreviations use;l). Rule 10, dealing
with vertices, is a one-to-one mapping except for the case where the entity

possessing the vertex is an "aref®. In this case, an x-y coordinate is not

177

Figure 5.37. Hierarchical Representation of CALMA Source Data.

) NG

DO O G

DO\ @G\ G
CACERONE

translated. These coordinates are special cases handled by other rules.
Rules 11 and 12 merely map CALMA text font numbers onto generic text

font names.

Rules 17 and 18 transform CALMA reflection and angle entities onto

- the single generic orientation entity as described previously in section 5.3.1.

Rules 19-25 deal with "sref"s and "_aref"s. Rule 19 maps ali CALMA
"sref”s on‘to generic macro__calls. Rule 20 begins the translation of "aref”s
by determining the number of rows and columns in the array lattice.
"Aref(N,Name)" obtains from the input CALMA DBIF the identifier of an
:;.rray referece (N) and the structure name {Name) which is being placed at
each lattice node. Next, "row _gen” (rules 22 and 23) and "rc_gen" {rules
24 and 25) are invoked to assert a series of facts ("current_rc(AfrayID,

Row, Column"”), one for each row-column node in the lattice.

Rule 21 begins the generation of macro__call's for each lattice node.
One at a time, each row-column node is retrieved from the Prolog data-
base. The structure referenced by the "aref” is determined next by map-
ping "n" to "Name" using "aref(N,Name)". The next several Prolog clauses
through "name(M,NM)" create a new "s,_ref" name for the -current "aref”
node. The "sref” name is the concatentation of the original "aref” identifier
with the row and column number. For example, the first node of

"aref(abc,t18)" would be identified as "abe __1_ 1", followed by

abc_ 1 2" and so on. The remainder of rule 2I generates a new set
of x-y coordinates for the origins of the new "sref”s and transfers any "has”
or "magnitude” attributes from the original "aref” to each new "sref”. This

is accomplished by invoking rules 44-58, defining "xy asst”, "has__asst”

180

and "mag__asst”.

To summarize, for each node in the array lattice, a new "sref” is
created. The "Xy asst” determines the origin of the structure reference.
This process was discussed in the Previous section (5.3.1) and is shown pic-
torally in Figure 5.34. Reflection and/or angular rotation applied to the
"aref” is used in calculating the new "sref” origin. Rules 45-49 implement

this. The same equations were used to produce Figure 5.34.

Any strueture which contains (i.e., “has”) the original "aref” must
now be shown to contain each newly created "sref”. This is accomplished
by rules 50 and 51. Similarly, any magnitude which was applied to the

“aref", must be applied to each new "sref”. Rules 52 and 53 perform this.

Rule 26 translates all CALMA "has” facts onto generic "has " facts,
except those for CALMA "aref"s and nodes, which are not directly translat-

ed into generic facts.

Rules 27-43 keep all CALMA data which cannot be represented in
terms of generic facts. This data will later be used for reverse translation
to fill in the gaps in a generic database and to provide a complete CALMA

database.

Finally, rules 54 and 55 are used to map CALMA absolute angle and
magnitude indicators onto generic relative indicators. Rules 56 and 57 are
used to define a superset (union) called “st__ref”, consisting of all "sref"s

and "aref”s.

181

These rules constitute the lilea.ns by which CALMA data is
transformed into a set of generic facts. The other set of rules necessary to
complete the transport of data from CALMA to CIF is the set which
transforms generic facts into CIF. These are also contained in Appendix J.
This set of rules is ordered alphabetically by clause. The first rule in this
set defines "asst _uniq" which stands for "assert unique”. This is a miscel-
laneous utility which guarantees that a single fact is only contained once

in the Prolog database.

Rule 1 defines a CIF "box” which in turn invokes "box _in" (rule 3)
which in turn invokes "box _chk" (rule 2). In order to illustrate the use of
these rules, consider the CALMA design hierarchy of Figure 5.37. Item
"i 20" will translate into a CIF box. As the diagram shows, there are 3
distinct (indirect) references toi_20 by i _7, i_8, and i__14. The refer-
ences by i_7 and i_8 are at the original scaling. However, the reference
by i 14 has a reduction factor of one-half. So, a new i__ 20 will need to be
generated with all coordinates scaled appropriately since CIF doesn’t have
a scaling feature. The same scaling will apply to all constituents of "t18",

but for purposes of illustrating the rules, we concentrate on i__20.

Starting with box chk (rule 2), generic polygons are inspected to
verify whether the geometric constraints of a box (rectangle) are met.
Specifically, there must be 5 vertices with the first and last being equal. In
addition, the vertices must form an orthogonal polygon and this is
checked for as well. Finally, the vertices of the polyéon are converted to
an alternate CIF box notation using a center coordinate (CX,CY), a length,

a width, and an orientation within the X-Y plane. This orientation is

182

defined as a CIF direction vector (formed by the line intersecting points
(0,0) and (DX,DY)) rather than by an angle. Box__chk(B \L W CX ,CY
DX ,DY) will return all boxes with their identifiers and defining parame-

ters.

In the example, i_'20 meets jhe requirements for a box, so it is one
of those returned by "box_chk". Box _in (rule 3) retrieves each box from
box__chk and then removes its vertices from the Prolog database. Since
all the information represented by the vertices is contained in the CIF box
parameters, there is no need to translate the vertices themselves. The last
clause (rule 3) “retr(vertex (B, _, ,))" deletes all vertices of Box "B"
from the Prolog database. For i_ 20, the vertices are converted to center,
length, width, and orientation. Once "box__in_" retrieves a box and its

parameters, processing returns back to "box" (rule 1).

The remainder of rule 1 handles the case when the box is called by a
higher level macro and a magnification factor is applied.
"Mac _link(N,Ref)" finds all macro definitions which refer to the current
box "N". Then, "box_scale” (rules 4-8) is invoked to generate a scaled ver-
sion of the box being processed. For i__20, the processin.g continues ac-
cording to the hierarchy of Figure 5.37. As indicated earlier, since 1_7
and 1_8 reference i_ 20 (via t__18) without any scaling factor, no new
scaled instance of i_ 20 is required. However, since i_ 14 references i 20
(via t_18) and applies a scale factor, a complete duplicate of t_ 18 must
be generated (including i_20). This is reflected in Figure 5.38, which has
both i__20 (as part of symbol #2) and also box _1 (as part of symbol #1).

Box 1 is a scaled down version of i__20. Rules 4-8 (box _scale) along with

183

rules 26-27 (get _mag), rules 23-25 (g__m), rules 561 {new _call), rules 62-
64 (new _inst), and 53-58 (mhas, mhas2) accomplish this.

The rules for "get mag” and "g_m" determine which magnitude
(scaling) to apply considering whether it is absolute or relative, multiplying
all nested magnitude factors. The rules "new _call” and "new_inst” gen-
erate new scaled instances and alter the original reference (call) to point to
the newly created scaled instance. The rules "mhas” and "mhas2" establish
all of the appropriate "has” links in the new macro definition (the scaled
t_18) and its constituent elements (scaled versions of i_20, i_23, i_24,

i_25, and 1_26').

Continuing on to describe the remainder of the rules (Appendix J)
which transform generic data to CIF data, the next rule not yet described
is rule 7 (call _sym). For every generic "macro__call”", including those gen-
erated due to scalin.g, a CIF "call _sym" is produced. Since symbols in CIF
are identified by integers rather than by name as in the generic form, a
mapping is produced when a generic macro definition is encountered. This
mapping is stored in the Prolog data base and is then included as part of

the kept data by rule 45.

Since CIF symbol calls can have rotations applied as in CALMA, the
generic orientation values are evaluated (rules 8-16) in order to produce the
necessary CIF transformations: mirror about the X or Y axis and/or rotate
in the X-Y plane (refer to Figure 4.8 for the specific syntax). Finally the
origin of the generic macro call is used as the transiation coordinate for the

CIF symbol call.

184

Rule 17 (def _sym) is used to translate a generic macro definition
into a CIF symbol definition. This rule merely maps generic macro names
onto unique CIF symbol numbers and stores the mapping-as a fact into the

Prolbg data base as indicated previously.

' Rules 19-22 create CIF flashes from generic polygons in the manner
that CIF boxes were created. In this case, “fish _chk" (rule 22) determines
whether the generic polygon is an octogon. If so, then a CIF flash is creat-
ed. Also, since a flash may be a part of a generic macro which is referenced
with a scaling factor, we also include rules 20-21 (fl_scale) which is analo-

gous to box _scale discussed in detail previously.

Rule 28 (has) is straight-forward. Any generic "has " data is
mapped onto a CIF "has” clause, except for text. Since CIF doesn’t pro-
vide for text, it is stored with the kept facts (rule 33). Also, in translating
from generic "has_ " data to CIF "has" data, all generic macro names must
be converted to CIF symbol numbers using 'previously generated "map "

facts.

Rules 29-45 store untranslatable generic facts into kept facts. Also
any artificially created CIF symbol calls or CIF symbol definitions (due to
lack of a magnification factor) are stored’ along with the original generic
macro name. For example, in Figure 5.38, CIF symbols #1 and #2.are
equivalent to separate calls to the same generic macro t__ 18 of Figure 5.37.
These relationships are stored as kept facts. The majority of the "keep”
rules store text values and their related characteristics (e.g., font, magni-
tude, orientation, etc.). This will be more evident as the results of transla-

tion are presented further on in section 5.3.4.

185

Rules 46-49 (layer) map generic layer numbers onto CIF layer
names. Layers indicate which physical medium will be used to fabricate
the layout feature. For mxample, paths can be formed in metal or polysili-
con using the NMOS fabrication process. These layer rules merely guaran-
tee a consistent mapping. Note that rule 49 is a default rule used if a gen-
eric _layér number is used which has not been assigned to a CIF layer type
(nd, np, or nm for NMOS diffusion, polysilicon, and metal, respectively).
To create a unique CIF layer name out of an unrecognized generic layer
number, the character "1" is prepended to the generic layer number. This
may cause an error when the native CIF file is produced by a formatter
from the CIF DBIF. At that time, the owner of the data would need to

determine the correct fabrication layer to be used.

Rules 50-51 (layer _chk) are used to add layer information for new
scaled versions of poljgons, boxes, wires, etc. when they are created from a

single generic item.

Rules 52-64 have been discussed previously in conjunction with gen-
erating scaled versions of various generic data items due to lack of a CIF

scaling capability.

Rules 65-66 are used to transfer orientation information when a new

symbol call is created as a result of scaling by rule 60.

Rules 67-71 are used to create CIF polygons from those generic po-

lygons which do not qualify as boxes or flashes.

186

Rules 72-77 translate generic vertices into CIF vertices with the gen-

eric scaling factors applied.

Rules 78-81 create CIF wires from generic wires by applying any
scaling factors in effect and creating new instances where necessary. This is

analogous to the scaling scenario for boxes.

This completes the description of the two sets of rules required for
forward translation from CALMA to CIS. The first set translated from
CALMA to generic data; the second from generic to CIF data. The results
of applying these rules to actual data are presented below in section 5.34,
after first describing the reverse translation rules for CIF to CALMA tran-

sport.
5.3.3 Reverse Rules

In order to produce CALMA data from CIF data, two sets of rules
are used as in the forward translation case. The first set translates CIF to
generic data; the second translates from generic to CALMA. These sets of

rules are included in Appendix K.

The rules translating CIF into generic data are less numerous than
were those for the generic to CIF translation. This is principally because
CIF is a simpler data model than the generic model. Kept data is used to
avoid propagating artificial CIF symbols, created for lack of CIF scaling,
back into the generic data. Instead, these artificial CIF symbols are delet-
ed by the rules for "macro__def". Similarly calls to artificial CIF symbols

are removed by the rules for "macro__call”.

187

CIF polygons, boxes, and flash are mapped back onto generic po-
lygons by the rules for "polygon " in Appendix K. Included in these rules
is the programming necessary to convert from CIF box center, length,
width, and direction vectors into 5 polygon vertices (the first equal to the
last). Also, CIF flashes are converted into generic polygons (octogons) and

the progrgmming to do this is also embedded within the "polygon _ " rules.

Finally, rules are included to compute a three-dimensional transfor-
mation matrix from CIF translation, X-axis and Y-axis mirroring, and X-Y
plan rotation. This transformation matrix is used to complete all generic

vertices.

The remainder of the CIF input rules are the reverse of the CIF out-
put rules. Also, generic data is re-created from any kept data previously

generated.

The second set of rules takes generic data and produces CALMA
output. These rules are also presented in Appendix K and are for the most
part one-to-one mappings. One exception is the set of rules which re-
created CALMA "aref"s from individual generfc "macro__call”s. This is ac-
complished by looking for "macro__call"s which have a row-column desig-
nator appended to a name which was stt;red in the kept data as an "aref”.
These rules were applied to the output data from the forward translation,

and the results are presented in section 5.3.5.

188

5.3.4 Forward Translation Results

With the CALMA to CIF rules defined, the prototype translation
engine was used to generate CIF DBIF from CALMA DBIF. The original
data for this test case was described earlier in section 3.3.1. The actual
source DBIF is contained in Appendix I and the hierarchical nature of the

data was illustrated in Figure 5.37.

The system log of the translate engine is shown in Figure 5.39. The
first phase of the translation involves translating CALMA data into generic
data. This phase is indicated in the log by the lines beginning "T'= ..." in
Figure 5.39 which are between the lines "Start Up .." and "Generic ...".
Note that 201 generic facts were generated. It is important that this
number be compared with the number of generic facts generated during |

the reverse translation.

The 201 generic facts generated are shown in Appendix M. There
are facts for every generic predicate except for "tfont _ " which means that
the input CALMA data specified no text font for any input text string
(which is true). The generic polygons, wires, and layers were just simple
translations of their CALMA counterparts. However, the source CALMA
data contained 2 "aref"s (i_7 and i__14) and 1 "sref” (i__8) as shown in
Figure 5.37. Since the generic data model doesn’t contain an "aref"”
equivalent, the “aref"s were translated into individual generic
"macro__call"s. This is reflected in Figure 5.39. Since 1_14 is a 2x2 "aref",
the "macro__call"s for i_14_ _1_ 1 through i_14_ _2_ 2 are con-
tained in the set of generic data. Similarly, there are 6 individual

"macro__call”s in the set of generic data replacing the single 2x3 "aref"

189

CProlog version 1.4d edai
[Restoring file tranll.enav |

e
?. translate(’gds.dat’ "3cif.ous’,"3cifK.out’ "test. db’ cif,'1.0°,'7 /26/84:21:558").
gds.dat consulted 6324 bytes 1.0167 aec.

>>Translate: V10 <<

dbid{test.db,gds,1.4,7/24/84:14:50)
gdsin.rul consulted T188 bytes 1.3687 sec.
Start Up 7.5 sec. '
T=polygon _{_1638) 14 facts.
T=wire_(_1638) 3 facts.
T=macro_ del(_16328) 2 facts.
T=macro_call(_ 1638, _1639) 11 facts.
T=scale_[_ 1638) I facts.
Ta==layer _{ 1638, _1639) 138 facts.
T=vertex [1838, 1639, _1540,_1641) 105 facts.
T=width_&_1sas._1sao) 3 facta.
—orient _{_ 1638, i639, 1640, 1641} 2 facia.
=has (T 1638, 1630) 29 facta.
=magoif_(_ 1638, _1639) 8 facts.
T=relative_orient$ 1838) 2 facts
T=relative _magnif{__1638) 1 facts.
Ta=text [1638) 1 lacta.
T=textval (_1638, _1630) 1 facta.
T="t_just{_1638,_1839) 1 facts.
T==v__just{_ 1638, 1630} 1 facts.
T=tfont _(_ 1638, _1636) O facts.
T==end _of _file 0 facts.
201 facts total.
Generic 6.15 sec,
Keep (.92 sec.
Unload 2.22 sec.
cifout.rul consulted 12572 bytes 2.8333 zec.
T=polygon(__4942) 3 facts.
=bhox{ 4042, 4043, 4944, 4045, 4046} 16 facts.
=fash{_ 4042 4043,__4044,_ 4045} O facts.
T=wire{ _ 4042, __4043) 3 facts.
T=del _sym{_ 40942) 3 facts.
T==has{__4042, _4043) 33 facts.
T=acale] _4042, 4043, _ 4044} 3 lacta.
T=cail _sym{_ 4942, _4043) 11 facta,
Tomtransl{_ 4042, _ 4943, 4044, _4045) 11 facta.
T=mirrorx(__4042, _4943) 0 facts.
T=mirrory|_ 4042, _4943) 0 facta.
T==rotate 4942, 4043, 4044, 4045} 16 facts.
T=vertex{_ 4042, _ 4943, _ 4044, _4045) 44 facts.
T=layer(_ 4942, _4043) 22 facta.
Ta==end _ol _fle ~ 0 facts.
185 facta total.
Phase 2 18.63 sec.
Cutput Keep 1.13 zec.

Total time is 40.05 sec.
]
?- halt.

[Prolog execution halted |

Figure 5.39. System Log for the Forward Translation
(CALMA to CIF).

190

1_7. Vertices were created for each of these newly generated
"macro_call®s from the x-y coordinates of the “aref” as previously
described in section 5.3.1. The CALMA "angle” fact for i__14 in the source
data (Appendix I) was used to determine the individual vertices for each
"macro__call” generated and the rules for performing this are shown in Ap-
pendix J (rules 44-49). Having used this angle fact for i__14, it is not in-
cluded in the generic set, since no rotation should apply to the individual
"macro__call"s. However, the i__ 14 angle is stored as part of the kept facts

generated during this first part of the forward translation.

The kept facts generated in translating CALMA into generic data
are shown in Figure 5.40. This is the CALMA data which cannot be

represented in terms of generic predicates.

The next part of the forward translation converts generic .data into
CIF data. As shown in the system log {Figure 5.39), this part of transla-
tion genmerated 165 facts. The reduction in the number of facts is a clue
that some generic data couldn’t be represented in CIF., This is not strictly
true since the output DBIF plledicates' could contain more information
{parameters) than the generic predicates. The actual CIF produced is
presented in Appendix N. As Figure 5.35 shows, all CIF data has a generic
*counterpart (although not always one-to-one). The converse is not true;
there are generic predicates which do not map onto CIF counterparts. One
example is the generic predicate "magnif _". As indicated previously in
section 5.3.1, CIF doesn't allow scaling to be applied to a macro when it is
referenced. Consequently, there are complex CIF output rules (get _mag,

g_m,new__call, and new _inst) which create scaled instances of generic

191

fromdb('test. db',gds "1.4").
todb(’test.db’cif,'1.0’).
content keep(angle(l 14,90)),
keep(xy(1__14,46000, §600,3)),
keepixy(i_ 14, 53250 3000,2)),
keep(xy(i_ 14,46000,3000,1
keep(xy(i_7, 35000 3000 3))
keep{xy(i_ ~7,46000,0,2 ;
keep{xyli_7, 35000 0,1
keep columns{i_ 14 2))
keep{columns{i _7,3)),
keep({rows{i _ 14 2))

keep rows
keep(are 14 t18))
keep(aref(i 7 t18))

keep(db user umt(le-os))
keep(generations(3)),

keep fonts{ gdsii:font.tx’, ZB
keep(fonts('gdsii:font.tx’,1
keep(dtatyp(i__26,0)),
keep(dtatyp(i_ 25,0
keep(dtatypli__24,0
keep{dtatyp(i__23,0
keep(dtatypli__20,0
keep(dtatypli__18,0
keep({dtatypli_ 17,0
keep(dtatypli__16,0
keep{dtatyp(i__ ~15,0
keep{dtatyp(i 13,0
keep{dtatyp(i 12,0
keep(dtatyp i 11,0
keep(dtatyp{i__ ~10,0
keep(dtatypli 9 0)),
keep(dtatyp(i__ ~6,0)),

i S Sea
fplit-agtvagi-astvayl-at vttt wt wt wt

keep{dtatyp{i_ 4,0
keep{dtatyp i_3,0

Figure 5.40. Kept Facts Generated in Translating
CALMA into Generic Data.

macro definitions. Referring to Figures 5.37 and 5.38, it can be seen how

the original CALMA array reference to "t _ 18" at magnitude 0.5 gets con-

verted into a call to CIF symbol #1 which is a completely replicated ver-

sion of CIF symbol #2, reduced by half. This data is-shown in the output

CIF DBIF of Appendix N. One additional set of generic data not translat-

ed into CIF are the predicates which define text. These are not seen in the

CIF output DBIF.

192

Appendix R shows the entire set of kept facts generated in this for-
ward translation from CALMA to CIF. In addition to those kept facts
shown previously in Figure 5.40, new generic data which couldn’t be
translated into CIF has been added. As indicated before, all text data has
been "kept”. Also, those predicates such as "magnif ", "ncall”,
"item__inst”, "macro_inst”, and 5__‘-""ma.cro_call" which are the result of not
having a CIF magnification featulfe have been "kept” as well. Note that the

map _ " facts have also been kept to correlate CIF symbol numbers with

generic macro definition names.

This compietes the forward translation of the sample CALMA data
into CIF. To add further validity to the experiment, the resuiting CIF
data was transported back into CALMA.

5.3.5 Reverse Translation Results

The rules needed to perform the .reverse translation (CIF to CAL-
MA) have been described in section 5.3.3.‘ Applying these rules along with
the CIF DBIF, created by the forward translation, the prototype transla-
tion engine yields the system output log shown in Appendix Q. The re;sults
of the first half of the translation were 200 generic facts. Comparing these
with the 201 generic facts from the forward translation (Appendix M),
shows that one "orient _ " fact was lost. Inspection of the “orient " facts
shows that the fact lost was “orient _(i__8,0,0,0)". This is due to the
"vixfin" rule (marked /* V */) in the CIF input rules (Appendix K). This
rule precludes a "zero" rotation (i.e., orient _ (X,0,0,0)) from being written
out into the generic set of data, since zero rotation has no effect on the end

result. Consequently, the two sets of generic data are equivalent.

163

Note also that the generic data produced by the reverse translation
(Appendix O) contains the magnification factors applied to the
"macro__call”s for i__14. In fact, both i__7 and i_ 14 refer to t _18 in the
generic data with i__ 14 having a magnification factor. However, in the CIF
data, mcall 1" through "mcall 4" (the CIF equivalent to i_14) call sym-
bol #1 (the half-scale equivalent to t_18 in CIF). The kept data
preserved the information necessary to know that the CIF data has a

scaled-down version of ¢t __18.

The second part of this reverse translation takes the generic data
and produces the final CALMA output DBIF. The system log (Appendix
Q) shows that 199 CALMA facts were generated. These are shown in Ap-
péndix P. The original CALMA DBIF contained 200 facts. The discrepan-

cy can be explained.

First, the system log shows that 3 CALMA "mag” facts were: gen-
erated from the generic data. The original CALMA source had only two
"mag"” facts. Inspection of the output CALMA data shows that two of the
"mag” facts are the same. This anomaly was introduced during the for-
ward transiation when the single "aref” i 14 was converted to four generic
"macro__call"s. The original magnification factor of 0.5 was attributed to
each of the four "macro__call”s, and it was also stored along with i_ 14 as
well (see Appendix M). This is a minor error in the original input rules for
CALMA data. Specifically, rule 14 (CALMA to CIF rules Appendix J) is
wrong. It says that all CALMA "mag(S,M)" facts shmild be translated into
generic "magnif _(S,M)" facts. This rule should be modified to do so only

if the magnification doesn't apply to an "aref”. The error was left in the

194

rules to show the impact of such an oversight in the resulting output.
Thus far, we have shown that the 199 output CALMA facts are actually

only 198 facts (one was an extra "mag" fact).

The original set of CALMA data had 200 facts, therefore, there are
two facts unacfcbunted for. Again, by inspection, there are two angle facts
which were in the original CALMA data which have been lost during the
translation. Two of the original angle facts (see Appendix I, angle(i_ 8,0.0)
and angle(i_ 14,90.0)) are missing from the output; only angle{i_ 32,0.0)
remains. The i_32 is the identifier for the only CALMA text item. Since
this was never translated into CIF, it was not removed from CIF by the in-
put rule /* V */ (Appendix K) which removes "zero" orientations. Instead,
the zero orientation for i__32 crept back into the generic data since it had
been a part of the kept data. This explains why the zero orientation for
i_8 is missing: it was removed by the CIF input rule 7* V */. Since it is a
zero orientation, it makes little difference. However, the 90° rotation on
i_14 in the source CALMA data would seem to be an error. However, a
closer look at the CALMA output vertices for i__14 show three coordinates
(see Appendix P): xy(i__14,46000,3000,1), xy(i_ 14,41000,3000,2), and
xy(i__14,46000,10250,3), where the second and third arguments to the Xy
predicate are the X and Y coordinates, respectively. These three vertices
form a CALMA "aref”, shown in Figure 5.41. The original source CALMA
vertices for i_14 were (see Appendix I): «xy(i_ 14,46000,3000,1),
xy(i_ 14,53250,3000,2), and xy(i__14,48000,8000,3). Figure 5.41 shows that
the output vertices are merely the result of a 90° rotation of the source
CALMA vertices. Therefore, it is alright that angle(i 14,90.0) is Mmissing

from the output CALMA data, since the rotation was applied to the ver-

195

tices instead. Thus, the source and output CALMA data are equivalent.

This third example using the knowledge-based prototype system
shows the feasibility of the methodology for the "physical” class of data
discussed in Chapter 2. The methodology has proven feasible for two ma-
jor classes of CAE/CAD/CAM data (logical and physical) and for several
different source-target. system combinations. It is clear from these exam-
ples that there are significant differences in the data models and data ele-
ment representations which are used by the various CAE/CAD/CAM sys-
tems. These differences complicate the data base transport problem and

sophisticated translation rules are required to accomplish the objective.

196

(46€000,10250)

 CALMA:

: AREF ¢
: : {46 ’
E UUTPUTE { 000’ 8000)

(41000,3000) (46000,3000)

(532%0,3000)

Figure 541. The Original Item I_14 and

its 90° Rotation.

197

CHAPTER 6
CONCLUSION

The objective of this dissertation was to develop a method for tran-
sporting data bases between distinct types of electronic CAE/CAD/CAM

systems. The need for this research is evident from

1) The numerous CAE/CAD/CAM systems in use today, both com-

mercial and privately-owned;

2) The years spent by representatives of dozens of companies in
trying to agree upon common data interface specifications (notably, IGES

and EDIF); and

3) The lack of an industry-wide solution which has been accepted

and put into production use.

Indeed, work continues at present toward standards for data base tran-

sport.

Toward this stated objective, this dissertation has provided new in-
sight into the problem and has defined a methodology which has proven

feasible. Specifically, the accomplishments are:
1) The definition of categories of CAE/CAD/CAM data,

2) An analysis of the difference in electronic CAE/CAD/CAM data

198

representation, content, and organrization,

3) A presentation of examples of the difficulties in translating

between data base types,
4) The definition of a data transport system architecture.

5) The construction of a prototype translation engine using a

knowledge-based system approach,

6) The development of rules (knowledge-base) which contain the ex-
pertise on how to translate out of the master data schema and five native

CAE/CAD/CAM data base types, and

7) The application of the prototype to three two-way transport test

cases,

The system architecture develop'ed consists of data base compilers, a
data base intermediate format {DBIF), a master data schema defined upon
generic predicates, a generic translation engine, a knowledge base of trans-
lation rules/expertise, and data base formatters. The system is adaptive
and not limited to one class of CAE/CAD/CAM data. In order to intro-
duce a new data base type into the system, new rules must be defined for
the new data base only. Since a master data schema is utilized, the rules
only need specify how to translate data between the master schema and
the new data base. Consequently, rules are not needed for each source-

destination data base pair.

199

One problem which has rendered previous data base transport ap-
proaches limited in their effectivity is the mismatch between the content of
two distinct data base types. Previous translators have discarded any
source data which couldn’t be translated in the destination data represen-
tation. This is problematic when the data must be transported back to the
originating system. The methodology defined herein alidressed this problem
(referred to as the delta problem), and provides a capability which stores

this data for later use in reverse translation.

The system prototype was implemented using Prolog. This was a
very natural application of the logic assertion style of Prolog. All of the
rules Decessary to translate between data base types were expressed as Pro-
log statements. The DBIF selected used the Prolog syntax which made the
translation process straight-forward by utilizing the built-in Prolog infer-

ence engine to derive the destination data base. The test cases have shown

" that the original objective is feasible, and that artificial inteiligence

(knowledge-base/expert systems) is an integral part of the methodology.

In the course of developing the prototype and in performing the ex-
periments with the test cases, several conclusions were drawn which may

aid others in similar work.

1) Prolog is well-suited to this' type of work, because rules can be
developed incrementally with knowledge of how data should be represented

in the various CAE/CAD/CAM systems.

2) C-Prolog (an interpreter) provides very helpful built-in debugging

facilities, including traces of execution and break-points on logical expres-

200

sions encountered during execution.

3) The use of a set of generic predicates facilitates the transport of
data by minimizing the amount of new rules which must be added when
new data base formats are used. The proof of this was that no new rules

were necessary for DR1 when translating into TDL instead of DR2.

4) The use of a neutral syntax such as ti:e data base intermediate
form (DBIF) described in this methodology facilitates data schema transla-

tion and verification.

5) The arithmetic/mathematic built-in functions of C-Prolog are quite

adequate for most geometric transform needed.

One limitation to this work is the size of the data bases. The test
cases were small enough to fit withinp the memory constraints of the C-
Prolog interpreter. A full-scale Prolog compiler would no doubt provide

faster processing and perhaps larger memory capacity.

There are a number of areas for future work in this area. One ma-
jor concern is how to discern whether a data base has changed from the
time it leaves its source system until it is transported back. For example, a
CALMA data base could be translated into CIF, then modified, and then
translated back into CALMA. It would be useful to develop rules which
indicate how to detect the modification. This problem was investigated
briefly in the midst of experimenting with the translation test cases. A set
of change detection rules were written in Prolog, but additional effort was

set aside as a future topic of investigation.

201

Another area for further work is the refinement of the generic predi-
cate sets for the different classes of CAE/CAD/CAM data. Perhaps, a new
set of generic predicates can be developed from the new EDIF standard
once it is released. There is great promise that this standard will be very
comprehensive as regards electronic CAE/CAD/CAM data entities. The
LISP-like syntax of EDIF should be conducive to being expressed in Proloé;.

Another concern is that there must be some criteria to determine
whether a sei of translation rules is complete with respect to all of the data
elements of the native CAE/CAD/CAM data schema. Further work into
this area needs to define desirable characteristics of native
CAE/CAD/CAM data schema which will facilitate specifying translation

rules.

The scope of this research was limited to the field oi‘ electronie
CAE/CAD/CAM. The idea of rule-based data base translators may have
application to other fields which have similar interchange requirements. As
investigators encounter similar data interchange problems, it is hoped that

this work will benefit them in there endeavors.

It is certain that this research proyides further credibility as to the
viability of artificial intelligence as a problem solving tool. Also, the ease of
which CAE/CAD/CAM data is expressed in terms of logic constructs may
broaden the application of artificial intelligence techniques to other

CAE/CAD/CAM problem areas.

202

APPENDIX A
GLOSSARY

ASCII: American Standard Code for Information Interchange. This is a

ANSI:

CAD:

seven bit character code used to represent alphanumeric data.
There are 128 unique characters which are represented with this
code. It is also represented in an eight bit format which leaves the
high-order bit either set or cleared by convention adopted by the

computer manufacturer.

American National Standards Institute. The agency responsible for
setting standards pertaining to computer software (e.g., program-

ming languages)

Computer-Aided Design. Refers to any automation support (i.e.,
tools) for any design activity. Originally, it pertained to all comput-
er systems which were used by engineers. More recently, CAE
(computer-aided engineering) refers to front-end simulation and
analysis tools and logic capture. CAD has been reduced in scope to

cover those tools which are used to assist in the physical mechaniza-

“tion of a design (e.g., layout tools: placement and route, design rule

check, artwork generation, etc.)

CAE: Computer-Aided Engineering. Refers to front-end design tools such

as logic (design} capture, logic simulation, and timing analysis. (Also,

203

see CAD.)

CALMA: A turn-key CAD system. A variety of models are available. A
popular system for VLSI layout. No automatic placement or routing
is available. All layout is performed manuaslly, or by CALMA GPL
programs. The main CAD system is GDS II. The CALMA Stream
Format is an industry-recbg'nized format for layout geometry:

description.

CMOS: Complementary Metal-Oxide Semiconductor. Several technologies
exist for use in building integrated circuits, CMOS being one of
these. Others include nMOS and.bipolar technologies. Each tech-
nology has unique features that make it suitable for different operat-

ing environments and performance requirements.

Computervision (CV): A' turn-key CAD System. This system supports a
wide variety of CAD applications, including mechanical CAD, archi-
tectural design, piping, and electronics. CV is primarily a drafting
tool; however, it does support some design automation tools. The
local processing power restricts CV's usefulness to smaller-scale
designs. New and more powerful CV hardware will become available

in the near future.

Database (DB): A database can be anything from a structured collection of
files which contain the data manipulated by a__DBMS to a loose set
of files which contains data. In CAD circles, the term has been used
to cover the gamut. From a computer science perspective, a data-

base is a collection of data which is organized into a physical struc-

204

ture which supports a logical view or model of the data. Tradition-
ally, there are three recognized logical models for a database: -
hierarchical, network, and relational. In practice, many commercial

CAE/CAD/CAM vendors refer to a conventional file as a database.

Data Base Intermediate Format (DBIF) - This is a Prolog-compatible

representation of a CAE/CAD/CAM database, the form of which
has been developed as part of this dissertation. All native syntax
from the original system is removed and only the data content and

schema is apparent in the DBIF.

Data Base Management System (DBMS) - A system which stores data in a

way which facilitates the interaction with the data by users and pro-

grams according to a pre-specified logical view or data model.

EBCDIC'- Extended Binary Coded Decimal International Code. This is an

eight bit character code used to represent alphanumeric data.
There are 256 unique characters which are represented with this

code.

ECL - Emitter-Coupled Logic. A family of logic such as nMOS and CMOS.

HDL - Hardware Design Language. This is a language which is used to

represent the logical and physical characteristics of a cireuit. The
language can be used to generate a CAE/CAD database and/or it
can be used directly to drive various CAE/CAD tools, such as simu-

lation and routing.

IC - Integrated Circuit. This is a circuit built entirely upon a single chip

205

{usually of silicon).

IGES - Initial Graphics Exchange Specification. This was a cooperative
effort to define an industry standard for the exchange of graphics

CAD data between distinct CAD system types.

IPC - Institute of Printed Circuits. This agency has defined standards for
the description of physical characteristics which define printed cir-

cuit board.

KBS - Knowledge Based System. A system different from conventional,
‘ procedural systems which are driven by logic embedded within the
program. A KBS has a generalized inference engine which can be

used to derive facts based upon the content of a database of

knowledge (knowledge base).

NAND - One of the Boolean functions of two variables. ‘This function re-

turns true if both inputs are false.

NMOS - N-channel Metal Oxide Semiconductor. A family of logic such as
ECL and CMOS.

PCB - Printed Circuit Board. This is a means of building an electronic cir-
cuit whereby the interconnections between components are imple-
mented as copper lines sandwiched between layers of non- conduc-
tive material. The copper lines are formed by etching into a copper

sheet that has been laminated onto the non-conductive material.

PROLOG - A programming language which is used for logic programming

and artificial intelligence applications.

206

PWB - Printed Wiring Board. This is another term for PCB.

VLSI - Very Large Scale Integration. Refers to the highest degree of densi-
ty in electronic circuitry attainable at the present. The density is

evident in the number of logic elements contained on a single chip

and in the small size of interconnect lines.

207

APPENDIX B
ALTERNATIVE PROTOTYPE IMPLEMENTATIONS

In the course of developing this methodology for data base tran-
sport, a system block diagram was developed and analyzed long before Pro-
log was selected as a means for implementation. In fact, since the topie of
research dealt with data, the first implementation approach attempted was
a to use a relational DBMS with appliéation programs built upon it to pro-

vide the necessary functionality.

For example, the first DBIF selected was a relation with domains
"ID", "Predecessor”, "Key", "Field", and "Value". Tile first encoding of
DR2 is shown in Figure B.1. Note that there is already a problem since, it
is not clear what data type should be given to the domain "Value". Each
different value of "Field” will have a different data type associated with the
domain "Value". For example, the data type for "Value” should be "text”
if the value of "Field” is (Body) or (Node); whereas the data type should be
"coordinate” if the value of "Field" is (No;iexy).

Another use of a relational data base for the prototype was a pair of
relations "Key Table” and "Translate Table", used to store translation
rules. The relation "Transiate Table” was used to :;fore logical relation-
ships between data items which were stored in "Key Table". Actual tables

were defined using the INGRES DBMS and rudimentary DR1-DR2 transla-

208

ID Pred Key Field Value ID Pred Key Field Value
1 0 12 Body} A 2 23 15 (Signal) sI
2 1 13 (Node R 25 24 16 {Sigxy 0,9
3 2 14 [Nodexy) gl,g) 26 25 16 (Sigxy 19
4 3 13 (Node) 27 26 15 (Signal) 2
5 4 14 (Nodexy) (18) 28 27 16 (Sigxy 0.8
6 5 13 (Node) Q : 29 28 16 (Sigxy 1.8
7 6 14 (Nodexy) (2,9) 30 29 15 (Signal) 3
8 7 13 (Node) QN ' 31 30 18 Sigxy 1,2
9 8 14 {Nodexy) SZ,S) 32 31 16 (Sigxy 3,2

10 9 12 (Body 33 32 15 (Signal) S4

11 10 13 (Node Il 34 33 16 ({Sigxy 2,9

12 11 14 (Nodexy) {3,4) 35 34 16 (Sigxy 5.8

13 12 13 (Node) 2 36 35 15 Signal) S5

14 13 14 (Nodexy) $,2) 37 36 16 (Sigxy 2,8)

15 14 13 (Node) 38 37 16 (Sigxy 2.5,6)

16 15 14 E:tiiexy) (4,3) 39 38 16 (Sigxy 5,6;

17 18 12 y 40 39 16 (Sigxy 3,4

18 17 13 (Node 41 40 15 Signal) S6

19 18 14 Nodexy) 15 .8) 42 41 18 (Sigxy 6,7

20 19 13 ([Node) 43 42 16 (Sigxy 7.7

21 20 14 (Nodexy) £§ 8) ' 44 43 15 (Signal) S

22 21 13 (Node) 45 44 16 (Sigxy {4,3

23 22 14 (Nodexy) (6,7) 46 45 16 (Sigxy 6,3

Figure B.1. Original DR2 Representation as a Relation.

tion rules were stored. The intent wa.s to store facts such as "data time A

from system 1 translates into data item B from system 2°".

As the research continued into specific data relationships between
systems, it became obvious that translation would not be one-to-one. In
fact, some translations are conditional, and there were no facilities to store
this kind of information. Stonebraker and Keller propose extensions to
conventional DBMS’s which make this more feasible [Ston80). In short, it
became obvious that to solve the CAE/CAD/CAM da.ta transport problem

with a relational DBMS was not a good match.

200

Not only was it difficult to express translation knowledge into a rela-
tion, but the queries to extract out translated data were difficult to formu-
late. Also, there was no built-in mechanism for reasoning (e.g. an inference
engine). This would need to have been built. At that point, the process of
developing the prototype was severly impacted and the approach was

dropped in fa.r(jbr of using Prolog.

210

APPENDIX C
CALMA STREAM FORMAT DATA

211

Dump of file
File ID (10333,14,0)

DUAD: [LRPH.MLCISTREAM. 331 on

3-0CT-1984 14312:21.53

Virtual block nusber 1 (00000001), 512 (0200) bytes
.

1A0C0A00

BOC
A2442EAE
S42E744E
00000000
00000000
00000058
00000000
493534447
00000000
00000000

4F4563A49.

00000000
00000000
A413EQ503
1Co0105A
53002100
41400606
06000008
51000310
47000833
51

0é]
4F 000310
47000000

53000201
1A000A00
SP4ACA952
AF AL3AAT
00000000
00000000
SA2ES44E

04000800

04 Sé
'y
9
11

L

B = BOUNDARY
BL = BGNLID
BS = BGNSTR
DT = DATATYPE
EL = ENDEL

ES = ENDSTR

F = FONTS

8 = GENERATIONS

1C0G0400 02000600
53000000
414D0602

AFTIALLT

AF 443AAY

SAZESA4E
Q0000000
0 00000000
SA3I9EFA7 Ch4B3I789

1A000A00 S30002037.

04000B00 1AC00A00
ASAASFAE S94CATS2
020E0600; D
51004084 4

==

G4, 04006058
ozoeoaoqﬂbnooozon
51004084 0400AB24
47 FEFFAOS?
04004824
(0A00020D

08
o2

£
:

HEADER
LIBNAME
LAYER

PATH

STRNAME
STRING

e A DA

oS

MAGNIFICATION

PRESENTATION

-.-.--.....S---.

...‘-lls..-..l.-

«ssasMARILYN.DB
~BDSIIIFONT.T

GDSII:FONT.TX...
P < | =}
TaFONT.TX.eveeaue
eesees--8D8I12FD
NT.TXeccveaaacana

ssesceTannenee XA

M) U B N S
eevBeveancans!.8
eoncssacnnikess MR
RILYN_DEV.......
Il.(...‘l..'.-lu

$....2.06...3..68
Yeoo3l..8Y....3.0

| T - Y

.........-.,...D

Xeaeea@eOXoneoooB
0000A0S? Y..ov..B8Y....9.0

XevuoeBacenoonone

$eoseD.09...3..68
YeooJ..8Y....9.0
‘..‘-a-..-.-.l..

4-.--.----.’---L

STRANB
TEXT

UNITS
WIDTH

SLERETT

212

End of file block 8 / Allocated 9

000010

000110

000170

0001C0o
000100
0001EQ
0001FO

TEXTTYPE

XY COORD

nr

6,u
BS

s
B
LY, DT, XY

E.,.B
LY,DT, XY

EL,B
LY,DT, XY

EL,B
LY,DT, XY

Dump of file
File ID (10533,14,0)

-DUAC: [RPH.MLCISTREAM. 331 on
3-0CT-1904 14:12:21.53
End of file black 8 / Allocated 9

Virtual block numsber 2 (00000002), 512 (0200) bytes

4EC04084 (O40040BC 4EQO4084 O40080E7

4Co0C04S ACOQCOAS 040040BC
o o 11 04004084 BOE7
4€000310 2C 020€ (0A00020D
4E00409C 0000A0BC 4EO0409C

ac 71 02 7 4COQPO71 020040BC
1 04 11 0AOGAQIC OOOOBOEY
06 38 31S45FaE 594¢i952\414n0512

406947 3100C00;/000001 1

ozoooe.oo 90400, /001104
0312; 3 #83A0000 O3OF0B00/{0000020E

c045o4oo COA14800 40840400, LOA14E00
'060GOR00, D20D0600) CO0P0400)/001 10400
03102C00; FBIA0000 '0I0F0800;{00000

B0AF0300 EOD14DO0 CO4S0400 EOD14DOO
80380100, 404B4C 90300 404B4CO0
/000904ooﬂoo:104gg)aos 100 OOAF4BOO
“030F0B00;(0000020E 04
409C0000 EOD14DO0 03102400 (783A0000
00000000 COA14800 00000000 EOD14DOO0
00080400} 001 10400) 0000 COA14800
03105C00
04170300 AB245100 40840400 AB245100
FCCAO100 3CI44900 04170300 3CI44900
04170300 44804A00 FCLCAO100 44804A00
DE3I3FEFF AS245100 04170300 AS8243100
40840400 _AOS94700 PEIIFEFF AOSP4700

(oooao4ooX 110400)40840400 AB245100
03102C00) 20E BOO 020D0&600)
FCCAO100 A40F4800 F 100 3ICI44900

Q4AL0000 3CIA4900 O4AL50000 440F4B00

020D0600)

0020€ 300 020D0400)

cesea@.N.3.,.8.N
.al .E- -L....E- IL

essssacrnangeask

cesea@.N.3...3.N

«@eoQeebee..g..L 000050

««MARILYN_T18...

seracesecaBid.... 000080

S SAvEavusanenw

sessssennnloccus

eHeoeae@eHo...E.

“reenscsanavnnans 0000CO
seenmssonnlasyes QOQOODO

) . Y S |
lK@es.aaLKD. ..B.
IK.-IIS..I.I...I
..-..s.:.n.....a
-H---.--.H-..-II

-H-.o--a-----.l-

-I.I-..-.-l--\-. mlm
«O8....3.08..... 000140

IS C LTTTRTY £ L JU
adeDeesaedaDea..
-“-...--“...3-
-8Y...3..6Y....9
-9‘-.--3--.-----

drrersasancsnguae

+I4Ca.uH.D.. ..

eH.Dov.oo . 18<. ... GOOLEO

(00080400)(001 10400(FCCAO100 3CI44900 - 14<.cennnn..n.n...
LEBEND

B = BOUNDARY H = HEADER SN = SNAME

BL = BGNLIB L = LIBNAME SR = SREF

BS = BGNSTR LY = LAYER 87 = STRANS

DT = DATATYPE MG = MAGNIFICATION T = TEXT

EL = ENDEL P = PATH “TT = TEXTTYPE

ES = ENDSTR PR = PRESENTATION U = UNITS

F = FONTS S = STRNAME W = WIDTH

B8 = GENERATIONS S8 = STRING XY = XY COORD

213

000010

EL,B
LY,DT, XY

EL, SR, SN
ST, XY
EL,P,LY
DT, W, XY
EL,P,LY
DT, W, XY

EL,P
LY,DT,W
Xy

EL,B
LY,DT,XY

EL,B
LY,DT, XY

EL,B

Dump of file _DUAOC:CRPH.MLCISTREAM.3;1 on
3I-0CT-19684 14:12:21.53
File ID (10533,14,0) End of file block 8 / Allocated 9

Virtual block number 3 (00000003}, T12 (0200} bytes

03102€00 (0000020E 060GOB00
FCCAG100 44804A00 FCCA0100
04A50000 3CAS4BOO O04AS0000
(00030400)00110400 FCCA0100
03102C00) POOC0Z0E 060GOBOO
3C4670200 44F14C00 3C670200
4A60000 7CB24E00 04A60000
oooao4oo“ 110400} 8670200
03102C00} DOOCO20E 0&60GOBO0
344Fo4oo 7CB24E0O 40840400
40840400 #4F14C0Q B44F0400
00080400 (00110400 (30840400
03102C00) 20E 0b
FC3B0O400 440F4800 FC
04170300 _3IC3I44900 04170300
(00080400)¢ 00110400 FC3IB0400
03102C00 Y0C00020E 06000BOO
FCIBO400 44804400 FC3B0400
04170300 3CAS4BOO, 04170300
(c2>oo7o4oo/oo1 10400, (FCIBO40O,
5000200 OBOC1A0C OACOS300
cooo4oo 0B001ACO
oooao4 003BI154 SFAESTAC
o:xozcooﬂooooozos 06
£O450400 CO450400 CO450400
400DO300, 40000300, 400DO300
(oooaowo 110400){C04%0400
03107C00 83000
409C0000 COD40100 409€0000

020D0S00) »evracccncnnagesn
ICAS4PO0 .K.€eeooodoDeens
44804400 .J.Due.cKu€uaune
SCASABOO oKe€ecoanoonarns
020D0600) ccaeensnnasasgen
7CB24E00 .N.!..g<.L.D..g<¢
A4FS4C00 L.Duic.aoNolooan
7CB24E00 .Nel.oQ€eecaccs-
020D0400) ccancnaasanneapas
7CB24E0O0 .N.!...2.N.1..0.
44F14C00 .L.D..0..L.D...9
7CB24E00 Nole.e@iccncnos
BOO O20D0600) - vccascaccnsgen
3IC344900 .I4<..3..H.D. 3.
440F4800 .H.D.....I4<. ...
ICI44900 I4<ccfuvanncces
O20D0A00) e cvvesancsnsnpus
3CASA cKe€oapeudoDas-
44804000 .J.D.....K.Co0uo
SCASABOO. .K.€Covfosnvenass
02051C00) e vveeBrvaucanask

OACOSI00 ,Be.nvcccnsnnnns

49524140 MARILYN _T18.....

020D0800) e e cvcvovocncayas

400D0300 . ..9..E...E...E.
COASOA00 + . Eeuee@eoedeo. @
400DO0I00, » 2@ sEevnsances
020DOS00) + v cavaeavaneslon
£O9C0000 .. 2Bero@evenneed

000010
000020
000030
000050

Q00070

COD40100 CCSS0100 CODA010O CODA0100 ..vsesse-cclens.. QOOLIDO

P4S30200 1C190200 B4330200 CLC3IS50100 ..U...B.....-.8. 0001EQ

S8OF0200 2C400200 SEOF0200 1C190200 secccceXae@y...X 0001FO
LEBEND

B = BOUNDARY H = HEADER SN = SNAME

BL = BGNLIB L = LIBNAME _ SR = SREF

BS = BGNSTR LY = LAYER SY = STRANS

DT = DATATYPE MG = MABNIFICATION T = TEXT

EL = ENDEL P = PATH TT = TEXTTYPE

ES = ENDSTR PR = PRESENTATION U = UNITS

F = FONTS § = STRNAME W = WIDTH

68 = GENERATIONS 88 = STRING Xy = Xy COORD

214

LY,DT, XY

EL,B
LY,DT, XY

EL,B
LY,DT, XY

EL,B
LY,DT,8Y

EL,B
LY,DT, XY

ElL ,ES
BS
s

B
LY,DT, XY

EL,B
LY, BT, XY

Dump of file
File ID (10533,14,0)

~DUAO: LRPH.MLLISTREAM. 311 on

3-0CT-1984 143112:121.53

Virtual block nusber 4 (00000004), S12 (0200) bytes

215

End of file block 8 / Allocated 9

ABD20200 1C190200 ABDZ0200 2C400200 «.@yereeeveccsss GO0000
4CBE0200 341B0100 ACEE0200 1C190200lb...4...L 000010
COD4010Q 409C0000, CODA0100 34180100 ...4ueveee.@a... 000020

(00080400)(001 10400 409c 409C0000 . coBeerPeeunnaa. 000030
03107C00’ 0000020E 020D0400) cceverssnrcnaie. OO0040
409C0000 'COAS0400 4o9coooo 400DO300 ...3...3..E....@ 000030
COD40100 CCCA0300 CODAOL00 COABO400 . .Buvvrneecnna.. 000040
ACBE0200 EACB0200 4CSE0200 CECA0300lee.....L 000070
ABD20200 D4A10200 ASD20200 EACBO200 ..cuvvveseneneas 000080
S80F0200 EACS80200 SBOF0200 D4A10200 +.c...oXeewo...X 000090
B4530200 34BCO300 BASI0200 E4C80200S8....4..5. 0OOOAO
COD40100_400DO300 LOD40100 IA8CO300 ...#eecenweBe... OOOOBO
00080400 203 400D0300, +co@euePecnunaaa 000OCO
03102C ggooo 32:58000 200 02000600} s eeveecancncaysr OO00DO
DOFBO10O 78SD0200 DOFBOI00 F4050200 .cvveceseslxo... OOCOEO
S0E40200 94050200, I0EA0200 785D0200 ..J)%...0u......0 OOOOFO
(00080400}(001 10400 \DOFBO100 94080200 .. venvvennonnss. 000100
03102C00) 0000020€ 200 020 ccessssenanengas 000110
DOFB0100 4CDCO200 DOFBO100 88840200 «uveceecevol.... 000120
30E60200 68840200 I0E60200 &4CDCO200 ...l...0uev....0 000130

/: 00110400} 100 88840200 ...c.ccevccesas. 000140

03105C00), 20€ 02000400} ¢ 4 v vvereseens\e. 000150
CO4350400 COD40100 CO4S0400 409C0000 ...d..E.......E. 000160
FE950300 4CBE0200 FE930300 CODA0100 cccevvevreabac.. 000170
38C10100 B4330200 38C10100 4CHE0200 ...L...B..8....8 000180
D8470300 COD40100 DB470300 B4S530200 ..5...8.......8. 000190
400D0 4oono:oo COD401002...3...9 OOO1A0
(oooeoigg)ooxx 400 409C cee@.Biviiana.. 0O001BO
03102C00 ooooozoe 020D0600) cevvveececcanyas 0001CO
94050200 FOA90200 94050200 S80F0200 ...Xeevvvolon... 0OO1DO

DCO200 0200 #CDCO200 FO490200 ..I....1...X...1 OOO1EQ

00080400001 10400/(94050200 SH80F0200 ...X.oo......... OOOLFO

LEGEND

B = BOUNDARY H = HEADER SN = SNAME
BL = BENLIB L = LIBNAME SR = SREF
DS = BGNSTR LY = LAYER ST = STRANS
DT = DATATYPE M8 = MAGNIFICATION T = TEXT
EL = ENDEL P = PATH TT = TEXTTYPE
ES = ENDSTR PR = PRESENTATION - U = UNITS
F = FONTS S = STRNAME W = WIDTH
68 = SBENERATIONS S8 = STRING XY = XY COORD

EL,B
LY,DT, XY

EL,B
LY,DT, XY

EL,B
LY,DT, XY

EL.B
LY, DT, XY

EL,B
LY, DT, XY

EL,B

Dusp of file _DUAO: {RPH.MLCISTREAM.331 on
3-0CT-1984 14:12:21.53
File ID (10533,14,0) End of file block 8 / Allocated 9

Virtual block number S (00000003), 512 (0200) bytes

0310200/ (0000020E 06000400 020D000) «ceeevreersnaya- 000000 LY,DT,XY
94050200 ABDZ0200 F4050200 10980200 .evere-vnmssssas 000010
6CDCO200 10980200 ACDCO200 ABD20200ss-low.c...l 000020
{0OGOBOA00; D01 10400/ §40S0200 10980200 -.ceve-ressesess 000030 EL,B
03102C00,:0000020E 060Q0800 O20D0S00) < eenosascasasse 000040 LY,DT,XY
1C190200 68350200 1C190200 E0220200 .."...-...6h.... 000050
E4CB0200 E0220200 EACBO200 48360200 «.8he.sces®ea... 000060
(00080400;/001 10400} (1C190200 E0220200 ..".cenecass-se. 000070 EL,B
03102C00 JOO000Z0E 06 O20D0600) + e vvvnvacsasepes OO00B0 LY,DT,XY
1C190200 20BF0200 1€190200 98AB0200 +eucscusess =x-s 000090
E4C80200 98AB0200 EACS0200 20BF0200 .ae scescessssss O000AD
(00080409 {00110400)(1C190200 BABO200 +.'vesvessnsaso. 0000B0 EL,B
03102C006}{0000020E 900 020DOL00) -ueeenee-vseayss- O000CO LY,DT,XY
FCCA0100 04170300 FCCAO100 FCCAO100 cevveveuennsnanrs OOOODO
04170300 _FLCAG100 04170300 04170300 4scucesasensssss OO0OEO
/00080400)00110400) (FCCAP100 FCCAO10Q +oueeesenassesvs O00OFO EL,B
' 03102€00)/0000020E 060GOE00 020D0800} vasaserrmsaany-s 000100 LY,DT,XY
04170300 'FCISBO400 04170300 CHB200300 .. sueeesef--sas 000110
FCIBO400 CB200300 FCIBOA0O FCIBOAOO ..feeufee- «oaf. 000120
/000C0400; 001 10400}{041 70300 CH200300 .. «.eeveesoncss 000130 EL,T
01170600 (0000021 000 02000800, cosceensvsncssns 000140 LY,TT,PR
00004041 051BOCOC) 000001 1A 040GOS00 +eeuesnssssAd.. 000150 ST, MG
{CCC&0300, FO490200 03100C00) 00000000 «-svsceeealors.. 000160 XY
(00080400}(001 10400)(0D3GI 1S4 06190800}T18......... 000170 SG,£L,B.
031 02C00) (0000020 040G0400 020D0400) «seueavsesssay.o 000180 LY,DT,XY
£8200300 38320400 CH200300 SC2A0300 ..%... ...28.. . 000190

8320400 BC2A0 20400 38320400 ..28..28..%...28 0001A0
00070400 (001 10400{ CE200300 sczAgm eefeue eseaceses 0001BO EL,ES
00000000 00000000 0G000000 (0004 wessesesenacecs- OOOICO ENDLIB
00000000 00000000 00000000 00000000 +eveeessmsaassss OOOLEOD
00000000 00000000 OO000000 00000000 w.esesvsaccsenaa GOOIFO

LEGEND

B = BOUNDARY H = HEADER SN = SNAME
BL = BGNLIB L = LIBNAME SR = SREF

BS = BSNSTR LY = LAYER ST = STRANS
DT = DATATYPE M5 = MAGNIFICATION T = TEXT

ElL = ENDEL P = PATH - TT = TEXTTYPE
ES = ENDSTR PR = PRESENTATION U = UNITS

F = FONTS S = STRNAME N = WIDTH

6 = BENERATIONS S8 = STRING Xy = XY COORD

216

APPENDIX D
DBIF REPRESENTING CALMA STREAM FORMAT

217

IS_A (gdsll.library., 1%)

ATTR (1%, libname, MARILYN.DB)

ATTR { 1%, font definition, GDSII:PONT.TX)
ATTR (1%, font definition, GDSII:PONT.TX)
ATTR (1%, font definition, GDSII :PONT.TX)
ATTR (1%, font definition, GDSII:PONT.TX)
ATTR (1%, generations, 3)

ATTR (1%, database units/user units, 0.100000020-02)
ATTR (1%, database units/meter, 0.00000000D+00)
IS_A (gdsIl.structure, 32%)

ATTR (2%, sname, MARILYN_DEV)
IS_A (gdsIl.boundary, 3%)

BAS (2%, 3%)

LAYER (3%, 40)

ATTR (3%, datatype.)

VERTEX (3%, < 5317800, 296000>, 1)
VERTEX (3%, < 5317800, -117800>, 2)
VERTEX (3%, < 4676000, -117800>, 3)
VERTEX (3%, < 4676000, 296000>, 4)
VERTEX (3%, < 5317800, 296000>, 5)

IS_A (gdsIIl.boundary, 4%)

HAS (2%, 4%)

LAYER (4%, 1)

ATTR (4%, datatype,

VERTEX (4%, < 5200000, 296000>, 1)
VERTEX (4%, < 5200000, 0>, 2)
VERTEX (4%, < 4676000, 0>, 3)
VERTEX (4%, < 4676000, 296000>, 4)
VERTEX (4%, < 5200000, 296000>, S)
IS_A (gdslIl.boundary, 5%)

BAS (2%, 5%)

LAYER (5%, 1)

ATTR (5%, datatype.)

VERTEX (5%, < 5317800, 296000>, 1)
VERTEX (5%, < 5317800, -117800>, 2)
VERTEX (5%, < 4676000, -117800>, 3)
VERTEX (5%, < 4676000, 296000>, &)
VERTEX (5%, < S317800, 296000>, 5)
I1S_A (gdsIl.boundary., 6%)

HAS (2%, 6%)

LAYER (6%, 10)

ATTR (6%, datatype,

VERTEX {(6%, < 5040000, 296000>, 1)
VERTEX {(6%, < 5160000, 296000>, 2)
VERTEX (6%, < 5160000, 280000>, 3) .
VERTEX (6%, < S040000, 280000>, 4)
VERTEX (6%, < S040000, 296000>, 5)
IS_A (gdsll.boundary, 7%)

BAS (

2%,

™)

218

LAYER (7%, 10)

ATTR {(7%, datatype, 0)

VERTEX (7%, < 5040000, 40000>,
VERTEX (7%, < 5160000, 40000>,
VERTEX { 7%, < 5160000, 160000>,
VERTEX (- 7%, < 5040000, 160000>,
VERTEX (:7%, < 5040000, 40000>,
IS_A {gdslI.sref, B8%)

HAS (2%; 8%)

ATTR (8%, sname, MARILYN_T18
VERTEX (8%, < 4680000, 0>,
ORIENT (8%, 0.00, 0.00, 0.00)
IS_A (gdsII.path, 9%) _
HAS (2%, 9%)

LAYER { 9%, 10)

ATTR (9%, datatype, 0)

WIDTH (9%, 15000)

VERTEX (9%, < 4760000, 296000>,
VERTEX (9%, < 4760000, 280000>,
IS_A (gdsll.path, 10%)

HAS (2%, l0%)

LAYER (10%, 10)

ATTR (10%, datatype, 0)

WIDTH (1lo%, 15000) -)
VERTEX (10%, <.5100000, 280000>,
VERTEX (10%, < 5100000, 240000>,
VERTEX (10%, < 5000000, 240000>,
VERTEX (108, < 5000000, 80000>,
VERTEX (10%, < 4960000, 80000>,
IS_A (gdslIl.path, 1ll%)

HAS (2%, -11%)

LAYER (11, 10)

ATTR (11%, datatype, 0)

WIDTH (1ll%, 15000)

VERTEX { 1l1ls, < 5100000, 40000>,
VERTEX (1l%, < 5100000, . 0>,
VERTEX { 1lls, < 4760000, 0>,
VERTEX (11%, < 4760000, 400005,

219

1)
2)

4)
5)

1)

1)
2)

1)
2)
3)
4}
5)

1)
2)
3)
4)

IS_A {(gdsll.boundary, 12%)

BAS (2%, 12%)

LAYER (12%, 3)

ATTR (12%, datatype, 0)

VERTEX (128, < 5317800, 296000>,
VERTEX (12%, < 5317800, 2025005,
VERTEX (128, < 4797500, 2025005,
VERTEX (128, < 4797500, 117500>,
VERTEX (128, < 4882500, 117500>,
VERTEX (128, < 4882500, 202500>,
VERTEX (12%, < 5317800, 202500>,
VERTEX { 128, < 5317800, -117800>,
VERTEX (12%, < 4676000, ~-117800>,
VERTEX (128, < 4676000, 296000>,
VERTEX (128, < 5317800, 296000>,
IS_A (gdsIl.boundary, 13%}

BAS (28, 13%)

LAYER (13%, 11)

ATTR (13%, datatype, €)

VERTEX (13%, < 4797500, 117500>,
VERTEX (13%, < 4722500, 117500>,
VERTEX (13%, < 4722500, 42500,
VERTEX (13%, < 4797500, 425005,
VERTEX (13%, < 4797500, 1175005,
1S_A (gdsIl.boundary., 14%)

BAS (2%, 1l4%)

LAYER (14%, 1l1)

ATTR (14%, datatype., }

VERTEX (14%, < 4957500, 117500>,
VERTEX (148, < 4882500, 117500>,
VERTEX (14%, < 4882500, 42500>,
VERTEX (1l4%, < 4957500, 42500>,
VERTEX (14%, < 4957500, 117500>,
IS_A (gdsII.boundary., 15%)

HAS (2%, 15%)

LAYER (15%, 1l)

ATTR (15%, datatype, o)
VERTEX (15%, < 5157500, 157500>,
VERTEX (15%, < 5042500, 1575005,
VERTEX (15%, < 5042500, 42500>,
VERTEX { 15%, < 5157500, . 42500>,
VERTEX (15%, < 5157500, 157500,
IS_A (gdsII.boundary, 16%)

HAS (2%, 16%)

LAYER (16%, 1l1)

ATTR (16%, datatype, 0)

VERTEX (16%, < 5157500, 296000>,
VERTEX (16%, < 5157500, 2825C0>,
VERTEX (16%, < 5042500, 282500>,
VERTEX (16%, < 5042500, 296000>,
VERTEX (16%, < 5157500, 296000>,

220

1)
2)
3)
4)

§)
7
8)
9)
10)
i)

1)
2)
3)
4)
5}

1)
2)
3)
4)
S)

1)
2)
3)
4)
S)

1)
2)
3)
4)
5)

IS_A (gdslI.boundary, 17%)

BAS (2%, 17%)

LAYER (17%, 1l1)

ATTR (17%, datatype, 0)

VERTEX (17%, < 4797500, 277500>,
VERTEX (17%, < 4722500, 277500>,
VERTEX (17%, < 4722500, 202500>,
VERTEX (17%, < 4797500, 202500>,
VERTEX (17%, < 4797500, 277500>,
IS_A (gdsI.boundary, 18%)

BAS (2%, l8%)

LAYER (18%, 11)

ATTR (18%, datatype, 0)

VERTEX (18%, < 4957500, 277500>,
VERTEX (18%, < 4882500, 277500>,
VERTEX (18%, < 4882500, 202500>,
VERTEX (18%, < 4957500, 202500>,
VERTEX (18%, < 4957500, 277500>,
IS_A (odslI.structure, 19%)

ATTR (19%, sname, MARILYN T18
IS_A (gdsIl.boundary, 20%)

BAS (19%, 20%)

LAYER (20%, 10)

ATTR (20%, datatype, 0}

VERTEX { 20%, < 200000, 280000>,
VERTEX (20%, < 280000, 28000C>,
VERTEX (20%, < 280000, 200000>,
VERTEX (20%, ¢ 200000, 200000>,
VERTEX (20%, < 200000, 280000>,
'IS_A (gdslI.boundary, 21%)

HAS (19%, 21%)

LAYER (21%, 10)

ATTR (21%, datatype, 0)

VERTEX (21%, < 40000, 40000>,
VERTEX (21%, < 120000, 40000>,
VERTEX (21%, < 120000, 120000>,
VERTEX (21%, ¢ 87500, 120000>,
VERTEX (21%, < 87500, 152500>,
VERTEX (21%, < 137500, 152500>,
VERTEX (21%, < 137500, 135000>,
VERTEX (21%, < 147500, 135000>,
VERTEX (21%, < 147500, 185000>,
VERTEX (21%, < 137500, 185000>,
VERTEX (21%, < 137500, 167500>,
VERTEX (21%, < 72500, 167500>,
VERTEX (21%, < 72500, 120000>,
VERTEX (21%, < 40000, 120000>,
VERTEX (21%, < 40000, 40000>,

221

1)
2)
3)

5)

1)
2)
3)
4)
5)

1)

3)
4)

6)
1)

9)
10)
11}
12)
13)
14)
15)

IS_A (gdslI.boundary, 22%)
BEAS (19%., 22%)
LAYER (22%, 10)

ATTR (22%, datatype, 0)

VERTEX (22%, < 200000, 40000>,
VERTEX (22%, < 280000, 4000C>,
VERTEX (22%, < 280000, 120000>,
VERTEX (22%, < 247500, 120000>,
VERTEX (22%, < 247500, 167500>,
VERTEX (22%, < 182500, 1675003,
VERTEX (22%, < 182500, 185000>,
VERTEX (22%, < 172500, 185000>,
VERTEX (22%, < 172500, 135000>,
VERTEX (22%, < 182500, 135000>,
VERTEX (22%, < 182500, 152500>,
VERTEX (22%, < 232500, 152500>,
VERTEX (22%, < 232500, 1200002,
VERTEX (22%, < 200000, 120000>,
VERTEX (22%, < 200000, 40000>,

1S_A (gdsII.boundary, 23%)
BAS (19%, 23%)

LAYER (23%, 2)

ATTR (23%, datatype, 0)

VERTEX (23%, < 132500, 130000>,
VERTEX (23%, < 155000, 138000>,
VERTEX (23%, < 155000, 190000>,
VERTEX (23%, < 132500, 190000>,
VERTEX (23%¢, < 132500, 130000>,
IS_A (gdsll.boundary, 24%)

HAS (19%, 24%)

LAYER (24%, 2)

ATTR (24%, datatype. 0)

VERTEX { 24%, < 165000, 130000>,
VERTEX (24%, < 187500, 130000>,
VERTEX (24%, < 187500, 190000>,
VERTEX (24%, < 165000, 190000>,
VERTEX (24%, < 165000, 130000>,

222

1)
2)
3}

5}
6)
7}
8)
2)
10)
11)
12)
13)
14)
15)

1)
2)
3)
4)
5)

1)
2)
3)
4)
3)

IS_A (gdsll.boundary, 25%)

BAS (19%, 25%)

LAYER (25%, 1l0)

ATTR (25%, datatype., 0)
VERTEX (25%, < 40000,
VERTEX (25%, < 120000,
VERTEX (25%, < 120000,
VERTEX (25%, < 167500,
VERTEX (25%, < 167500,
VERTEX (25%, < 152500,
VERTEX (25%, < 152500,
VERTEX { 25%, < 120000,
VERTEX (25%, < 120000,
VERTEX (25%, < 40000,
VERTEX (25%, < 40000,

IS_A (gdslI.boundary, 26%)
BAS (19%, 26%)

LAYER (26%, 4)

ATTR (26%, datatype.
VERTEX (26%, < 135000,
VERTEX (26%, < 150000,
VERTEX (26%, < 150000,
VERTEX (26%, < 135000,
VERTEX (26%, < 135000,
IS_A (gdsIIl.boundary, 27%)
HAS (19%, 27%)

LAYER (278, 4)

ATTR (278, datatype,
VERTEX (27%, < 170000,
VERTEX (27%, < 185000,
VERTEX (27%, < 185000,
VERTEX (27, < 170000,
VERTEX (27%, < 170000,
IS_A (gdsIl.boundary, 28%)
HAS (19%, 28%)

LAYER (28%, 8)

ATTR (28%, datatype.
VERTEX (28%, < 140000,
VERTEX (28%, < 145000,
VERTEX (28%, < 145000,
VERTEX (28%, < 140000,
VERTEX (28%, < 140000,
IS_A (gdsII.boundary, 29%)
BAS (19%, 29%)

LAYER (29%, 8)

ATTR (29%, datatype.,

0}

0)

0)

0)

223

280000>,
280000>,
235000>,
235000>,
115000>,
115000>,
215000>,
2150¢0>,
200000>,
200000>,
280000>,

132500>,
132500>,
1875005,
1875005,
132500>,

132500>,
132500>,
187500>,
187500>,
132500>,

137500>,
137500>,
182500>,
182500>,

137500>,

1)
2)
3)

$)

1)
2)
3)
4)
5y

175000, 137500>, 1)
180000, 137500>, 2)
180000, 182500>, 3)
VERTEX (29%. 175000, 182500>, 4)
VERTEX (29%, < - 175000, 137500>, 3)
IS_A (gdsII.boundary, 30%) '
BAS (19%, 30%)

LAYER (30%, 25)

ATTR (30%,. datatype., 0) :
VERTEX (30%, < 117500, 117500>, 1)
VERTEX (30%, < 202500, 1175005, 2)
VERTEX (30%, < 202500, 202500>, 3)
VERTEX (30%, < 117500, 202500>, 4)
VERTEX (30%, < 117500, 117500>, 3)
IS_A (gdslI.boundary, 31%)

BAS (19%, 31%)

LAYER (31%, 8)

ATTR (31%., datatype., 0)

VERTEX (31%, < 205000, 202500>, 1)
VERTEX (31%, < 277500, 202500>, 2)
VERTEX (31%, ¢ 277500, 277500>, 3)
VERTEX (31%, < 205000, 277500>, 4)
~ VERTEX (318, (< 205000, 202500>, 5)
iS_A {gdsII.text, 32%)

BAS (19%, 32%)

LAYER (32%, 16)

ATTR (32%, vertical presentation, MIDDLE)
ATTR { 32%, horizontal presentation, CENTER)
ATTR (32%, mag, 0.00000)

VERTEX (32%, < 150000, 2475005, 1)
ATTR (32%, string, T18)

ORIENT (32%, 0.00, 0.00, 0.00)

IS_A (gdsII.boundary. 33%)

BAS (19%, 33%)

LAYER (33, 4)

ATTR (33%, datatype, 0}

VERTEX (33%., 207500, 205000>, 1)
VERTEX (33%, 275000, 205000>, 2)
VERTEX (33%, 275000, -275000>, 3)
VERTEX (33%., 207500, 275000>, 4)
VERTEX (33%, 207500, 205000>, 5)

VERTEX (29%,
VERTEX (29%,
VERTEX (29%,

AP AN

AAANAN

224

APPENDIX E
TDL DBIF

dbid(‘jkl’,td1,'Y’,'2/21/84:10:05").

content([descript _ class(gate),

dir__name('rph’), pin_dir(in), has(¢clock’,in),

has('j',in), has(’k’,in}, has(’ps’,in),

bas(’pe’in), pin_dir(out), bas(‘oq’,0ut),

has('oqb’,out),

desc('THE MODULE IS A MASTER { SLAVE JK FLIP-FLOP \
WITH PRESET AND PRECLEAR LINES. ;),

delay('nandel’,3,2,4,'/"), delay('not’,3,2,4,'/"),

use('dig_ _3_ hand’,’==’’nand’,3,1,n0ne, 'nandel’),

use('dig_ _2__ _nand','-’,’nand',2,l,none,'nandel'),

occ__name('devl’), connect('devl’, 'nand - —2'0ut,’]’),

bas('devl’’'dig___3_ _nand’),

connect('devl’,’j’,in,'l"),

connect('devl’,'qb’,in,'2"),

conmect('devl’, 'clock’,in,'3'),) ‘

occ_name('dev2’), connect('dev2’ ’nand —bout,’1’),

has('dev?’,'dig_ _3_ _nand’),

connect(’dev2’,’k’,in,'1’),

connect('dev2’,'q",in,'2"),

connect('dev2’,'clock’,in,'3’),

occ__name('dev3’), connect('dev3’,'nand - thout'1),

has('dev3’,’'nand’), connect(’devS','ps’,in,’l'),

connect('dev3’'nand _ _a',in,’?’),

connect('dev3’,’nand __ -4'in,'3"),

oce__name('dev4’), connect{'dev4’,'nand _ _d ,out,'1’),

has('dev4’,'nand’), connect{'dev4’,’pc’,in,'1’),

connect('dev4’,’'nand _ _ b’,in,'2)),

connect('dev4’,'nand _ _¢',in,'3"),

occ _name('dev5’), connect('devs’,'i’ out,'1’),

has('dev5’,'not’), connect('dev5’, 'clock’,in,’1’),

occ _name('devg’), connect('dev6’ 'nand —.eout'l’),

has(dev6’,'dig_ _2__ nand'),

connect('dev6’,’nand _ _¢’,in,'1’),

conpect('dev6’,"i",in,’2’),

occ _name('dev7’), connect(’dev7’ 'nand —_rout,'1),

has{'dev?’,'dig_ ~2_ _nand"),

connect('dev7’,'nand _ _4"in,'1"),

connect('dev7",'1",in,'2'),

occ _name('g_ _ nand’),

225

connect{’gs__ _ nand’,'q’,0ut,’1’),

has('g__ _nand’,'nand'),

connect(’g_ _aand’’nand __ _e',in,'l’),
connect('g_ _ nand’,’qb’,in,'2’),

occ _name('k_ _nand’),
connect('h _ _ naad’,’'qb',0ut,’l’),

has(’h_ _nand’,’'nand’),
coppnect(’h _ _nand’,'nand _ _f',in,'Y"),
connect(’h_ _naad’,’q’,in,'2'),

occ_name{'dev8’), connect('dev8’,'oq’0ut,'l’),
has{'dev8','not’), connect{'dev8’,’'q’,in,'l’),
 occ__name('dev®’), delay('dev®’,'1’,1,’}"),
connect('dev9’,’ogb’,0ut,'l’),

has('dev9’,'aot’), connect(’dev9’,'qb’,in,'l"),
pin('ogb’), pin{’eq’), pin(’pe’),

pin(’ps’), pin(’k’), pin(j’), pin{’clock’),
signal('qb’), signal(’q’), signai('nand _ _T1'),
signal('nand _ __e'), signal{’i’), signal('nand _ _d'),
signal(’'nand _ _¢’), signal('nand _ _Db'),
signal('nand _ _a’), device{'not’),
device('nand’), device('dig__ _2_ _nand’),
device('dig_ _3_ _nand’), ext_out_pin{"oqb’),
ext_out_pin('oq’), ext_in_pin{'pe’},
ext_in_ pin('ps’), ext_in_ pin(k'),
ext_in_pin('j’), ext_in_pin('clock’), dummyl}).

226

APPENDIX F

DBIF REPRESENTING CIF FILE

IS_A (cif.symbol, 2%)

ATTR (2%, symbol_number, 1)

IS_A (cif.polygon, 3%)

LAYER (3%.,2&)__)
VERTEX (3%, < 5317800,
VERTEX (3%, < 5317800,
VERTEX (3%, < 4676000,
VERTEX (3%, < 4676000,
VERTEX (3%, < $317800,
IS_A (cif.polygon, 4%)
LAYER (4%, XB)

VERTEX (- 4%, < S200000,
VERTEX (4%, < 5200000,
VERTEX (4%, < 4676000,
VERTEX (4%, < 4676000,
VERTEX (4%, < 5200000,
IS A (cif.polygon, 5%)
LAYER (5%, XB)
VERTEX (5%, < 5317800,
VERTEX (5%, < 5317800,
VERTEX (5%, < 4676000,
VERTEX (S8, < 4676000,
VERTEX (S8, < 5317800,
IS_A (cif.polygon, 6%)
LAYER (6%, XC)

VERTEX (6%, < 5040000,
VERTEX (6%, < 5160000,
VERTEX (6%, < 5160000,
VERTEX (6%, < 5040000,
VERTEX (6%, < 5040000,
IS_A (cif.polygon, 7%)
LAYER (7%, XC)

VERTEX 7%, < 5040000,
VERTEX 7%, < 5160000,
VERTEX 7%, < 5160000,
VERTEX 7%, < 5040000,
VERTEX 7%, < 5040000,
IS_A {cif.symbol_call,

L B X W

227

296000>,

~1178C0>,
-117800>,

296000>,
296000>,

296000>,
0>,
0>,
2960005,
296000>,

256000>,

-117800>,
-117800>,

296000>,
296000>,

296000>,
296000>,
280000>,
280000>,
296000>,

40000>,
40000>,
160000>,
160000>,
40000>,

8%)

ATTR (8%, symbol_number, 2)

VERTEX (8%, < 4680000,

ORIENT (
IS_A (cif.wire,

LAYER (9%, XC)

WIDTE (9%, 15000)
VERTEX (9%, < 4760000,
VERTEX (9%, < 4760000,
IS_A (cif.wire, 10%)
LAYER (10%, XC)

WIDTE (10%, 15000)
VERTEX (10%, 5100000,
VERTEX (10%, 5100000,
VERTEX (10%, $000000,
VERTEX (1l0%, 5000000,
VERTEX (10%., 4960000,
IS_A {(cif.wire, 1l%)
LAYER (1lls, XC)

WIDTH (11w, 15000)
VERTEX (1lls, < 5100000,
VERTEX { 1ll1ls, < 5100000,
VERTEX (1l%, < 4760000,
VERTEX (1ll%, < 4760000,
IS_A (cif.polygon, 12%)
LAYER (12%, XD)

VERTEX 12%, 5317800,
VERTEX 12%, 5317800,
VERTEX 12%., 4797500,
VERTEX 12%, 4797500,
VERTEX 12%, 4882500,
VERTEX 12%, 4882500,
VERTEX 12%, 5317800,
VERTEX 12%,
VERTEX 12%,
VERTEX 12%,
VERTEX (12%,

9%)

AANAAN

4676000,
4676000,
5317800,

P S g~ — i y— —~ o~ -~
AAAAAANAANAANANANAA

228

0>,

8%, 0.00, 0.00, 0.00)

296000>,
280000>,

280000>,
240000>,
240000>,
80000>,
80000>,

400005,
0>,
0>,

40000>,

296000>,
202500>,
202500>,
117500>,
117500>,
202500>,
202500>,

5317800, -117800>,

296000>,
296000>,

1)

1)
2)

1)

3)
4)
S

10)
11)

IS_A (cif.polygon, 13%)
LAYER (13%, XB)

VERTEX (13%, < 4797500,
VERTEX (138, < 4722500,
VERTEX (13%, ¢ 4722500,
VERTEX (138, < 4797500,
VERTEX (13%, < 4797500,
IS_A (cif.polygon, l4%)
LAYER (148, XB)

VERTEX (14%, < 4957500,
VERTEX (148, < 4882500,
VERTEX (14%, < 4882500,
VERTEX (14%, < 4857500,
IS A (cif.polygon, 15%)
LAYER (15%, XE)

VERTEX (15%, < 5157500,
VERTEX (15%, < 5042500,
VERTEX (15%, < 5042500,
VERTEX (15%, < 5157500,
VERTEX (15%, < 5157500,
IS_A (cif.polygon, i16%)
LAYER (I6%, XE)

VERTEX (16%, < 5157500,
VERTEX (16%, < 5157500,
VERTEX (16%, < 5042500,
VERTEX (16%, < 5042500,
VERTEX (16%, < 5157500,
IS_A (cif.polygon, 17%)
LAYER (17%, XE)

VERTEX (17%, < 4797500,
VERTEX (17%, < 4722500,
VERTEX (17%, < 4722500,
VERTEX (17%, < 4797500,
VERTEX (17%, < 4797500,
IS_A (cif.polygon, 18%)
LAYER (188, XE)

VERTEX (18%, 4957500,
VERTEX (1l8%, 4882500,
VERTEX (18%, 4882500,
VERTEX (18%, 4857500,
VERTEX (18%, 4957500,

AAANAAN

229

117500>,
117500>,
42500>,
42500>,

117500>,

117500>,
117500>,
42500)>,

42500>,
117500>,

157500>,
157500>,
42500>,
42500>,
157500>,

296000,

282500>,
282500>,

- 296000>,

296000>,

277500>,
277500>,
202500>,
202500>,
277500>,

2775005,
277500>,
2025005,
202500>,
277500>,

IS_A (cif.symbol, 19%)

ATTR (19%, symbol_number, 2)

IS_A (cif.polygon, 20%)
LAYER (20%, XC) _
VERTEX (20%, < 200000,
VERTEX (20%, < 280000,

VERTEX (20%, < 280000,

VERTEX (20%, < 200000,
VERTEX (20%, < 200000,
IS_A (cif.polygon, 21%)
LAYER (21%, XC)

VERTEX (21%, < 40000,
VERTEX (21%, < 120000,
VERTEX (21%s, < 120000,
VERTEX (218, < 87500,
VERTEX (21%, < 87500,
VERTEX (21%, < 137500,
VERTEX (21%, < 137500,
VERTEX (21%, < 147500,
VERTEX (218, < 147500,
VERTEX (218, < 137500,
VERTEX (21%, < 137500,
VERTEX (21%, < 72500,
VERTEX (21%, < 72500,
VERTEX (21%, < 40000,
VERTEX (21%, < 40000,

IS_A (cif.polygon, 22%)
LAYER (22%, XC)

VERTEX (22%, < 200000,
VERTEX { 22%, < 280000,
VERTEX (22%, < 280000,
VERTEX (22%, < 247500,
VERTEX (- 22%, < 247500,
VERTEX (22%, < 182500,
VERTEX (22%, < 182500,
VERTEX (22%, < 172500,
VERTEX (22%, < 172500,
VERTEX (22%, < 182500,
VERTEX (22%, < 182500,
VERTEX (22%, < 232500,
VERTEX { 22%, < 232500,
VERTEX (22%, < 200000,
VERTEX (22%, < 200000,

230

280000>,
280000>,
200000>,
200000>,
2800005,

40000>,

40000>,
120000>,
120000>,
152500>,
152500>,
135000>,
135000>,
185000>,
185000>,
167500>,
167500>,

*120000>,

1200005,
40000>,

40000>,

40000>,
1200005,
120000>,
167500>,
167500>,
185000>,
185000>,
135000>,
135000>,
152500>,
1525003,
120000>,
120000>,

40000>,

10)
11)
12)
13)
14)
15)

IS_A (cif.polygon, 23%)
LAYER (23%, XFP)
VERTEX (23%, < 132500,
VERTEX (23%, < 155000,
VERTEX (23%, < 155000,
VERTEX (23%, < 132500,
VERTEX (23%, < 132500,
IS_A (cif.polygon, 24%)
LAYER (24%, XF)

VERTEX (24%, < 165000,
VERTEX (24%, < 187500,
VERTEX (24%, < 187500,
VERTEX (24%, < 165000,
VERTEX (24%, < 165000,
IS_A (cif.polygon, 25%)
LAYER (25%, XC)

VERTEX (25%, < 40000,
VERTEX (25%, < 120000,
VERTEX (25%, < 120000,
VERTEX (25%, < 167500,
VERTEX (25%, < 167500,
VERTEX { 258, <. 152500,
VERTEX (25%, < 152500,
VERTEX (25%, < 120000,
VERTEX (25%, < 120000,
VERTEX (25%, < 40000,
VERTEX (258, < 40000,

IS_A (cif.polygon, 26%)
LAYER (26%, XG)
VERTEX (26%, < 135000,
VERTEX (26%, < 150000,
VERTEX (26%, < 150000,
VERTEX (26%, < 135000,
VERTEX (268, < 135000,
IS_A (cif.polygo?. 27%)
XG

LAYER (27%, .

VERTEX (27%, < 170000,
VERTEX (27%, < 185000,
VERTEX (27%, < 185000,
VERTEX (27%, < 170000,
VERTEX { 27%, < 170000,

231

1300003,
130000>,
190000>,
1s0000>,
130000>,

130000>,
130000>,
180000>,
150000>,
130000>,

280000>,
280000>,
235000>,
2350005,
1150005,
115000>,
215000>,
215000>,
200000>,
200000>,
280000>,

132500>,
132500>,
187500>,
187500>,
1325%500>,

1325%00>,
132500>,
187500>,
187500>,
132500>,

I1S_A (cif.polygon, 28%)
LAYER (28%, XB)

VERTEX (28%, < 140000,
VERTEX (28%, < 145000,
VERTEX (28%, < 145000,
VERTEX (28%, < 140000,
VERTEX (28%, < 140000,
IS_A (cif.polygon, 29%)
LAYER (29%, XH)

VERTEX (29%, < 175000,
VERTEX (29%, < 180000,
VERTEX (298, < 180000,
VERTEX (29%, < 175000,
VERTEX (29%, < 175000,

IS_A (cif.polygon, 30%)
LAYER (30%, XI)

VERTEX (30%, < 1173500,
VERTEX (30%, < 202500,
VERTEX (30%, < 202500,
VERTEX (30%, < 117500,
VERTEX (30%, < 117500,
IS_A (cif.polygon, 31%)

- LAYER { 31%, XH)

VERTEX (31%, < 205000,
VERTEX (31%, < 277500,
VERTEX (31%, < 277500,
VERTEX (318, < 205000,
VERTEX (31s, < 203000,

IS_A (cif.polygon, 33%)
- LAYER (33%, XG)

VERTEX (33%, 207500,
VERTEX (33%, 275000,
VERTEX (33%, 275000,
VERTEX { 33%, 207500,
VERTEX (338, 207500,

ANANAANAN

232

137500>,
137500>,
182500>,
182500,
137500>,

1375005,
137500>,
182500>,
182500>,
137500>,

117500>,
1175005,
2025005,
2025005,
117500>,

202500>,
2025005,
277500>,
2775005,
2025008>,

2050003,
205000>,
275000>,
275000>,
205000>,

1)
2)
3)
4)
5)

1)

3)
4)
S}

1)
2)
3)
4)
5)

1)
2)
3)
4)
5)

1)
2)
3)
4)
5)

APPENDIX G

SAMPLE CIF FILE
DS1;
LXA;
P 5317800 296000 5317800 -117800 4676000 296000
9317800 296000 ;
LXB;

P5200000296000520000004676000046760002960005200000296000

P 5317800 296000 5317800 -117800 4676000 -117800 1676000 206000
5317800 296000 :

L XC;
P50400002960005160000296000516000028000050400002800005040000
296000 ;

P 5040000 40000 5160000 40000 5160000 160000 5040000 160000 5040000
40000 ;

C 2T 4680000 0 ;

W 15000 4?60000 296000 4760000 280000 :
W1500051000002400005000000240000500000080000

4960000 80000 ;

W 15000 5100000 40000 5100000 0 4760000 0 4760000 40000 :

LXD;

P 5317800 296000 5317300 202500 4797500 202500 4797500 117500 4882500
117500 4882500 202500 5317800 202500 5317800 -117800 4676000 -117800
4676000 296000 5317800 296000 ;

LXE;

P 4797500 117500 4722500 117500 4722500 42500 4797500 42500 4797500
117500 ;

P 4957500 117500 488250 117500 45882500 42500 4957500 42500 4957500
117500 ;

P 5157500 157500 5042500 157500 5042500 42500 5157500 42500 5157500
157500 ;

P 5157500 296000 5157500 282500 5042500 282500 5042500 296000 5157500
296000 ;

P 4797500 277500 4722500 277500 4722500 202500 4797500 202500 4797500
277500 ;

P 4957500 277500 4882500 277500 4882500 202500 4957500 202500 4957500
277500 ;

DF;

DS 2;

L XC:

P 200000 280000 280000 280000 230000 200000 200000 200000 200000
280000 ;

233

L XF;

P 132500 130000 155000 130000 15500¢ 190000 132500 190000 132500
130004 ;

P 165000 130000 187500 130000 187500 190000 165000 190000 165000
130000 ;

L XC;

P 40000 280000 120000 280000 120000 235000 167500 235000 167500 115000
152500 115000 152500 215000 120000 215000 120000 200000 40000 200000
40000 280000 ;

L XG; _

P 135000 132500 150000 132500 150000 187500 135000 187500 135000
132500 ;

P 170000 132500 185000 132500 185000 187500 170000 187500 170000
132500 ;

LXH;

P 140000 137500 145000 137500 145000 182500 140000 132500 140000
137500 ;

P 175000 137500 180000 137500 180000 182500 175000 182500 175000
137500 ;

LX1;

P 117500 117500 202500 117500 202500 202500 117500 202500 117500
117500 ;

LXH;

P 205000 202500 277500 202500 277500 277500 205000 277500 205000
202500 ;

L XG;

P 207500 205000 275000 205000 275000 275000 207500 275000 207500
205000 ;

DF ;

E;

234

APPENDIX H
TDL PREPROCESSOR BNF EXCERPT

"Reprinted with permission by the Calma Company”

235

DETINE

Puzrpose

Introduces and terminates the actual topological description
of the module network. \

- 3yntax
DEFINE <dnscriptor>1[<dosc:i;tn:>2... <descriptor> ...]

{descriptor>:
{occurrence phrase> =0r- <{external ocutput phrase> -or-
<Boolean phrase> -or- <local no-connect phrass> -or=
{wized connectiom>

{ocourrence phrase>:
coccurrance name> [(<output object listd)] = <dsvice type>
{<input connections list>) ([/<delay>/] ;

{ogcurrence named>:
1 to 12 alphanumeric characters chosen by the user te represent
the occurrence of the devics or primitive, or a gquestion mark (7}
which causes the compiler to create an (occurrance named>,

<output object listd:
<explicit object list> -cr- <implicit obdject list>

<explicit object list>:
<objact-pin match>, (,<object-pin match>,...,
<output occu::onco}.]l'

<implicitr object lise>:
<output occu:r-nc.>l[,<output occurzenced>,...,
<dueput occu::cnc->‘]1

1. The maximom number of primitives in an <output object
list>, represantad Ntare By "a", cannot exceed the number
of outputs of the <device type> given, When ths <device
type> is a TDL primitive, the number of ocutputs is either
the default (as specified in the TEGAS-5 Simulation
Refsrence manual) or the number of qutputs acvtributed to
that primitive in the USE statement (g.v.} of the module
being defined. when the <(device type> references another
module, sither by the <module name> or by a <type name>,
the number of outputs equals the number of <pin names>
given in the OUTPUTS statement of that module,

-42-

236

<object pin-mateh>: .
Coutput object> s <occurrenca output pin> [/<{delay>/] -or-
NC = <aeccurrence outrput pin>

<output occurrenced>:
{¢output object>] [/<dalay>/] =or=- NC

{oecurrence output pind>:
<pin name> of an output of the <device type> glven2

<output objactd:
<signal name> <or- <external output pin> -oz-
<axternal ingut pin>

{signal namae>:
1 o 12 alphanumeric characters chosen by the user

<exteznal cutput pind>:
a <pin name> given in the OUTPUTS statement of the module being
defined

<device typel>:
<primitive name> -or- <module name> -or< <type name> -or-
<medule id>

<primitive name>:
the standard name of a TDL primitive

<module name>:
first segment of a <module id> listed in the DSE
scacement (g.v.)

<type named>:
name given in the USE statement (g.v.) to a primitive
or module

{input connections listd>:
caxplicit connections list> -or- <implicit connections list>

2, When the <device type> refersnces ancother module, the
<occurrence output pin> and <occurrence input pin> are
{pin names> that appeared in the OUTPUTS and INPUTS
statements (g.v.) of that module., Por TDL primitivaes,
ses Appandix B, TDL Primitive Pin Names.

-ty

237

<explicit connections list>:

<source-pin match>q[, <scurce=pin Batchl 9. ..y
{source-pin na:ch)bls

<implicit connections list>: :
<imput source>;[, <input $0urce>;. .., <input sourcedyl

 <source-pin matchs:
<input source> = <occurrencs input pin>

<occurzence lnput pind:
<Pin name> of an input of the <device type> qiv.nz

<input source>:
<external {nput> -or=- <signal name> =-or-
<occurrence output pin reference> -or-
{no=connect> =or~ <external output pin>

<external input pind>:
<pin name> given in the INPUTS statement of the module being
defined

<occurrence output pin refarenced:
<occurrence name> [<occurrencs output pin>]4

<ne-connect>:
RC [/<no=-connect value)/]

<ao=connect value)>:
l —or= 0 =or= X =or- 2

<external output phrase’>:
<extacnal ocutput pin> = C(gate type>
(<input connections list>)(/<delay>];

<gate type>:
either a <primitive name)> or <type hame> referring to any TDL
primitive or user-defined moduls that dlvays produces
exactly one output.

3. The maxzimum number of elements in an <input connections
list>, represented hers by *b", cannot exceed the number of
inputs of the <device type> given. The number of inputs is
determined in the same vay as the number of outputs.

4. When an <occurzence cutput pin> is not provided, the
default is the first output pin of the occurrence.

whi=

238

<lozal no=-gonnect ‘oéou&t):
NC = <no-connest value)>;

<Boolean phrased:
<Boclean signal phrase> -0r- <Boolsan names phrase>

{Boclean signal phrase>:
<signal name> {<inverter>] == <(gum of producta> [/<delay>/I:

{Boolean names phrase):
<occurrence name> {({output objectd) [<inverterd>] ==
<sum of products> [/<delay>/)

<sum of products>:

<product t.:n>1[+<p:uduct term>,... +<{product totn)yls
<product term>:

<binary :oru)ll'<b1nlzy term>,... *<binary to:n)a]

<binary tarm>:
<input source> (<inverter>)6

{inverter)>:
v m=aa s single quote mark

<dealay>:
<delay value list> -or- <delay name>?

(wired connection>:
<signal name> = § (<implicit connactions list>)9

5. The maximum number of. <product terms> in a <(B3colean
phrase>, represented hate by "y", is directly related to
the number of bits per word on the host machine. PFor
l6-bit machines, y=S5, PFor machines with larger words,
y= (number of bits per word «1) divided by 3 (truncated).

6. Note: A <no-connect> in a <Boolean phrase> is not
alloved,

7. The <delay value lise> is explained with the DELAYS
statement (g.v.). The <delay name> must have previously
been assigned a set of values in the DELAYS statement.
8. The ampersand (&) aborts a message warning that a

<device type> was not given. A signal connection is made
w#ith the default wired type being inserted (if necessary).

«dSa=

239

Comments

The optional <output object lise> of an <occurrence phrase> sarves
four purposes. |)The <extsrnal cutput pins> or Cextarnal input pinss
of the module zan be tied to the <occurrence output pins> (i.e.,
the pins of a device) that drive thes. 1) The <output object 1isgt>
can aiso be used to assign a <signal name> £9 the output from a
Particular pin of the device oecurrences. This <signal name> can,
in turn, be used as an <input source> in any other <descriptor).

A <signal name> or <external output pind> can Alternatively Se
matehed to an <occurrencs output pin> by a Cwired connection) where
the <input source> is an <occurrence sutput Pin refszenze>, 31n
addition, the <output object lise> can be used to explicitly no-
connect an <{ocecurrence output pin).d)rinnlly, the user can assign
specitic pin delays to output pins with the <output obiect list>,

It delay values are not specified in an occurrence statement or for
its type, but delay values were specified on one or more sutput
pins in the occurrence, all signals with specified delays will have
that exact delay value for their delay and all the other signals
for that occurrence statament will have the default value of unit
({one) .

EXAMPLE:
ODELAYS:DEL1/L 2/;
Use: ‘ag-hﬂDHAND(2.2)S
DEFINE:A Nl(OUTZ.OUTZIDILI/)'IND(INloINZ);

In the previous example, signals OUTL and ooUT2 hava the following
delays:

oUTl = /1 11111/
onT2 = /11122 2/

I a delay is placed on the type {with the USE Statement) of occura
rence statement and one or more output pins has delays, the pins
with delays will have their resulting delay equal to the sum of the
pPin delay and the occurrence dalay (the type delay {f the occcur-
rence delay was not specitied). ALl output pins without specific
assigned delays will take on the value of the occurrence statement
delay (the type delay if the cccurrence delay is not specified.)

EXAMPLE:
OsSE: ANDN=ANDNAND (2,2) /% 6 7/;

DEFINE: ANDN1 (QUTL,00T2/2 3 3/)=aNDN(IN1, IN2) /4 4/;
ANDN2(/3 4 5/,00T3)'ANDN(I$1,INZ};

-46a

240

The signals, OOT1l, OUT2, ANDN2(¢l), and OUT3 have the following
dalays:

OUT1s/4 4 4 4 4 4/
QUTI=/6 7 7 & 7 1/
ANDN2 (J1l)=/8 10 12 8 10 12/
UTI=/S 6§ 7 5 & 7/

For more information, see the section on the DELAYS command later
in this chapter. .

The <input connections list> is not optional as is the <cutput
object list>, Though their form is similar, the two lists serve
different functions. Network interconnections (i{.s., the matching
of the cutput of one device to the lnput of another device or
devicas) are accomplished solely by means of the <input connection
list>., The <output object listd is provided as a convenience, but
the <input connections liat> is essential for <device types> that
have inputs.

Nete that both lists have two forms; sxplicit and implicit. In the
explicic form, each match is made by giving the <occcurrence input
(or output) pin> (a <pin name> valid for the <device typer) to
which the assigmment is to be made. The matches can be listed in
any order. In implicit lists, the occurrence pins are not given,
They are matched according to their relative ozder far that <(device
type> (fizst pin to first element in the list, second tc second,
etc.) until all elements in the list are matched to a pin.
Additiconal commas vetwsen primitives in an impliicit list cause pins
tc be skipped over during the matching; one pin is skipped for each
comma after one obligatory comma. Leftover pins are not matched,

A message is issued following module compilation warning when any
pin has been unconnected. The pin will be identified by <oecur-
rence name (pin name)>. An unconnected <occurrence input pin> will
be tied to X (undetermined value). Only the <output object list>
can contain delay assignments. An <input source> cannot ba
assigned a delay. :

When an <{ogeurrence cutput pin> (the output of a device) that is
never matched to a <signal name> is to be given as an <input
source>, it can be referenced only by an <occurrence output pin
refacence>. An <occurrence output pin> that is matched at some
peint o a <signal name> can be raferenced by either the <signal
nane> or the <occurrence ocutput pin reference>. TForward referancs
ing is allowed; that is, a <signal name> can be used as an <input
source> before it has appeared in the <descriptor> in which it will
be matched to the <occurrence output pia> or other scurce that
produces it. Likewise, an <occurrence output pin refsrence> can
contain an <gccurrence name> that has not appeazed. If an <occcur-
rence output pin> is never referenced, it is left unconnected and a
waraing message (g.v.) is issued.

Y & S

241

The ampersand (&) allows any cutput to be wired to any source(s) of
input. Using only one <input source> in the <input connections
list> rasults in simple signal propagation. If two or mors <input
sources> ace given, the default wvired gate is inserted, The pacr-
ticular wired gate to be used can be specified in the WIRED state-
aent (g.v.) Note that <no-connect> is not allowad as a <wired
connection>, :

The <no-connect> is used to tis an <input source> to oae of foaur
fixed values: one, zero, X {undetermined), or Z (high impedance’.
If only the letters 'NC' are used, the default value is assumed,
If a <local no-connect default> is given, that value is used.
Otherwise the global value, which can be set in the OPTIONS state-
ment of the COMPILE command block (gq.v.), is used.

The <Boolaan phrase> allows the user to perform limited logical
operations on signals, namely NOT(,), AND(*), and OR(+). The
result can be given a <signal name> that can ba used elsevhers as
an <input source>. In a <named Boolean phrase>, the result can
feed directly into an <exteznal output pin> or <external input pin>
given as the <output object>., In any case, the function must
always be exprassed as a <sum of products>, which is taken to be
the inverse if an <inverter> appears Sefore the 'ws’, Note that
<no=-connect> is not allowed in a <Boolean phrase>.

Zach <{occurrence phrase>, <extarnal cutput phrase>, or <Boolean
phrase> can optionally have a propagation <delay> associated with
it. The propagation <delay> determines how long it takes for
changes on the inputs to propagate-through to affect the cutputs.
There i3 also a separats DELAYS statement that allows the user to
preset delay valuss and assign them names. A <delay> i{n the DEFINE
section has precedance over one set in the DELAYS statemant. When
the <device type> refers to another module, a <delay> is
superfluous; a <delay> is associated only with a TOL primitive or a
<Boolean phrase>.

-48-

242

APPENDIX I
SOURCE DBIF FOR CALMA—CIF DATA TRANSPORT CASE
CALMA DBIF: |

dbid('test.db’,gds,'1.4’ ’7/24/84 14:50").
cn:mt;ent:([l'r)nts.(g gdsu font.tx’ ,1),fonts(’gdsii:font.tx’,2},
generations(3),

db user unit(0.00001),db _unit _meter(1.0e8),
stret(dev),

has(dev,i _3),

bdry(i 3],

lyr(l 3,40),dtatyp(i 3,0},

xy(i_3,53250,3000 ITxy(l 3,53250,-1250,2),

xy(i_ 3,46750,-1250 3),xy(i_ 3 46750 3000,4),

xy(i™ 3, 53250 3000,5),

bdry[i_4),

has(dev,i _4},

dyr(i_4 letatyp(l 4,0),

xy(i ~4,52000,3000,T) xy(i_ 4,52000,0,2),
xy(i 4,46750,0 3),xy(1' 4.36750,3000,4),
xy(i~ 4,52000,3000,5),
bdry(i_ 8),
has(dev,i_8),

lyr{i_8,10), dtatyp(t 8,0),
xy(i 6, 50500 3000,1),xy { 6,51750,3000,2),
xy(i ~6,51750,2750,3) xy(i 6,50500,2750,4),
xy(i6,50500,3000,5),
aref(i__ 7 t18),
, has(dev1 7},
rows(i__72),
columns(i _7,3),
xy(i_7, 35'@)0 0, 1}
xy{i ~7,46000,0,2
xy{i~7,35000,3000,3),
sref(i__ 8 t18),
has(dev,i 8),
xy(i 8,46750,0,1),
anglefi _ 8 0.)
path(i
has dev,i 1

é 9 10') dtatyp(_9,0),

th{i 9,150),

xy(i 9?17500 3000,1),xy(i__9,47500,2750,2),
pa.th_('i

243

has dev,i 10),

‘g Il_(10 ,10), dtatyp(l 10,0),

th{1

xy(i 10_51000 2750 lf,xy{ 10,51000,2500,2),
xy ~ 10, 50000 2500,3),xy(i 10, 50000, ,790 4)
xy(i ~ 10,49500,750,3),
path{i 11)
has(dev,i 11),
lyri 11 TO) dtatyp(l 11,0),
width{i 50),

{i 11_51000 500,1),xy(i 11, 51000 ,0, 2;
xy(i— 11,47500,0,3) xy(i_ I1,47500,500,4
bdry(i 12),
has(dev,i 12),
lyr(a 12,3') dtatyp(l 12,0},
xy(i 712,53250,3000,T),xy(i__12,53250,2000,2),

Xy i_—_12 48000 2000,3) xy(i_12, 48000 1250 4
xy{l_12 48750 1250 5 ,xy 12 48750 2000 6
Xy 1_12 53250 2000, 7 Xyl(i 12, 53250 1250 8)

xy(i ~12,46750,-1250 9),xy(1 12,46750,3000,10),
xy(i~ 12,53250 3000
bdryli 13)
has(dev,i 13),
lyr(1_13,T1),dtatyp(i 13,0),
xy{i ~13,48000,1250 ITxy(l 13,47250,1250,2),
xy(i_ 13,47250,500,3) xy(i 13 48000 500 4),
xy(i 13,48000,1250,5),
aref(i__ 14 tlS;
has(dev,i 14
rows{i 14,2),
columns(i 14,2),
Xy i 14, 43000 +3000,1),
xy(i _ 14,53250,3000,2),
xy(i ~ 14,46000,8000,3),
angle{i 14,90. 0),
mag(i_"14,0.5),
bdry(i— 15),
has(dev,i 15},
lyr(i 15 ,11),dtatyp(i 15,0),
xy(i_15,51500,1500 l]'xy(l 15,50500,1500;2),
xy{i ~15,50500,500,3), xy(i_"15,51500,500,4)
xy(i15,51500,1500,5),
bdry[i_18),
has(dev,i 18),
lyr(i 16 1), dtatyp(l 18,0),

xy{i ~16,51500,3000, 1), i 16 51500,2750, 2},
xy(i 16 50500,2750, 3 xy 18 50500 3000,4
xy(i ™~ 16,51500,3000

bdry(i 17

has(dev,i

lyr(i 17 Tl) dtatyp(17,0),
xy(i Z17,48000,2750,1Txy(i_17,47250,2750,2).

244

xy} 17,47250,2000,3) xy(i _17,48000,2000,4),
xy(i ~ 17,48000,2750,5),

bdry(i 18)

has{dev,i 18),
lyr(i_18,11),dtatyp(i__18,0),
xy(i ~ 18,49500,2750,1),xy{i__18,48750,2750,2),
xy! 18,48750,2000,3 xy{ _18,49500,2000,4;,
xy(i~18,40500,2750,5),

stre t18)

bdry{i 20),

has(tlS“l 20),

lyr(1_ 20,10), dtatyp(20,0),

xy(1 —20,2000,2800,1),xy(1 20,2800,2800,2),

xy —920,2800,2000 3$,xy = 20,2000,2000,4),
20, 2000 2800,5

bdry i 23),

has(t181 23},

lyr(i_23.2), dtatyp i 23,0),

xy! —23,1300,1300, 1}'xy} '23,1600,1300,2),
xy(i ~23,1600,1900,3 23,1300,1900,4),
xy(i ~23,1300,1300,5

bdry(i_24),

has(t15;i _ 24),
lyr(l 24.2), dta.t (i 24,0),

24,1700, 1300 l{xy{ 24 1900,1300,2),
y 24 1900,1900,3 24, 1700 1900,4),
xy(i —24,1700,1300,5
bdry(i 25

has(t18}1 25)

lyr(1_25,10), dtatyp(l 25,0),

xy(i —25,400,2800,1),x7(i 25,1200,2800,2),

xy({i~ 25, 1200 2500 3),xy(1 25,1700,2500,4),

xy i —.25,1700,1200,5),xy(i ~ 25,1500,1200,8),
25 1500 2200, 7 Xy(i 25, 1200 2200, 8
925,1200,2000,9) xy(i 25 400, 2000 10

xy ; —95, 400 2800,11),

bdry(i

has(t18‘1 26)

lyr(1 26,4), dtatyp(l 26,0),

~26,1400,1300,1 xy 26 1500,1300,2),
xy ~26,1500,1900,3),xy(i_26,1400,1900,4),
xy{i~ 26,1400,1300,5),
text(l 32),
has(tI8,i 32),

lyr(i _32,16),vert _pres(i__32,middle),
horz™ pres(i 32,center},
mag(T 32,0.T},
xy(l 32, 1400 2475,1),
string(i_ 32, “T18")
angle(t ~32, 0. 0),
dummyf).

245

APPENDIX J
RULES FOR THE CALMA—CIF FORWARD TRANSPORT TEST CASE

Rules for Translating CALMA Data into Generic Data (CALMA Input Rules).

/*1% macro_def(M):-stret(M).
/*2* scale_(S)-db__unit_ meter(S).
/* 3 */ polygon _ (P)-bdry(P).
TA B polygon _(P):-box(P).
/* 5 */ wire _(W):-path(W).
/* 6%/ text _(T):-text(T),
[*7*/ layer _(S,L):-lye(S,L).
/* 8*/ width_ (S L)-width(S,L),
/* 9 */ text _(S,L)-text(S,L).
/*10*%/ vertex_(S.X,Y,I):-xy(S,X.Y,I),\+aref(S._).
/* 11 %/ tont _ (T,roman):-font _no(T,1).
[*12%/ tfont _(Titalic):-font _no(T,2).
[*13 %/ v _just{S,N):-vert _pres(S,N).
[*14 %/ b_ just(S,N):--horz_ pres(S,N).
/* 15/ textval _(X,Y).-string(X,Y).
/* 16 */ magnif _(S,M):-mag(S,M).
TAB Y otient _(S,Y,0.0,Z):-reflection(S),Y is 180.0,angle(S,Z),\ +aref(S,).
/* 18 */ orient __(S,Y,0.0,2):- \+reflection(S),Y is 0.0,angle(S,Z),\ +aref(S,).
[*19% macro_call(M,Name):-sref(M,Name).
[*20% ma.cro_call(M,Name):-arer(N,Name),rows(N,RM),columns(N,CM),
row _ gen{N,RM,CM),fail.
/*21%/ macro_call(M,Name):-ret.ract(current_rc(N,R,C)),aref(N,Name),name(N,NL),
name(C,CL),name(R,RL),
append(NL,” _ _ "N1),appead(N1,RL,N2),
append(N2," _ _ ",N3},append(N3,CL,NM),name(M,NM),
xy _asst{(M,R,C,N),has __asst(M,N), mag__asst(M,N).
/*22% row_gen(N,l,C):—C)O,rc_gen(N,l,C). -
/* 23 */ row _gen{(N,1,C):-I> 1,C>0,rc__gen(N,[,C),J is I-1,row_ gen(N,J,C).
[*24 % rc__gen(N,I,l):-I>0,asserta(current_rc(N,I,l)).
/*25% rc_gen(N,I,C):-l>0,C>l,a.sserta(current_rc(N,I,C)),J is C-1,rc_gen(N,LJ).
/*26*/ has_(X,Y):—has(X,Y),\+node(Y),\+aref(Y,_).

[*2r ey keep(dtatyp(X,Y)):-dtatyp(X,Y). -
/*28% keep(boxtype(X.Y)):—boxtype(X,Y).

/*20%/ keep(pathtype(X,Y)):-pathtype(X,Y).

[* 30 %/ keep(nodetype(X,Y)):-nodetype(X,Y).

[*31*/ keep(texttype(X,Y))--texttype(X,Y).

/*32%/ keep(fonts(F,N)):-fonts(F,N).

/*33% keep(generations((})):-generations(G).

246

/* 34 */ keep(db__user __unit(U)):-db __user _unit(U).
/* 35 */ keep(aref(N,Name}):-aref(N,Name).

/* 36 */ keep(node(N)):-node(N).

/* 37 */ keep(propval(S,P,V)):-propval(S,P,V).

/* 38 */ keep(rows(X,R)):-rows(X,R).

/* 39 */ keep(columns(X,R)):-columns(X,R).

/* 40 */ keep(has__(X,Y)):-has(X,Y),node(Y).

/* 41 */ keep(xy(S,X,Y I)):-aref(S, _). xy(5,X.Y,]).

/* 42 */ keep(angle(M,A)):-aref(M, _),angle(M,A).

/* 43 */ keep(reflection(M)):-aref(M, _),reflection(M).

/* 44 */ xy _asst{M,R,C,N):-rows(N,RM),columns(N,CM),xy(N,X1,Y1,1),xy(N,X2,Y2,2),
Xxy(N,X3,Y3,3) MY is R*(Y3-Y1)/RM,MX is C*(X2-X1)/CM,
xy _ asst2(M,X1,Y1,MX,MY,N).

/* 45 */ xy _asst2(M,X1,Y1,MX MY ,N}:-angle(N,A)xy _ asst3(M,X1,Y1,MX MY A,N).
/* 46 */ xy _ asst2(M,X1,Y1L,MX, MY ,N}:- \+angle(N, _),reflection(N),

TX is X1+MX, TY is -(Y1+MY), asserta(xy(M,TX,TY 1)).
[* 47 */ xy _asst2(M, X1, Y1LMX MY N}-- \+angle(N, _),\+reflection(N),

TX is X1+MX, TY is Y1+MY, asserta(xy(M.TX,TY.1)).
/* 48 */ xy __asst3(M,X1,Y1,MX MY A N)=-reflection(N),Cav is Pi/180,

TX is X1+MX*cos(A*Cnv)+MY*sin(A*Cav),

TY is -Y14+MX"*sin(A*Cnv)}-MY*cos(A*Cuv), asserta(xy(M,TX,TY,1)).
/* 49 */ xy _asst3(M,X1,Y1,MX,MY A N} \ +reflection(N),Cnv is Pi/180,

TX is X1+MX*cos(A*Cnv)}-MY*sin{A*Cnv), - -

TY is Y1+MX*sin(A*Cnv)+MY*cos(A*Cav), assertalxy(M,TX,TY,1})).

/* 50 */ has_ asst{M,N):-has(X,N),asserta(has(X,M)).

/* 51 */ has_asst{M,N):- \+has{__,N).

/* 52 */ mag__asst{M,N)--mag(N,A}),asserta(mag(M,A)).

/* 53 */ mag__asst(M,N)- \+mag(N,_).

/* 54 */ relative _orient(S):-st _ref(S),angle(S,_),\+abs__ angl(S).
/¥ 55 */ relative_magnif(S)-st _ref(S),mag(S, _),\+abs__mag(S).
/¥ 56 */ st_ref(S).-sref(S,).

[* 57 *[st _ref(S)-aref(S, _).

247

Rules for Translating Generic Data into CIF Date (CIF Output Rules).
[* < <cifout.rul @ 7/25/84:17:06>> ¥/

asst __uniq(P):-retr(P),asserta(P).

3

box(B,L,W,CX CY)
returns all instances of incoming boxes, N, including newly
generated instances, B, resulting from scaling and asserts
their rotations. -

|
|
|
|
- ———— = - - ‘/

/* 1%/ box(B,L,W,CX,CY):-box _ia(N,L _p,W_p,CX_p.CY_p,DX,DY),mac_link(N,Ref),
box _scaie{RefB.L,W,CX,CY,NL_p,W_p,CX_p,CY_p),
asserta{rotate(B,DX,DY,1)}.

/‘a-“"--‘— - b2t ¢ F 3 -+ 2 F + 3
| box_ chk(B,L,W,CX,CYDXDY})-
| Checks to see if a polygon B is a box. Returns same
| values as for "box_in" plus DX and DY which indicate
| the orientation of the the box off the positive X axis.
+---------—----ﬂa--—ﬂz-a-----a'/
/* 2 */ box_ chk{B,L,W,CX,CYDX,DY}:-polygon _ (B),vtx(B,X,Y,1),vtx(B,X,Y,5),
\+vtx(B,_,_,6),vtx(B,X2,Y2,2),vtx(B,X4,Y4,4),
V1is X2-X,V2 is Y2.Y,
DX is X4-X,DY is Y4-Y Ll is DX*DX+DY*DY,
L2 is V1*V14V2*V2,(DX-V1)*(DX-V1)+(DY-V2)*(DY-V2)am:==
L1+L2L is sqrt(L1),W is sqrt{L2)},CX is (X4+X2)/2.0,
CY is (Y4+Y2)/2.0.

I‘:---S=--=====-==---===--=-==—=¢===
| box_in(B,L,W,CX,CY}-

| 1) returns all instances of incoming boxes with
| name B width W length L

| centerX CX centerY CY .

| deltaX DX deltaY DY
I
+

2) also removes all vertices which make up B.

/* 3*/ box_in(B,L,W,CX,CY,DX,DY):-box chk(B L,W,CX,CY,DX,DY),
retr(vertex_(B, _,_,_)).

box__scale(Ref,.B.L,W,CX,CY NL_p,W_p,CX_p,CY_p)-
Returns all scaled instances B for an incoming box
| instance N which is defined in Ref.

- s = S S T T T S S 2 T Y =I=="/

/-=----—8----”=========---=-‘3=
|
|

/* 4 */ box _scale(Ref B,L,W,CX,.CY NL_p,W_p,CX_p,CY_p)-get _mag(S,Ref,M,Rel2) fail.
/* 5 *{ box__scale(RefB,.L,W,CX,CY NL_p,W_p,CX_p,CY_p)-macro_ inst(Ref,M,Ref2),
M\==1.0L is M*L _p,

248

Wis M*W_p, CX is M*CX_p, CY is M*CY _p,
gensym(box __,B),
asserta(item _inst(Ref2,B,N)), asserta(has__(Ref2,B)),
layer _chk(N,B).
/* 6 */ box_scale(Ret,BL_p,W_p,CX_p,CY_pBL_p,W_p,CX_p,CY_p).

/. 3 = !==’===8========‘

- — = S T R I TS M TN ST SR TN S R N S IO S S S T
/* 7 */ call_sym(P N)--macro_ call(P,X),map _(X,N),assertacur__tr__ord(1)),
chk _mirry(P),chk _ mirrx(P),chk _rot{P),retract(cur _tr_ ord(J)},
vtx(P,A,B,1),asserta(transl(P,A,B,J)),
retract{vertex_ (P, _,

—

[e ——

4 == = - - = S W S T T S S .

/* 8 */ chk _mirry(P)--orient _{P,A, _,), A\===0.0,retract(cur _tr_ord(J)).[is J+1,
asserta{cur __tr_ ord(l)),asserta{mirrory(P,J)).

/* 9 */ chk _mirry(P):- \+orient _(P,A, _,

/* 10 */ chk _ mirry(P):-orient _(P,0, _,__

[* 11 */ chk _mirex{P):-orient _(P, _,A,_),A\a===0.0 retract(cur _tr__ord(J))lis J+1,/* 1%/
asserta{cur _tr__ord(I)),asserta{mirrorx(P,J)).

[* 12 */ chk _mirrx(P):- \+orient __(P,_,A,_).

/* 13 */ chk _ mirrx(P):-orient _ (P, _,0, _

/* 14 */ chk _rot(P):-otient (P, _,_,A),A\==0.0,retract(cur_tr_ord(J))l is J+1,/*1*/
asgerta{cur _tr__ord(I)),CS is cos{A),SN is sin(A),
asserta(rotate(P,CS,SN,J)).

/* 15 */ chk _rot(P):- \+orient _(P,_,_,A).

/* 16 */ chk _rot(P):-orient _(P,__,_,0).

/‘:a-'--—====8=-'----=ﬁ E 2+ ¢ ¢}]

+=-===-=--- I T -=g==*-'*‘ﬂ=‘

[* 17 */ def _sym(N):-macro__def(S),gensym{'# N),asserta(map _(S,N}),
asserta(scale(N,1,1)).

/" - - -

+asza-==ﬂ-—=wa=n---=$ *

/* 18 */ flash(F,D,CX,CY):-flash _in{N,D _p,CX - p,CY_p), mac_link(N,Ref),
 _scale(Ref,F.D,CX,CYND_p,CX_p,CY_p)

/‘:--:: = —s-a============ﬂ=‘

-+ - [I S T T TR R SR R SR NS SR T SR SIE TN SHE SSX SSY S IEE T e

/* 19 */ flash _in(F,D,CX,CY):-fish _ chk(F,D,CX,CY),retr(vertex _(F, _, _,_)).

/‘:#“—-- - SEE BT =P 2t —

=== 2 - = = TR =='I

/* 20 */ 8 _scale(Ref,F.D,CX,CYN,D_ p,CX_p,CY_p})-get _mag(S Ref, MRef2) M\==1.0,
D is M*D_p,

'CX is M*CX _p, CY is M*CY_p, gensym(flash __,F),
asserta(item _inst(Ref2,F,N)), asserta(has__ (Ref2F)),
layer _chk(N/F).

249

[*21% 8_scale(RefF.D_p,CX_p,CY_pF.D_p,CX_p,CY_p).

/‘==-=========‘===========-=ﬂ====.

-+ - Tl £ 1 SR o=amaE oI ==
[r22*f ﬂsh_chk(F,D,CX,CY):-polygon_(F),vtx(F,X,Y,l),vtx(F,X,Y,Q),\+vtx(F,__,_,10),
vix(F ,X2,Y2.2),vtx(F,XS,Y3,3),vt,x(F,X4,Y4,4),vtx(F,X5,Y5,5),
vix(F,X6,Y6,6),vtx(F X7,Y7,7),vtx(F,X8,Y8,8),
CX is (X+X5)/2.0,CY is (Y+Y5)/2.0,
CXam:==2(X2+X6)/2.0,CYm:=x(Y2+Y6)/2.0,
CXowm:2m(X3+X7)/3.0,CYm:==(Y3+Y7)/3.0,
CXom:mm(X4+X8)/4.0,CYm:mm(Y4+Y8)/4.0,
L1 s (X8-X)*(X8-X)+(Y8Y)*(Y&-Y),
L2 is (X2-X)*(X2-X)+({Y2-Y)*(Y2-Y),L1==:=L2,
L3 is (X3-X2)*(X3-X2)+(Y3-Y2)*(Y3-Y?2) L2==:=L3,
L4 is (X4-X3)*(X4-X3)+(Y4-Y3)*(Y4-Y3) L3=:=L4,
D is sqrt({X8-X4)*(X8-X4)+(Y8-Y4)*(Y8-Y4)).

'aa-aa---=-=—-----—----s:—-a-ﬂ--

/

| g_m(S,Prev,Curr,New):-

| Determines New magnitude based upon whether current
! maggitude is relative or absolute and upon the

|

previous maginitude in the hierarchy.
+ == T — - - - ---‘,

[/t 23/ g_m(S,Prev,Curr,New):-rélative_magni!’(S), mageif_ ($,Curr), New is Curr*Prev.
/* 24 */ g__m(S,Prev,Curr,Curr):- \+relative _magnif(S), magnif _(S,Curr).
[*25*/ g_m(S,Prev,1.0,Prev):- \+magnif _(S '

,—

/‘==-------ﬂ-----—-----------‘--
| get_mag(Call,Defn,M,Inst):-

| For a given structure definition, Defn, returas all calls,

i Call, to Defn, their magnitudes, M, and new instance

| names, I,
- = o e o St = ey 2 . e o e 10e = - L L aa=='/

/* 26 *f get__mag(Cail,Defn,M,Inst):—macro__call(Call,Defn),mac_link(Call,Up_defn),
get _mag(Up _call,Up_ defo Mp,Up _ inst),
g_ m(Call, Mp,Mc,M),new _ inst{Defn,M,Inst),
new _call(CallNew _ call,M,Inst), ’
mhas(Call, New __call, Defn, Up _defa).
/* 27 */ get_mag(top,Defn,1.0,Defn):- \+macro_ call{ _,Defn).

/‘=-==-=—======--===—-===*=======

5 = - E ’-==n=n==--=--==-===-=:==-=‘/

/* 28 */ has(X,Y)-bas _(A,Y),map_ (A,X),\+text_(Y).

/‘=-‘--‘--------- E R R SR NN T TRE

-f--—:---------—--a-------- *
/* 29 */ keep(scale _(S)):-scale__(S). /
/* 30 */ keep(macro_inst(X,Y,Z)):-macro__inst{X,Y,Z).

/* 31 */ keep(item _inst(X,Y,2)):-item _inst(X,Y,2).

/* 32 */ keep(ncall{X,Y)):-ncall(X,Y).

250

/* 33 *{ keep(text _(T)):-text _(T).

/* 34 */ keep(textval _(T,S)):-textval _(T,S).

/* 35 */ keep(h __just{T,5)):-h _just(T,5).

/* 36 */ keep(v _just(T,S)):=v _just(T,S).

/* 37 *{ keep(tfont _(T,S)):-tfont _(T.S).

/* 38 */ keep(magnif _ (S,M)):-magnif _(S,M).

/* 39 */ keep(orient _(T ,A,B,C)):-orient _(T,A,B,C},text _(T).
/* 40 */ keep(relative _magnif(S}):-relative _ magnif(S).

/* 41 */ keep(relative _ orient(S)):-relative _orient(S).

/* 42 */ keep(has _(X,Y)):-has _{X,Y),text _(Y).

/* 43 */ keep(layer_ (T X)):-layer _ (T X),text _(T).

/* 44 */ keep(vertex__ (S,A,B,I)):-vertex _(S,A,B,I),text_ (S).
/* 45 */ keep(map(X,Y)}-map _{XY).

/‘==---_----=---s**:-a----------
4 =m == v = S T i A - *
/* 46 */ layer(S X):-layer _(5,1),\+text _(S),X»=nd. /
J* 47 */ layer(S X)-layer_ (S,2),\+text _(5),X=np.

/* 48 */ layer(S X):-layer _(S,3),\+text _(S),X=nm.

/* 49 */ layer(S,X):-layer _(S,N),\+text _(S),N>3,concat(L,NX).

/---ﬂsﬂt---— E] E L ---.

-+ - T T - -
/* 50 */ layer _chk(Old,New):-layer _(Old L) asserta(layer _(New L)).
/* 51 */ layer_chk(Old New}):- \+layer _(Old,_).

/‘m=====z==amﬁ====.—.‘== — 5 g ='===.

+====u - SIEE JE TR W SN S = S S N I T X

/* 52 */ mac_link(N Ref):-has_ (Ref,N),macro_ def(Ref).

2N 2k ST = E 3 T T IR MR IR TR ST
| mhas(Cali,Call,Defn,Defn}):-

| Determines whether the new calling macro is the same as

| the previous calling macro. If so, then a new "has_ " is

| asserted between the next upper macro definition and this
| new call.
+

33] N W= SR IR E 2 =z _=‘/

/* 53 */ mhas(Call,Call,Defn.Defn}. .

/* 54 */ mhas(Call,New _ call,Defn,Up _defn):-Call\==New _ call,Defa==Up _ defn,
mhas2(Up _ defn,Call,New _ call).

/* 556 */ mhas(Call,New _ call,Defn, Up _ defn):-Defn\===Up _defn,Cali=New _call,
mhas2(Up _ defn,Call,New _ call).

/* 56 */ mhas(CallNew _ callDefn,Up _defn):-Defn\=ea=Up _ defn,Call\m==New _call,
mhas2(Up _ defn,Call,New _ call).

/* 57 */ mhas2(Up _defn,Call,Call):-asst _uniq(has_{Up _defn,Call)).
/* 58 */ mhas2(Up _ defn,Call,New _ call):-Call\====New _call,

asst _uniq(has_ {Up_ defn,New _ call)),

retr(has__(Up_ defn,Call})),

asst _ uniq(keep(has _(Up __defn,Call))).

251

» —_— = T T T TR == E-~ ==
new _call(Old _ call,New _ call M,Inst):-
Determines whether a new macro call needs to be asserted
or whether one already exists for the Old _ call with
magnitude M, calling Inst, the newly scaled instance.

=== = - —-S—s:-:-‘/

Ty

+——

/* 59 */ new _call(Old _callNew _ call, M,Inst):- ncall(Old _ call, New _call),
macro__call(New _ call,Inst).

/* 60 */ pew _call(Old _call,New _call M,Inst):- \+ncall(Old _call,_), M\==m1,
gensym(mecall _ ,New _ call),asserta(macro_ call(New _ call,Inst)),
vertex _ (Old _call,X,Y,1),asserta({vertex _(New_ call X,Y,1)),
orient __chk(Old _ call,New __call),
asserta{ncall(Old __call,New _ call)),
retract(macro__call{Old _ call,Ol)},
asserta(keep(macro_ call(Old _ call,O1})).

/* 61 */ new_ call(Old_call,0ld _call,1.0,).

/*==--=-—----==---- 1] - IR 2Ny
| new_inst{Defn, M, Inst):-

' If the magaitude, M, is not equal to 1, then new_ inst

| determines if a macro instance for Defn of maginitude

| M already exists. If not then one is created.

- - o A - ‘/

/* 62 */ new_inst(Defn, M, Inst):-M\====1 macro_inst{Defn,M,Inst),
macro _ call(New __call Inst}.

/* 63 */ new_ inst(Defn, M, Inst):-M\mem1,\+macro_inst(Defa,M,),
gensym(minst__,Inst),asserta{macro _ def(Inst)),
asserta(macro _ inst(Defn,M,Inst)).

/* 64 */ new _inst{Defn, 1.0, Defn).

/‘-‘-ﬂ-----------‘ . - =--=-‘

/* 65 */ orient _ chk(Old _ call,New __ call):-orient _(Old _call,A,B,C),
asserta(orient _ (New __callA,B,C)).
/* 66 */ orient _chk(Old _call, New _call):- \+orient_(Old _cal},A,B,C).

/*-===-=======-=’a==========-===

+=--s=='--_-’===---‘=---’-===--='/

/* 67 */ polygon(P):-poly _ map(P,R).

/* 68 */ poly _map(P,R):-polygon _(R),\+box_chk(R, _, _,_,_,_,_)\+8sh_chk(R,_,_,),
asserta(good __poly(R)),fail. '

/* 69 */ poly _ map(P,R):-good _poly(R),mac _link(R,Ref),get _mag(S,Ref,M,Ref2),fail.

/* 70 */ poly _map(P,R):-good _ poly(R),mac _link(R,Ref),macro _ inst(Ref,M,Re(2),
gensym(poly __ ,P),asserta{item _inst(Ref2,P R)), -
asserta(has__ (Ref2,P)) layer _ chk(R,P).

/* 71 */ poly _ map(R,R}:-good _poly(R).

I‘===_n=—— DR R TIE SR 3 =k S T T

+ == E e S P === = m=="

/* 72 */ vertex(P X,Y I):-vertex _in(N.X_p,Y_ p,I), mac_link{N,Ref),

252

vx_scale{Ref, P XY.N.X_p,Y_p).
/* 73 *f vertex_in(P.X,Y I):-vtx(P, XY.0).
/* 74 */ vx_scale(Ref,P,X,Y,N.X_p,Y_p)-macro__inst(Ref,M,Inst),item _ inst(Inst,P,N),
XisM*X_pYis M*Y_ _Pp-
[*75% vx_scale(Ref,N,X,Y,N,X,Y).
/* 76 *f vtx(S,X,Y I):-scale _(V),vertex _{S,A,BI)\+text _(S),
X is A*1.0¢8/V,Y is B*1.0¢8/V.
[* 77 *f vix{S,X,Y,I):- \+scale _(V),vertex _(S,A,B,I),\+text_(S),
X is A*1.0e8,Y is B*1.0e8.
“+ ===z e —mmEmssm e

/* 78 */ wire{(W,Wid):-wire _in(N,Wid_p), mac__link{N,Ref), wr _scale(Ref,W,Wid N,Wid _p).

/‘=w”= - T ol A == E_+ —+ £t 1]

e T M T ST XX S S T = G - —=--==¢’n‘/

/* 79 */ wire _in(W,Wid):-wire _(W),width _(W,Wid),

/.3----=---. T S . =k I YER AR SN ANE R XI SEE I

- - = — - = ----—-'/

/* 80 */ wr_scale(Ref,W,Wid,N,Wid _p):-get _ mag(S,Ref,M,Ref2), M\====1.0,
Wid is M*Wid _p,
gensym(wire _ W), asserta(item _inst{Ref2,W,N)},
asserta(has _ (Ref2,W)),Jayer _chk(N,W).

/“' 81 */ wr_scale(Ref, W, Wid _p,W,Wid _p).

253

APPENDIX K
RULES FOR THE CALMA—CIF REVERSE TRANSPORT TEST CASE

Rules for Translating CIF Data into Generic Data (CIF Input Rules).

/* <<cifin.rul © 8/7/84:11:20>> */

/*ﬂﬂﬂaﬂ-—--a" == IR EE 25 Sox IO TIN SO T s

| HAS

+ - e ———— */

has_ (D,[):-has(N,I},\+macro _inst{_,_ N} \+item_inet{_,I,),
\+acall(_,I},map(D ,N).

has__(D,I):-keep(has__(D,I)).
=t - = - T I == - --=-=‘/

layer _ (S,X):-layer(S,N),\+item _inst{_,S,_),ly2(S,N.X}.
layer _(S,X):-keep(layer__(S,X)).

ly2(S,nd,1).

ly2(S,np,2).

ly2(S,am,3).

ly2(S,N,X):-name(N,NL),append("1", XL,NL),name{X,XL),X>3.

/-=‘_=-==---------==-=-=33-33ﬂ==

| Macro Definitions

-+ - == —--s--aaaamaaﬂ—‘/

macro__def(S):-def _sym(N),map{S,N),\+macro_inst(_,_,S).
macro__def(N):-def _sym(N),\+map({__,N),\+macro_inst(__,_,N).

/‘a--‘ = -y === : =x =
| Magaification and Orientation
-+ oz == === =N e = == */

magnif _ (S, M):-keep(magnif _(S,M)).
relative_ magnif(S):-keep(relative _ magnif(S)).
relative _orient(S):-keep(relative _otient(S)).
orient _(T,A,B,C):-keep(orient __(T,A,B,C)).

/‘=l==ﬂ========-’ﬂ-==-===------’ﬂaﬁa

| POLYGONS

254

+==m-====-===na====’nas---,--ﬂ‘/

polygon _(P)-polygon(P),\+item _inst(_,P,).

polygon _ (P):-box(P,.L,W,CX,CY),\+item _inst{__,P,_)rotate(P,AB1),Cis
sqrt(A*A+B*B), V1 is (A/C)*(W/2), V2 is (B/C)*(L/2),
V3 is (BfC)*(W/2), V4 is (A/C)*(L/2),
X1 is CX-(V4+V3), X2 is CX+V4-V3, X3 is CX+V3+V4, X4 is CX+V3.V4,
Ylis CY4+V1-V2, Y2 is CY4+V1+V2, Y3 is CY4+V2.V], Y4 is CY-(V1+V2),
asserta(vertex(P,X1,Y1,1}), asserta({vertex(P,X2,Y2,2)),
asserta(vertex(P,X3,Y3,3)), asserta{vertex(P,X4,Y4,4)),
asserta(vertex(P,X1,Y1,5)).

polygon _ (F):-fash(F,D,CX,CY),\ +item _inst(_,F,_),SR2 is sqrt(2.0), SR2_3 is
SR2*SR2*SR2, A is D/(24SR2_3), MA is -A, MD is -D,
asserta(vertex{F, MA MD,1)), asserta{vertex(F, MD,MA,2)),
asserta(vertex{F MD,A,3)), asserta(vertex(F MA D, 4)),
asserta(vertex(F,A,D,5)), asserta(vertex(F,D,A,6)),
asserta(vertex(F,D,MA,7)), asserta{vertex(F,A,MD,8)),
asserta(vertex(F,MA,MD,9)).

/‘==s=a==ﬂ=========--—==-=aam=-n’-

| SCALE

tmm = i

scale _(Z):-keep(scale __{Z)).

/*====ﬂﬂ=-- =X IR - TR 10N T 2 2N R

| TEXT

+ _--— . - - - —ﬂ-‘/

text _(T):--keep(text _(T)).

textval _(T,V):-keep(textval _ (T V)).
v _just(T,J):-keep(v __ just(T.J)).
h_just(T,J):-keep(h _just(T,J)).

/‘s-— == SR R 2N A R MR THR SN R 2N S EEE I SR

| Tranformation Matrix

+ —=-=-=========—======="/

tm(P,1,T11,T12,T13,
T21,T22,T23,
T31,T32,T33):-transl(P,X,Y.1), J is I+1, tm(P,J, T11,T12,T13,T21,T22,
T23,531,532,533), T31 is X*T11+Y*T21+S31,
T32 is X*T12+Y*T22+532, T33 is X*T13+Y*T23+533.
¢m(P,,T11,T12,T13,
T21,T22,T23,
T31,T32,T33):-mirrorx(P,1}, J is I+1, tm(P,J,$11,512,513,T21,T22,
T23,T31,132,T33), T11 is -$11, T12 is -S12, T13 is -513.
¢m(P,,T11,T12,T13,
T21,T22,T23,
T11,T12,T13)-mirrory(P 1), J is I+1, ¢tm(P,J,T11,T12,T13,521,522,
§23,T31,T32,T33), T21 is -521, T22 is -522, T23 is -523.
tm(P,,T11,T12,T13,

255

T21,T22,T23,

T11,T12,T13):-rotate(P,A BI), J is I+1, C is sqrt(A*A+B*B),
tm(P,J,Sll,S12,513,521,S22,823,T31,T32,T33).
T11 is (A*S11+B*S21)/C, T12 is (A*S12+B*S22)/C,
T13 is (A*S13+B*S23)/C, T21 is (A*S21-B*S11)/C,
T22 is (A*S22+B*S12)/C, T23 is (A*S23+B*513)/C.

tm(P,1,1,0,0,

0,1,0,

0,0,1)-- \+eranul(P,_,_,I),\+mirrorx(P,I),\+mirrory(P,I),
\+rotate(P,_, I).

/‘==-=--t=--ﬂaaa-a----=====-=====

| VERTICES

vertex_(S,X,Y,I):-vertex(S,A,B,I).\-i-item_inst(_,S,_),vx2(S,F,G),
X is F*A/G, Y is F*B/G.

vx2(S,F,G):~comptd _ scale(S F.G).

vx2(S,F,G):- \+comptd_scale(S,F,G),has(M,S),scale(M,Fl,G),vx3(F‘1,F),
asserta{comptd _ scale(S,F,G)).

vx2(S,F,G}- \+comptd__scale(S,F,G),has(M,S},\+scale(M._,_),vx3(1,2),
asserta{comptd _scale(S,F,G)).

vx3(LJ):-keep(scale __(2)),] is Z%1/1.0e8.

vx3(L,J):- \+keep(scale__(_)),J is I/1.0e8.

vertex___(S2,X,Y,I):-cal]_aym(S,M),vth(S,S2),tm(S,1,Rl,R2,0.R3,R4,0,X,Y,l),
vexfin(S2,R1,R2,R4),1 is 1. .
*vtx2(8,5):- \+ncall(_,S).
vx2(S,52):-ncall(S2,8).
vtxfin(S,0,R2,0):-R2>> =0, asserta(orient _(5,0,0,90)).
vtxﬂn(S,0,R2,0):~R2<0,asserta(orient__(S,0,0,-DO)).

[*v*

vtxfin(S,R1,R2,R1):-R1=m0 A is atan(R2/RI)Auao.o,merta(orient_(S,0,0,A)).
vixfin(S,R1,R2,R1):-R1mm=0 A is atan(R2/R1),A==0.0.

[*ve
vexin(S.RLR2R4):-R1\==R4,R1\==0,A is atan(R2/R1),
asserta(orient _ (S,180,0,A)).
vertex _(S5,X,Y I):-keep(vertex (S XY, I)).

/’:---:-s—=-=-==-=an=-=-a===-==a====l

| WIRES

4 2 = T e oy wm - £ = ‘/

wire__(W)-wire(W,Wid),\ +item _inst{_,W, _)
width _ (W, Wid).-wire(W,Wid),\ +item _inat(W,)

/'—x == e = Rttt T T T e —

256

| Macro Calls

S ==mmspe—==—= == ;===============‘/

macro__call(S,N):-call _sym(S,X),\+ncall{ _,S),mc2(N,X).

macro_call{S,N)-keep(macro __call(S,N)).
me2(N,X):-map(N,X}.
mc2(X,X):- \+map(__,X).

* - 2 2 e e
| General
o ey S S S I S T S E

== aa‘/

item _ inst(X,Y,2):-keep({item _ inst(X,Y,Z)).
ancall(S,T}):-keep(ncall(S,T)).

map(X,Y }:-keep(map(X,Y)).
macro_inst(X,M,]):-keep(macro _inst(X.M,I)).

257

Rules for Translating Generic Data into CALMA Data (CALMA Output Rules).
[* < <gdsoutrul @ 8/8/84:12:47>> ¥/

box(Bx):-polygon —(Bx),vertex_ (BxX,Y,1),vertex _(Bx,X,Y,5),\+vertex _ (Bx,_,_,8),
vertex _ (Bx,X2,Y2,2),vertex _(Bx,X4,Y4,4),A is X2-X, B is Y2-Y,
Cis X4X, D is Y4-Y, L1 is C*C+D*D, L2 is A*A+B*B,
((C-A)*(C-A)+(D-B)*(D-B)) ==:s= L1+L2.
bdry(B):-polygon _(B),\+box(B). :
path(P):-wire__(P).
stret(S):-macro_def(S).
sref(T,N):-macro_call(T,N),name(T,TL),\ +contains(TL," _ _ ")
arel‘(S,N):-ma.cro_call(T,N).name(T,TLB),append(TL,"_ _1
keep(aref(T2,N)),asserta{ar(T2,T,N)),fail.
aref(S,N):-macro_call(T,N),name(T,TL),contains(TL,” _ _"),
\+ar(_,T,_)retr(has_(_,T)),retr(magnif_(T,_)),
retr{orient _(T,_,_,_))fail.
aref(S N)-retract(ar(S,T,N)),reth(S,T),retm(S,T),reto(S,T).
reth(S,T)-retract(has_ (A, T)),asserta(bas_ (A,S)),fail.
reth(S,T).
retm(S, T)-retract(magnif _(T,A)),asserta(magaif _{S,A})fail.
retm(S,T).
reto(S,T):-retract(orient _(T,A,B,C)),asserta(orient __(S,A,B,C)),fail.
reto(S,T).
text(T)-text _(T).
rode(N):-keep(node(N)).
dtatyp{S,X):-keep(dtatyp(S,X)).
pathtype(S X):-keep(pathtype(S,X)).
nodetype(S,X):-keep(nodetype(S,X)).
texttype(S,X):-keep(texttype(S,X)).
boxtype(S,X):-keep(boxtype(S,X)).
fonts(F,N):-keep(fonts{F,N)).
generations(G):-keep(generations{G)).
db__user_ unit(U):-keep(db _ user _unit(U)).
db__unit _ meter(U):-scale _(U).
xy(S.X,Y I):-vertex__($,X,Y,I),\+macro_call(S,).
xy(S.X,Y,I):-vertex _{S,X,Y,I},macro_call(S, _),name(S,SL),\+contains(SL,"_ _").
xy(S,X,Y,I):-vertex_(M,RX,RY,I),name(M,ML),indexL(bﬂ,,"__ 1__1°P),
L is P-1,substrL(ML,SL,1,L),name(S,SL),keep(aref(S, _)),
keep(rows(S,RM)),keep(columns(S,CM)),
name(RM,RML),name(CM,CML),append(SL," _ _ " Nml),
append(Nm1,RML Nm2),append{Nm2,” _ _ ",Nm3},append(Nm3,CML,NmL),
name(Nm,NmL),
vertex_ (Nm,X2,Y2,1),X is RX-{X2-RX)/{CM-1), L is 1,
Y is RY-(Y2-RY)/(RM-1),asserta{xy _(5,X2,Y,2)),
asserta(xy _(5,X,Y2,3)).
xy(S.X,Y,I):-xy _(S.X,Y.]I).
lyr(S,L):-layer _(S,L).
has(X,Y):-has _ (X,Y).
width(S, W):-width _ (S,W).
reflections(S):-orient _ (S,180.0, ,).
abs __mag(S):-macro_call(S),magaif _(S,__),\+relative__magnif(S).

i

1" TLB),name(T2,TL),

258

abs_angl(S)~-macro__call(S),orient _(S, _,_,__),\\+relative _orient(S).
columns(S,C):-keep(columns(S,C)). -
rows(S,R):-keep(rows(S,R)}).

font _no(T,1):-tfont(T, roman).

font _no(T,2):-tfont(Titalic).

vert _ptes{S,N)-v_just(S,N).
horz_pres(S,N):-h _ just(S,N).
string(S,Str):-textval _(S,Str).
mag(S,M):-magnif _(5,M).
angle(S,A)-orient(S, _,_,A).
propval($,P,V):-keep(propval(S,P,V)).

259

APPENDIX L
GENERIC FACTS CREATED FROM SOURCE TDL

node(node_1). node{node_2). node(node _3). node(node _4).
node{node_5). node(node__6). node(node __7). node(node _ 8).
node(node _9). node{node _ 10).node(node __ 11).node(node _12).
node(node__ 13).node(node _ 14).node{node__15).node(node_186).
node(node__17).node(node_ 18).n0de(node _ 19).node(node__20).
net(qb). net(q). net{mand _ _1). net(nand _ _e).

net(i). net(nand _ _d).net(nand _ _c)-met(nand _ _b).
net(nand _ __a).net{net_1), net(net _2). net(net_3).
Det(net _4). net(net_5). net(net _6). net(net_7).
net(net _8). net(net_9).

box(dev1). box{dev2). box(dev3). box(dev4).
box(dev5). box(dev8). box(dev7). box(g _ _nand).

box(h _ _ nand). box(dev8). box(dev9). box(ext).
box__type(not). box __type(nand). box_type(dig_ _2_ naad).
box _type(dig_ _3_ _nand). box _type{exterior).
net_type(nt_1). net_type(nt_2). net _type(at__3).
net _type(nt_ 4). net _type(nt_5). net _type(nt_6).
net_type(nt_7). net _type(nt_8), net_type(nt_9).
net _type(nt__10). net _type(nt__11), net__type{nt_12).
et _type(nt_13). net _type(nt_ 14). net _type(nt__15).
net__type(nt_ 16). net _type(nt__17). net__type(nt__18).
node _ type(inl). node_ type(outl). . node _ type(in2).
aode__type(in3). " node_type(ogb). node__type(oq).

node__type(pc). node __type(ps). node _type(k).
node__type(j). node_ type(clock). node _ dir(out).

vode_ dir{in).

connected(dev5,net_9,n0de_ 19). conected(dev2,net _8,n0de _8),
connected(dev L,net__7,node_8). connected(devl,net_ﬂ,node_ 10).
connected(dev2,net _5,node _ 10). connected(dev3,net _4,node_16).
connected(dev4,net_ 3,node_ 186). connected{dev8,net _2,node_ 20).
connected(dev9,net _1,node_ 20). connected(devl,nand _ _a,node__11).

connected(devl,qb,node _9). connected(dev2,nand _ _b,node_ 11).
connected{dev2,q,node _9). connected(dev3,nand _ _c,node_17).
connected(dev3,nand _ _a,node_15), connected(dev3,nand _ _d,node _ 18).
connected(dev4,nand _ _ d,node _17). connected(dev4,nand _ _ b,node_ 15},
connected(dev4,nand _ _c,node _18). connected(dev5,i,node_ 20).
connected(devB,nand _ _ e,node _14). connected(dev6,nand _ _c,node _13).
connected(dev,inode _12). connected(dev7,nand — _Tnode__14),
connected(dev7,nand _ _ d,node _13). connected(dev7,inode_12).

connected(g__ _nand,q,node _17). connected(g _ _ nand,nand _ _e.node__ 16).

260

connected(g__ _ nand,qb,node_15). connected(k _ _ nand,qb,node__17).
connected(h _ _ nand,nand _ _ f,node_16). connected(h _ _ nand,q,node__15).
connected(devs,q,node _19). connected(dev®,qb,node _ 19).

connected(ext,net _9,node_5). connected(ext,net_8,node _5).
connected(ext,net_7,node__5). connected(ext,net_6,node__4).

connected(ext,net _5.node__3). connected(ext,net__4,node_2).

connected(ext,net _3,node _1). connected(ext,net__2,node_7).
connected(ext,net __1,node_6).

has__(nand _ _ant_18). has_(naad _ _ b,nt_17).

has__(nand_ _c,nt_16). .

has_(nand _ _d,nt_15). _ has_{i,nt__14). has_(nand _ _ent_13).
bas _(nand__ _fnt_12). ~ has_(qat_11).has_ (qb,n¢_10).

has_(net_1nt_9). has_(net_2,nt_8). has_(met_3,nt_7)
has_(net_4,;nt_6). has_(net_5nt_5). has_(net_6,nt_4).
has_(uet_7mnt_3). has_(net_8nt_2). has_(net_9,nt_1).
has_(not,node _20). has_ (node__20,0utl). has__(not,node_19).
bas__(node_19,in1). has_ (nand,node_18). has_ (node_18,in3).
bas_(nand,node__17). has_ (mode_17,0utl). haa_ (nand,node_16).
has_(node__16,in1). has_ (nand,node _15). has_ (node_15,in2).

has_(dig_ _2_ _ nand,node_14). has _(node _ 14,0utl).
has_(dig_ _2_ __nand,node_13). has_ (node_13,inl).

has_ (dig___2_ _ naad,node_12). has_ (node__12,in2).

has_ (dig__ _3_ _ nand,node__11). has_ (node_ 11,0utl).

has_ (dig__ _3_ _-nand,node_10). has_ (node_ 10,in1).
has_(dig__ _3_ _ naad,node_9). has__(node_9,in2).

has__(dig__ _3_ _ nand,node_8). has_(node_ 8,in3).

has _(exterior,node__ 7). has_ (node__7,0q). has__(exterior,node_6).
has__(node_6,0qb). has_ (exterior,node_5). has_ (node_ 5.clock).
has_ (exterior,node__4).has _(node__4,j). has_ (exterior,node _3).
has_(node_3k). has_(exterior,node _2). has_ (node_ 2,ps).

has__(exterior,node_1).has_(node_1,pc).

has_(devldig_ _3_ _ nand). has_(dev2,dig_ _3_ _ nand).
has__(dev3,nand). has_(dev4,nand). has _{dev5,not).
bas__(dev6,dig___2___ nand). has_(dev7,dig_ _2_ _ nand).
has__ (g_ _nand,nand).bhas__(h__ _nand,nand}.has__(dev8,not).
has__{dev9,not).

has_ (node__10,in). has_(node__13,in). has__(node__16,in).
has_ (node__19,in). has_ (node_ 11,0ut). has_(node_ 14,0ut).
has_(node_17,0ut). has_(node_20,0ut). has_ (node_9,in).
has_ (node_12,in). has_(node _15,in). has _(node_8,in).
has_(node_ 18,in). has_(node _6,0ut). has _(node 7 out).
has__(node_1,in). has__(node_ 2,in). bas_{node_3,in).
has_ (node_4,in). has__(node_5,in). has_(ext,exterior).

261

APPENDIX M

GENERIC FACTS CREATED FROM SOURCE CALMA DATA

polygon __{i__3). polyéon —{i_4).polygon _ (i_6).polygon _(i_12).

polygon _ (i__13).

polygon _(i_15). = polygon_(i_18). polygon _ (i__17). polygon __(i_18).
polygon _ {i_20). polygon _ (i__23). polygon _ (i_ 24). polygon _ (i__25).
polygon _(i__286).

wire__(i_9). wire_(i_10). wire_ (i_11).

macro _ def{dev). macro_ def(t18).

macro__call(i_8,t18). macro_call(i_ 14_ _1__1418).

macro__call(i _14_ _1_ _ 2,t18). macro_calli_14___2_ _1,418).

macro_callli _14_ _2_ _2,t18). macro_calli _7___1_ _1.t18). .
macro_callli _7_ _1_ _ 2,t18). macro_callli_7__1_ _3418).
macro__call(i _7_ _2_ _1,t18). macro_calli_7_ _2_ _2.t18).
macro_callli_7_ _2___ 3,18).

scale _(100000000).

layer _(i_3,40).layer _(i_4,1). layer (i
layer _{i__11,10).
layer__(i__16,11).
layer_ (i_ 23,2).]ayer_ (i__

layer _ (i__10,10).
layer _(i_15,11).
layer _(i_20,10).

layer__(i_26,4).1ayer _(i__32,16).

-6,10).layer_ (i_9,10).

layer _(i__ 12,3).Jayer _(i"_13,11).
layer _(i_17,11).
24,2).1ayer_ (i__25,10). -

layer _(i_18,11).

vertex_(i_7_ _2_ _ 3,46000,3000,1). vertex_(i_7__2_ 2,42333,3000,1).
vertex_(i_7_ _2_ _1,38667,3000,1). vertex (i _7_ __1__ 3,46000,1500,1).
vertex (i _7_ __1_ _2,42333,1500,1). vertex_(i_7_ _1_ _1,38667,1500,1).
vertex_{i_14__2__2,41000,10250,1). vertex _(i_14_ _2_ _1,41000,6625,1).
vertex (i _14_ _ 1_ _ 2,43500,10250,1). vertex _(i_14_ _1_ _1,43500,6625,1).
vertex _(i_3,53250,3000,1). vertex_ {i_3,53250,-1250,2). vertex _(i_3,46750,-1250,3).
vertex_(i_3,46750,3000,4). vertex __(i__3,53250,3000,5). vertex _ (i__4,52000,3000,1).
vertex__{i__4,52000,0,2). vertex _ (i_4,46750,0,3). vertex _ (i _4,46750,3000,4).
vertex __(i__4,52000,3000,5). vertex_(i_6,50500,3000,1). vertex _(i_6,51750,3000,2).
vertex _(i_6,51750,2750,3). vertex__(i__6,50500,2750,4). vertex _(i__6,50500,3000,5).
vertex _ (i__8,46750,0,1). vertex _(i_9,47500,3000,1). vertex _(i__9,47500,2750,2).
vertex_ (i_10,51000,2750,1). vertex _(i__10,51000,2500,2). vertex _(i_10,50000,2500,3).
vertex__(i__10,50000,750,4). vertex _(i_10,49500,750,5). vertex _ (i__11,51000,500,1).
vertex _(i__11,51000,0,2). vertex _(i__11,47500,0,3). vertex_ (i_11,47500,500,4).
vertex _(i__12,53250,3000,1). vertex _ (i_ 12,563250,2000,2). vertex _(i_12,48000,2000,3).

vertex _(i_12,48000,1250,4).
vertex__(i__12,53250,2000,7).

vertex _ (i__ 12,46750,3000,10).

vertex _(i_ 13,48000,1250,1).
vertex_ (i__13,48000,500,4).

vertex_ (i_15,50500,1500,2).
vertex _(i_15,51500,1500,5).

vertex _ (i_12,48750,1250,5).
vertex _{i__ 12,53250,-1250,8).
vertex _ (i_12,53250,3000,1 1}
vertex _ (i__13,47250,1250,2).
vertex _{i _13,48000,1250,5).
vertex _(i__15,50500,500,3),
vertex_ (i_16,51500,3000,1).

262

vertex _ (i_12,48750,2000,6).
vertex _(i_ 12,46750,-1250,9).

vertex _ (i__ 13,47250,500,3).
vertex _(i__15,51500,1500,1).
vertex _(i_15,51500,500,4}.
vertex _(i__16,51500,2750,2).

vertex _ (i__16,50500,2750,3).
vertex _ (i__17,48000,2750,1).
vertex _ (i__17,48000,2000,4).
vertex _(i__18,48750,2750,2).
vertex _ (i__18,49500,2750,5).

vertex _ (i__20,2800,2000,3).
vertex _(i_ 23,1300,1300,1).
vertex _ (i__23,1300,1900,4).
vertex _ (i_ 24,1900,1300,2).
vertex _(i__24,1700,1300,5).
vertex _ (i_25,1200,2500,3).
vertex__(i__25,1500,1200,6).
vertex _(i_25,1200,2000,9).
vertex _(i__26,1400,1300,1).
vertex _(i__26,1400,1900,4).

vertex _ (i_16,50500,3000,4).
vertex _(i__17,47250,2750,2).
vertex__(i__17,48000,2750,5).
vertex _(i__18,48750,2000,3).

vertex _(i__20,2000,2800,1).
vertex __(i_20,2000,2000,4).
vertex__(i__23,1600,1300,2).
vertex__(i_23,1300,1300,5).
vertex __(i__24,1900,1900,3).
vertex _(i__25,400,2800,1).

vertex_ (i__25,1700,2500,4).
vertex __(i__25,1500,2200,7).
vertex _{i_25,400,2000,10).
vertex__(i__26,1500,1300,2).
vertex_ (i_ 26,1400,1300,5).

vertex _ (i__16,51500,3000,5}.
vertex _ (i__17,47250,2000,3).
vertex_(i__18,49500,2750,1).
vertex _ (i__18,49500,2000,4).
vertex _(i__20,2800,2800,2).
vertex _(i__20,2000,2800,5).
vertex _(i__23,1600,1900,3).
vertex_ (i__24,1700,1300,1).
vertex _ (i__24,1700,1900,4).
vertex _ (i__25,1200,2800,2).
vertex _(i__25,1700,1200,5).
vertex _(i__25,1200,2200,8).
vertex _ (i__25,400,2800,11).
vertex _ (i__26,1500,1900,3).
vertex _(i__32,1400,2475,1).

width _(i_9,150). width _(i_10,150). width_(i_ 11,150).
orient _(i__8,0,0,0). orient _ (i__32,0,0,0).
has_(dev,i_7___2__3) ‘has_(dev,i_7_ _2__2).

has_(devi_7__1__3)
has_(dev,i_ 14 _

_2__12).
has_(dev,i_14_ 1 __1}.

has_(dev,i_8). has_ (dev,i_9).has_ (dev,i_10).

has_(dev,i_7__1__2).

has_ (dev,i_ 14__2____ 1).

has_(dev,i_7_ _2__1)
has_(dev,i_7_ _1_ 1)
has _(dev,i_14_ _1_ _2).

has_(dev,i_3).has_ (dev,i__4). has_ (dev,i_6).

has _ (dev,i_11).

has_(dev,i_ 18).
has_(t18,i_25).

has__(dev,i_12). has_ (dev,i_ 13).

has__(dev,i__15). has_(dev,i__186). has_ (dev,i_17).
has_ (t18,i _20). has_{t18,i_23). has_(t18,i_24).
has_(t18,i_26). has _{t18,i_32).

magoif _(i_14_ _2_ .20.5). magnif _(i_14_ _2_ _1,0.5).
magnif _(i_14_ _1_ _2,0.5). magoif _(i_14_ _1_ _1,0.5).

magnif _ (i_14,0.5).

relative__orient{i_8).
text _ (i _32).
h _just(i__32,center).

magnif _(i__32,0.1).
relative _orient(i__14). relative_ magpif(i__14).
textval _(i_32,[84,49,58|).

v__just(i_32,middle).

263

APPENDIX N
CIF DATA OUTPUT FROM GENERIC FACTS

13

dbid('test.db’,cif,'1.0",'7/26/84:21:55').

content([polygon(poly _1),

polygon(i_ 12), polygon(i__25),

box(box __1,300,50,725,800), box(i __26,600,100,1450,1600),
box{box __2,300,100,900,800), box(i__24,600,200,1800,1600),
box(box_3,300,150,725,800), box(i_23,600,300,1450,1600),
box(box _ 4,400,400,1200,1200), box(i_ 20,800,800,2400,2400),
box(i_18,750,750,49125,2375), box(i_17,750,750,47625,2375),
box(i_ 16,1000,250,51000,2875), box(i _ 15,1000,1000,51000,1000)
box(i_13,750,750,47625,875), box(i_6,250,1250,51125,2875),
box(i_4,5250,3000,49375,1500), box(i_3,6500,4250,50000,875),
wire(i_11,150), wire(i__10,150), wire(i__9,150),

def__sym('#1’), def _sym('#2'), def_sym('#3’),

has{'#1',box _4), - has('#3'i _8), has('#3i_7_ _1_ _1),

has('#3i_7_ _1__2), has('#3'i_7_ _1__3), bas('#3'.i_7_ _2_
has('#3'i_7_ _2_ _2) has('#3',i_7__2_ _3), has('#1',box__3),
has{"#1',box _2), has("#1’box _1), has('#1’,poly _1),

has(’#3’,mcall _4), has(’#3',mcall_3), has(’#3’ meall __2),
has('#3’ meall _1}), bas('#2'i__26), has('#2',i_25),

has('#2'i _24), has('#2',i_23), has(#2'i_ 20),

has('#3',i _18), has('#3i_17), has('#3'i _16)

has{'#3'i _15), has('#3",i_13), has('#3",i_12),

has('#3',i _11), has('#3",i_10), has("#3'i_9),

has('#3'i _6), has('#3',i_4), bas('#3'i_3),

scale('#3',1,1), scale('#2',1,1), scale('#1',1,1),

call__sym(mcall__4,'#1’), call _sym(mecall _3,'#1'), call_sym(meall _2,'#1’),

call__sym(mecall _1,'#1"), call_sym{i_7_ _2__3'#2),

call _sym(i_7__2_ _2'#2), call_sym(i_7__2_ __1'#2),

call _sym(i _7_ _1_ _3'#2), call _sym(i _7_ _1_ _2'#2),
call_sym(i_7_ _1_ _1,#2), call _sym({i_8,'#2),

transl(i_8,46750,0,1), transl(i_7_ _1_ - 1,38667,1500,1),

transl{ii_7_ _1_ —2,42333,1500,1), tramsi(i_7_ _1_ _.3,46000,1500,1),
translfi_7__2_ _1,38667,3000,1), translfi_7_ _2_ _2.42333,3000,1),
transl{i _7_ _2_ _3,46000,3000,1), transl(mecall _1,41000,10250,1),
transl(mcall_2,41000,6625,1), t.ransl(mcall_3,43500,10250,1),
tra.nsl(mcall_4,43500,6625,1),

totate(i__3,-6500,0,1), rotate(i__4,-5250,0,1),

rotate(i _ 6,0,-250,1), rotate(i__13,0,-750,1),

rotate(i__15,0,-1000,1), rotate(i_ 16,-1000,0,1),

rotate(i _17,0,-750,1), rotate(i_ 18,0,-750,1),

264

rotate(box _4,0,-800,1),

rotate(box _3,0,600,1),

rotate(box _ 2,0,600,1),

rotate(box _1,0,600,1),
vertex(i__ 25,400,2800,11),
vertex(i__25,400,2000,10),

- vertex{i__25,1200,2000,9),
vertex(i__25,1200,2200,8),
vertex(i__25,1500,2200,7),
vertex(i__25,1500,1200,6),
vertex(i__25,1700,1200,5),
vertex(i__25,1700,2500,4),
vertex(i__25,1200,2500,3),
vertex(i_25,1200,2800,2),
vertex{i__25,400,2800,1),
vertex(i__12,46750,3000,10),
vertex(i _12,53250,-1250,8),

rotate(i__20,0,-800,1),
rotate(i_23,0,600,1),
rotate(i__24,0,600,1),
rotate(i__26,0,600,1),
vertex(poly _1,200,1400,11),
vertex(poly _1,200,1000,10),
vertex(poly _ 1,600,1000,9),
vertex(poly _1,600,1100,8),
vertex{poly _1,750,1100,7),
vertex{poly _1,750,600,6),
vertex{poly _1,850,600,5),
vertex{poly _1,850,1250,4),
vertex{poly _ 1,600,1250,3),
vertex(poly _ 1,600,1400,2),
vertex(poly _1,200,1400,1),
vertex(i _12,53250,3000,11),
vertex(i_12,46750,-1250,9),

vertex(i__12,53250,2000,7),
vertex(i__ 12,48750,1250,5),
vertex(i__12,48000,2000,3),
vertex(i__12,53250,3000,1),

vertex(i__12,48750,2000,6),
vertex(i_12,48000,1250,4),
vertex{i__12,53250,2000,2),
vertex{i__11,47500,500,4),

vertex(i__11,47500,0,3), vertex{i_ 11,51000,0,2),
vertex(i_11,51000,500,1), vertex(i__10,49500,750,5),
vertex(i__10,50000,750,4), vertex(i__10,50000,2500,3),
vertex(i__10,51000,2500,2), vertex(i_10,51000,2750,1),
vertex(i_9,47500,2750,2), vertex(i__9,47500,3000,1),
layer(i__4,nd), layer{box_3,up), layer(box _ 2,np),
layer(i__24,np), layer(i__23,0p}), layer{i_12,nm), '
layer{box _4,110), layer(box _1,M4),
layer(i__26,14), layer(i__25110), layer{i__20,110),
layer(i_18,111), layer(i__17,111), layer(i __16,}11),
layer(i__15,111), layer(i__13,111), layer{i__11,110),
layer(i__10,110), layer(i_9,10), layer{i__6,110),
layet(i_3,140),

dummy]).

layer{poly _1,110),

285

GENERIC DATA FROM CIF DURING REVERSE TRANSLATION

APPENDIX O

polygon _ (i _12). polygon _(i_25), polygon _(i_26).
polygon __(i__24). polygon _ (i__23). polygon _(i__20).
polygon _ {i__18). polygon _(i_17). polygon _ (i__186).
polygon _(i__15). polygon _(i_13). polygon _ (i__6).

poiygon _ (i_4).polygon _(i_3).

wire _(i_11). wire_(i_10).
macro _ def(t18).

macro_callli _7_ _2_
macro_callli_7__ _1_
macro_call(i_7__ _1_
macro__call(i__14 _
macro_call(i _14_ _1

scale _(100000000).

macro_ def(dev).
_2,118).
_3,t18).
_Lt18).
_2__248).
__2,u8).

wire_ (i_9).

macro_call(i_7_
macro__call(i_7_

macro__call(i__ 14 _

layer _(i__4,1). layer__ (i_24,2).1ayer _ (i__23,2).
layer _(i_12,3).layer _(i_ 26,4).layer __(i_25,10).

layer _ (i__20,10).
layer _(i_16,11).
layer _{i_11,10).

layer_ (i_18,11).
layer _(i_15,11).
layer _(i__10,10).

layer _(i__6,10).1ayer _(i__3,40). layer _(i__32,16).

vertex _(i__3,53250,-1250,5).
vertex _(i__3,46750,3000,3).
vertex _(i_3,53250,-1250,1).
vertex__f{i__ 4,52000,3000,4).
vertex _(i_4,46750,0,2).
vertex _ (i_6,51750,3000,5).
vertex _(i__6,50500,2750,3),
vertex _(i_6,51750,3000,1),
vertex_ (i__13,47250,1250,4).
vertex_ (i_ 13,48000,500,2).
vertex (i_15,51500,1500,5).
vertex _ (i__15,50500,500,3).
vertex _(i_15,51500,1500,1),
vertex_ (i _16,51500,3000,4).
vertex _(i_16,50500,2750,2).
vertex__(i_17,48000,2750,5).
vertex__ (i _17,47250,2000,3).
vertex _(i_17,48000,2750,1).
vertex_ {i__18,48750,2750,4),
vertex _(i_18,49500,2000,2).
vertex _(i_20,2800,2800,5).

vertex _(i__3,53250,3000,4).
vertex __(i_3,46750,-1250,2).
vertex _{i__4,52000,0,5).
vertex_(i_4,46750,3000,3).
vertex _ (i__ 4,562000,0,1).

i vertex_(i_6,50500,3000,4).

vertex__(i_6,51750,2750,2).
vertex _ (i_ 13,48000,1250,5).
vertex _ (i__ 13,47250,500,3).
vertex _(i__ 13,48000,1250,1).
vertex_ (i__15,50500,1500,4).
vertex _(i_15,51500,500,2).
vertex__(i__16,51500,2750,5).

vertex _ (i__16,50500,3000,3).

vertex__(i__16,51500,2750,1).
vertex_ (i__17,47250,2750,4).

vertex _ (i_ 17,48000,2000,2),

vertex__ (i_18,49500,2750,5).
vertex _(i_ 18,48750,2000,3).
vertex_ (i _18,49500,2750,1).
vertex_ (i__20,2000,2800,4).

268

macro _ call(i_ 8,t18).
2
macro_call(i _14_

macro__calli_7_ _2_ _3,18).
2-
1

_1Lu18).

__2418).

1

__1818).
__Lus).

layer _(i_17,11),
layer _ (i_13,11).
layer _(i_9,10).

vertex__(i_ 20,2000,2000,3).
vertex__(i_20,2800,2800,1).
vertex _(i_23,1600,1300,4).
vertex__(i_23,1300,1900,2).
vertex _ (i_24,1700,1300,5).
vertex _ (i__24,1900,1900,3).
vertex _(i__24,1700,1300,1).
vertex _ (i__26,1500,1300,4).
vertex _ (i_26,1400,1900,2).
vertex _(i__25,400,2800,11). .
vertex _{i__25,1200,2000,9).
vertex__(i__25,1500,2200,7).
vertex_ (i__25,1700,1200,5).
vertex _(i__25,1200,2500,3).
vertex _ (i__25,400,2800,1).
vertex __ (i__12,46750,3000,10).
vertex__(i__12,53250,-1250,8).
vertex _ (i__12,48750,2000,6).
vertex _(i__12,48000,1250,4).
vertex _ (i_12,53250,2000,2).
vertex_ (i_11,47500,500,4).
vertex_(i__11,51000,0,2).
vertex _ (i__10,49500,750,5).
vertex__(i__10,50000,2500,3).
vertex__(i__10,51000,2750,1).
vertex _ (i__9,47500,3000,1).
vertex _(i_14_ _1_
vertex_ (i__ 14 _
vertex _(i_7__2_
vertex_(i_7__1_
vertex _(i_7_ 1 _
vertex __(i_32,1400,2475,1).
width _(i__10,150).
orient _(i__32,0,0,0).

kas_ (dev,i_8). has_ (dev,i_7_

bas_{dev,i_7 _
has_ {dev,i_7_
has__(t18,i__24).
bas__ (dev,i__18).
has_(dev,i_15).

_1__3).
—2__3).

_.2,43500,10250,1).
— 2 _2,41000,10250,1).
2,42333,3000,1). vertex (i_7_ _2_
__3,46000,1500,1). vertex_ (i_7_ _1_
1,38667,1500,1). vertex_(i_8,46750,0,1).

has_(t18,i_ 23).
bas__(dev,i__17).
has_ (dev,i__13). -

vertex _{i_20,2800,2000,2}.

vertex _ (i__23,1300,1300,5).

vertex _(i_23,1600,1900,3).

vertex _(i__23,1300,1300,1}.

vertex _(i__24,1900,1300,4).

vertex _[i__24,1700,1900,2).
vertex__(i__26,1400,1300,5}.

vertex _ (i_26,1500,1000,3).

vertex _(i__26,1400,1300,1).

vertex _(i__25,400,2000,10).

vertex __(i__25,1200,2200,8).

vertex _ (i_25,1500,1200,6).

vertex _ (i_25,1700,2500,4).

vertex _ (i__25,1200,2800,2).

vertex _ (i__12,53250,3000,11).

vertex _(i__12,46750,-1250,9).

vertex _(i__12,53250,2000,7).

vertex _ (i_12,48750,1250,5).

vertex _(i__12,48000,2000,3).

vertex _ (i_12,53250,3000,1).
vertex_(i__11,47500,0,3).

vertex _(i_ 11,51000,500,1).

vertex _(i_ 10,50000,750,4).

vertex _(i__10,51000,2500,2).
vertex_(i__9,47500,2750,2).

vertex _(i_14_ _1_ _ 1,43500,6625,1).
vertex_(i_14_ _ 2. _ 1,41000,6625,1).
vertex _(i_7__ 2__ 3,46000,3000,1).
" 1,38667,3000,1).
_2,42333,1500,1).

width _(i__11,150).

width _{i_9,150).

_1__1n. has_(devi_7__1_ _2)
has_(dev,i_7__2__1). has _{dev,i_7_ _2
has_(t18,i__26). has__(t18,i__25).

has_ {¢18,i_20).

has_{dev,i__16).

has__(dev,i_12).

has _(dev,i__11). kas__(dev,i__10). has_ (dev,i_9).
has__(dev,i_6).has_ (dev,i__4). has_ (dev,i_3).

has__(t18,i_32). bas_(dev,i_14_ _2_ _2). has_(dev,i_14_ _2_ _1).
has_(dev,i_14__1__2). has_(devi_14__1__1)

magnif _(i_14_ _2_ _2,0.5). magnif_(i_14_ _2_ _1,0.5).

magnif _(i_14_ _1_ _2,0.5). magnif_{i_14_ _1_ _105). .

magoif _(i__14,0.5). magnif _(i_ 32,0.1).

relative__orient{i__8).

relative _orient(i__14).
relative _ magnif(i__14).
text _(i_ 32).

textval _(i__32,{84,49,56)).

267

b __just{i_32,center).
v _just(i__32,middle).

268

APPENDIX P
CALMA OUTPUT DATA FROM REVERSE TRANSLATION

dbid(test.db,gds,'1.0','8/8/84:13:32").
content([fonts(gdsii:font.tx,2),
fonts(gdsii:font.tx,1),

generations(3),

db_user _ unit{1e-05),

db_unit _ meter{100000000),

strct{dev), stret{t18),

bdry(i_25), bdry(i_12),

path(i__9), path(i__10), path{i_11),
sref{i _8,t18),

aref(i_ 7,t18), aref(i_14,618),
text(i__32),

box{i__3), box(i_4), box(i__6),
box(i__13), box(i__15), box(i__16),
box(i__17), box(i__18), box(i_20),
box(i__23), box{i__24), box(i__26),

dtatyp(i_ 26,0}, dtatyp(i__25,0), dtatyp(i__ 24,0},
dtatyp(i_23,0), dtatyp(i__20,0), dtatyp(i__18,0),
dtatyp(i__17,0), dtatyp(i__16,0), dtatyp(i__15,0),
dtatyp({i_13,0), dtatyp({i_12,0), dtatyp(i_11,0),
dtatyp(i__10,0), dtatyp(i_9,0), dtatyp(i_6,0},
dtatyp(i__4,0), dtatyp(i_3,0),
xy{i__32,1400,2475,1), xy(i_9,47500,3000,1),
xy(i__10,51000,2750,1), xy(i_ 10,51000,2500,2),
xy(i_10,50000,750,4), xy(i__10,49500,750,5),
xy(i_11,51000,0,2), xy(i_11,47500,0,3),
xy(i_ 12,53250,3000,1), xy(i_ 12,53250,2000,2), xy(i_ 12,48000,2000,3),
xy(i_12,48000,1250,4), xy(i_ 12,48750,1250,5), xy{i_ 12,48750,2000,6),
xy(i_ 12,53250,2000,7), xy(i_ 12,53250,-1250,8), xy{i_ 12,46750,-1250,9),
xy(i__12,46750,3000,10),xy(i__12,53250,3000,11), xy{i __ 25,400,2800,1),

xy(i_9,47500,2750,2),
xy(i_10,50000,2500,3),
xy(i_11,51000,500,1),
xy(i_ 11,47500,500,4),

xy(i_ 25,1200,2800,2),
xy(i_25,1700,1200,5),
xy(i_ 25,1200,2200,8),
xy(i__25,400,2800,11),
xy(i_ 26,1500,1900,3),
xy(i__24,1700,1300,1),
xyl(i__ 24,1900,1300,4),
xy(i_ 23,1300,1900,2),
xy{i_23,1300,1300,5),
xy(i_20,2000,2000,3),

xy(i__25,1200,2500,3),
xy(i__25,1500,1200,6),
xy{i__25,1200,2000,9),
xy{i_ 26,1400,1300,1),
xy(i_ 26,1500,1300,4),
xy(i_24,1700,1900,2),
xy(i_24,1700,1300,5),
xy(i_ 23,1600,1900,3),
xy(i_20,2800,2800,1),
xy(i__ 20,2000,2800,4),

269

xy(i_ 25,1700,2500,4),
xy(i__25,1500,2200,7),
xy(i_ 25,400,2000,10),
xy(i_26,1400,1900,2),
xy(i_26,1400,1300,5),
xy(i__24,1900,1900,3),
xy(i_ 23,1300,1300,1),
xy(i_23,1600,1300,4),
xy(i_ 20,2800,2000,2),
xy(i__20,2800,2800,5),

xy({i_18,49500,2750,1),
xy(i__18,48750,2750,4),
xy(i__17,48000,2000,2),
xy{i_ 17,48000,2750,5),
xy(i__16,50500,3000,3),
xy(i_15,51500,1500,1),
xy(i_ 15,50500,1500,4),
xy(i_ 13,48000,500,2),
xy(i_13,48000,1250,5),
xy(i_6,50500,2750,3),
xy(i_4,52000,0,1),
xy{i_ 4,52000,3000,4),
xy(i_3,46750,-1250,2),
xy(i__3,53250,-1250,5),
xy(i_ 14,46000,3000,1),
xy(i___7,35001,3000,3),
lyr(i _32,16),
lyr(i_9,10),
lyr(i_13,11),
lye{i _17,11),
lyr(i _ 25,10),
fyr(i_23,2),

columas(i__14,2),
rows(i__14,2),

lyr(i _3,40),
lyr{i__10,10),
tyr(i_15,11),
lyr(i_ 18,11},
lyr(i-.26'4)l
lyr(i__24,2),
width(i__9,150), width{i__10,150),

rows(i__

xy{i_18,49500,2000,2),
xy(i_18,49500,2750,5),
xy(i__ 17,47250,2000,3),
xy(i_16,51500,2750,1),
xyli_ 16,51500,3000,4),
xy(i_15,51500,500,2),
xy(i__ 15,561500,1500,5),
xy(i_ 13,47250,500,3),
xy(i_ 6,51750,3000,1),
xy (i__6,50500,3000,4),
xy(i__4,46750,0,2),
xy(i_ 4,52000,0,5),
xy(i_3,46750,3000,3),
xy(i_8,46750,0,1),

xy{i_ 18,48750,2000,3),
xy(i_17,48000,2750,1),
xy(i_17,47250,2750,4),
xy(i_ 16,50500,2750,2),
xy(i_ 16,51500,2750,5),
xy(i _15,50500,500,3),

xy(i_13,48000,1250,1),
xy(i_13,47250,1250 4), -
xy(i_8,51750,2750,2),

xy(i_6,51750,3000,5),
xy (i _4,46750,3000,3),
xy(i_3,53250,-1250,1),
xy(i_3,53250,3000,4),
xy(i_7,35001,0,1),

xy(i_ 14,46000,10250,3), xy(i_ 14,41000,3000,2),

xy(i_7,46000,0,2),
lyr(i_8,10),
Iye(i_11,10),
lyr(i _16,11),
yr(i_ 20,10),
lyr(i__12,3),
lyr(i__4,1),

columna(i_ff,a),
7.2),

vert _pres(i_32,middle),
horz_ pres(i_ 32 center),

string(i__32,(84,49,56)),
mag(i_14,0.5),
has(dev,i__14),
has(dev,i_3),
has(dev,i_9),
has(dev,i _12),
has(dev,i__16),
has(t18,i_ 20),
has(t18,i__25),
dummy]).

mag(i__32,0.1),
bhas{dev,i _7),

has(dev,i__4),

has{dev,i_10),
has(dev,i_13),
has(dev,i _17),
has(t18,i _23),
has(t18,i_ 286),

mag(i__14,0.5),
has(t18,i_32),
has(dev,i__6),

has(dev,i_11),
has(dev,i__13),
bas(dev,i__18),
has(t18,i_24),
has(dev,i_ 8},

270

width(i_11,150),

APPENDIX Q
REVERSE TRANSLATION SYSTEM LOG, CIF TO CALMA

CProlog version 1.4d.edai
| Restoring file tranll.eav |

yes
| 1- translate('cif.out’, cifK.out’,’gds.out’, gdsK.out’,'test.db’ gds,'1.0°,'8/8//84:13:32").
cif.out consulted 5180 bytes 1 sec.

>> Translate: V10 <<

dbid(test.db,cif,1.0,7/26/84:21:55)

cifin.rul consulted 8572 bytes 1.8 sec.

cifKK.out consulted 2844 bytes 0.45 sec.

fromdb(test.db gds,1.4)

todb(test.dbcif,1.0)

Start Up 7.88 sec.
T=polygon _{_2049) 14 facts.
T=wire _(_2049) 3 facts.
T=macro_ def(_2049) 2 facts.
T=macro__call(__2049, 2050} 11 facts.
Temscale_(_2049) 1 facts.
T=layer _(_ 2049, _2050) 18 facts.
T=vertex_({_ 2049, 2050, 2051, _2052) 105 facts.
T=width _(__ 2049, _2050) 3 facts.
T=orient __{_ 2049, 2050, 2051, _2052) 1 facts.
T==has__(__2049, _2050) 29 facts.
Tw=magnif _(__2049, _2050) 6 facts.
T==relative__orient{__2049) 2 facts. .
Ta=relative _magnif(__2049) 1 facts.
Ta=text_(__2049) 1 facts.
Ta=textval _(_ 2049, _2050) 1 facts.
Ta=h _just(_ 2049, _2050) 1 facts.
Taxv_just{__2049, _2050) 1 facts.
T==tfont _{__2049,_2050) O facts.
Tamend _of _file 0 facts. -
200 facts total.

Generic 9.15 sec.

Keep 2.35 sec.

Unload 2.23 sec.

gdsout.rul consulted 5588 bytes 1.0167 sec.
T=fonts(__5625, _5626) 2 facts..

271

T==generations(_5625) I facts.

- T=db _ user _unit{_5625) 1 facts.
Tamdb _unit _ meter(_5625) 1 facts.
T=stret(_5625) 2 facts.

Ta=bdry(_5625) 2 facts.
T=path{__5625) 3 facts.
T=sref(__ 5625, _5626) 1 facts.
Tamaref(5625, _5626) 2 facts.
T==text{__5625) 1 facts.
T==node(_5625) 0 facts.
Ta=box(_5625) 12 facts.
T=xdtatyp(_5625, _5626) 17 facts.
T=epathtype(_ 5625, _5626) 0 facts.
Tamtexttype(_ 5625, _56268) 0 facts.
Tw==nodetype(__ 5625, _5626) O facts.
T==boxtype(__5625, _5626) O facts.
Ta=xy(_5625, 5626, 5627, _5628) 101 facts.
Ta=lyr(_ 5625, _5626) 18 facts.
T==width(__ 5625, _5626) 3 facts.
Ta=reflection(__5625) 0 facts.
Ta=abs_mag(_ 5625) O facts.
T==abs__ang)(_5625) 0 facts.
T==columns(__5625,_ 5626) 2 facts.
Ta==rows(_ 5625, _ 5626) 2 facts.
Ta=font _no(_ 5625, _5626) 0 facts.
T==vert_ pres{__5625,_5626) 1 facts.
Tw=horz _pres(5625, 5626) 1 facts.
Tamstring(__5625, _5626) 1 facts.
T==mag(_ 5625, _5626) 3 facts.
T=angle(__5625, _5626) 1 facts.
Ta=propval{_ 5625, 5626, _5627) 0 facts.
T==current _re(_ 5625, 5626, 5627) 0 facts.
T==has(_ 5625, _5626) 21 facts.
Ta=end _of _file 0 facts.

199 facts total.

dbid(test.db,gds,1.0,8/8/84:13:32)
Phase 2 16.75 sec.
Output Keep 2.53 sec.

Total time is 42.35 sec.

yes
| - halt.

[Prolog execution halted |

272

APPENDIX R
KEPT FACTS FROM CALMA TO CIF TRANSLATION

fromdb({’test.db’ gds,'1.4").
todb(’test.db’ cif,"1.0’}).
content([keep{angle(i_ 14,90}),
keep(xy{i__14,46000,8000,3)),
keep(xy(i__14,53250,3000,2)),
keep(xy(i__14,46000,3000,1)),
keep(xy(i__7,35000,3000,3)),
keep({xy{i__7,46000,0,2)),
keep(xy(i__7,35000,0,1)),
keep(columns(i _14,2)),
keep(columns(i__7,3)),
keep(rows(i__14,2}),
keep(rows(i_7,2)),
keep(aref(i._14,118)),
keep{aref(i__7,£18)),

keep(db __user _ unit{1e-05)),
keep{generations(3)),
keep{fonts(’gdsii:font.tx’,2)),
keep(fonts(’gdsii:font.tx’,1)),
keep(dtatyp(i__26,0)),
keep{dtatyp(i__25,0}),
keep(dtatyp(i__24,0)),
keep(dtatyp(i__23,0)),
keep(dtatyp(i__20,0}),
keep(dtatyp(i__18,0)),
keep(dtatyp(i_17,0)),
keep(dtatyp(i__16,0)),
keep(dtatyp(i__15,0)),
keep(dtatyp(i__13,0)),
keep(dtatyp(i__12,0)),
keep(dtatyp(i__11,0)),
keep(dtatyp(i__10,0)),
keep(dtatyp(i__9,0}),
keep(dtatyp(i__6,0)),
keep(dtatyp(i__4,0)),
keep{dtatyp(i_3,0)),
keep(map(minst _1,'#1")),
keep(map(t18,'#2')),
keep(map(dev, #3")),
keep(vertex _(i__32,1400,2475,1)),

273

keep(layer _{i _32,16)),

keep(has_ (t18,i _32)),

keep(relative _orient(i__8)),

keep(relative _orient(i_ 14)),
keep(relative _ magnif{i__14}),
keep(orient _ (i_32,0,0,0)),
keep(magnif_(i_14_ _2_ _2,0.5)),
keep(magnif _(i _14_ _2_ _ 1,0.5)},
keep(magnif (i _14_ _1 2,0.5)),
keep(magnif_(i__l*!__1__1,0.5)), ;
keep(magnif _(i_14,0.5)),

keep(magnif _ (i _32,0.1)),
keep(v__just(i__32,middle)),

keep(h _just(i_32,center)),
keep(textval _(i__32,{84,49,56))),
keep(text__(i__32)),

keep(ncall(i _14_ _2_ _2mcall_1)),
keep(ncall(i _14_ _2_ 1,mcall _2})),
keep(ncall(i_14_ _1_ _ 2,meall _3)),
keep(ncall(i _14_ _1_ _ 1,meall_4)),
keep(item _inst(minst _ Lpoly _1,i__25)),
keep(item _inst{minst _1,box _ Li_ 26)),
keep(item _inst(minst __ L,box _2,i_ 24)),
keep(item _ inst(minst _ 1,box_3,i_23)),
keep(item _ inst(minst _ 1,box _4,i_20)),
keep(macro_ inst(t18,0.5,minst __1)),
keep(scale __ (100000000)),
keep(macro_call(i _14_ _2 _.2,t18)},
keep(has _(dev,i_14_ _2__ 2)),
keep(macro_call(i_14_ _2_ _1,18)),
keep(has _ (dev,i_14__ _2__1)),
keep(macro_call(i _14_ _1_ ~2,t18)),
keep(has_(dev,i _14_ _1__2)),
keep(macro _call(i_14_ _1_ - 1,t18)),
keep(has_(dev,i_14_ _ 1__1)),
dummyl}. .

274

[IPC77]

[HP80]

[CALMS2]

[TDLS3]

[CVPC83)

{CVDBS83]

[Soft84]

[EDIF84]

References

‘“‘Printed Board Description = in Digital Form,”
ANSI/IPC-D-350B, Institute of Printed Circuits Ameri-
can National Standards Institute (August 1977).

“TESTAID III Programming and Operating Manual,”
91075-93018, Hewlett-Packard Company, Loveland,
Colorado (January 1980). Order from: Hewlett-Packard
Company; P.O. Box 301; Loveland, Colorado 80537.

“GDSH Reference Guide - Release 4.0,”” , The CALMA
Company, Woburn, Mass. (October 1982).

“TDL Preprocessor User and Reference Manual,”
COMSAT General Integrated Systems, Austin, Texas
(August 1983). (3rd Quarter Release) (CALMA now
owns the rights to TEGAS/TDL).

“CADDS 4 Printed Circuit / Electrical Schematic User
Guide,” 001-00240, Computervision Corp., Woburn,
Mass. (April 1983). Order from: Computervision Corp.;
100 Commerce Way; Woburn, Mass 01801 - ATTN:
Technical Publications.

“CADDS 4 Data Base Reference - Software Revision 2-
03-A,” 001-000168-001, Computervision Corp., Woburn,
Mass. (April 1983). Order from: Computervision Corp.;
100 Commerce Way; Woburn, Mass 01801 - ATTN:
Technical Publications.

System 1022™ Data Base Management System, User’s
Reference Manual, Software House, Cambridge, MA (Oc-
tober 1984).

“EDIF Electronic Design Interchange Format, Version
0.8," , EDIF Technical Committee (May 14, 1984).
(Preliminary Specification) (Committee comprised of
representatives from Daisy Systems, Mentor Graphics,
Motorola, National Semiconductor, Tektronix, and Texas
Instruments).

275

[Brac83a]

[Brac83b]

[Caro83]

{Ciam78a]

[Ciam76b]

[Cloc81]

[Dahl83]
[Date82]

[Gutt82)

[Hask82]

[KawaT7§]

Brachman, Ronald J., “What IS-A Is and Isn't: An
Analysis of Taxonomic Links in Semantic Networks,"”
Computer 16(10), pp.30-36 (October 1983).

Brachman, Ronald J., Richard E. Fikes, and Hector J.
Levesque, “Krypton: A Functional Approach to
Knowledge Representation,” Computer 18(10), pp.67-73
{October 1983).

Caro, Marilyn L., “‘Feasibility of a Knowledge-Based Ap-
proach to CAD/CAM Data Transfer,” , University of
California, Los Angeles (Fall 1983). (A Master’s
Comprehensive Examination).

Ciampi, P. L. and J. D. Nash, “Concepts in CAD Data
Base Structures,” pp. 290-294 in Proceedings 13th Design
Automation Conference (June 1976).

Ciampi, P. L., A. D. Donovan, and J. D. Nash, “Control
and Integration of a CAD Data Base,” pp. 285-289 in
Proc)ccdinga 18th Design Automation Conference (June
1976).

Clocksin, W. F. and C. S. Mellish, Programming in Pro-
log, Springer-Verlag, Berlin (1981).

Dahl, Veronica, “Logic Programming as a Representation
of Knowledge,”” Computer 16(10), pp.106-111 (October
1983).

Date, C. I, An Introduction to Database Systems,
Addison-Wesley, Reading, Mass. (February 1982).
Volume I, 3rd. Edition.

Guttman, A. and M. Stonebraker, “Using a Relational
Database Management System for Computer Aided
Design Data,” Quarterly Bulletin of the [EEE Comp. Soc.
Tech. Comm. on Database Engineering 5(2), pp.21-28
(June 1982).

Haskin, R. and R. Lorie, “Using a Relational Database
System for Circuit Design,” Quarterly Bulletin of the
IEEE Comp. Soc. Tech. Comm. on Database Engineering
6(2), pp.10-14 (June 1982).

Kawano, Ietoshi, Hiroshi Fukushima, and Takeshi Numa-
ta, “The Design of a Data Base Organization for an Elec-
tronic Equipment DA System,” pp. 167-175 in Proceed-
ings 15th Design Automation Conference (June 1978}.

276

[Lacr8l]

[McCa83]

[Mead80]

[Mylo83]

[Rodr81]

[IGESS0]

[Scows?2]

[Stong0)

[Such79]

[Vall7s]

[Webb83]

Lacroix, M., “Data Structures for CAD Object Descrip-
tion,” pp. 853-659 in Proceedings 19th Design Automation
Con/. (1981).

McCalla, G. and N. Cercone, “Guest Editor’s Introduc-
tion: Approaches to Knowledge Representation,” Com-
puter 18(10), pp-12-18 (October 1983).

Mead, Carver and Lynn Conway, Introduction to VLSI
Systema, Addison-Wesley, Reading, Mass. (1980). (Sec-
tion 4.5, pp. 115-127). :

Mylopoulos, J. and T. Shibahara, “Building Knowledge-
Based Structures: The PSN Experience,” Computer
16(10), pp.83-89 (October 1983).

Rodriguez-Ortiz, G., The ELKA Model: Approach to the

Design of Database Conceptual Models, University of Cal-

ifornia, Los Angeles, Los Angeles, California (1981). PhD
Dissertation. , .

Nagel, Roger N. Ph.D., Walt W. Braithwaite, and Philip
R. Kennicott, Ph.D., [Initial Graphics Ezchange
Specification éIGES), Version 1.0, US. Dept. of Com-
merce, Nat’l. Bureau of Standards (January 1980).

Scowen, R. S., “IGES -- A Criticali Review and Some
Suggestions,” pp. 47-58 in CAD Systems Framework, ed.’
F. M. Liliechagen, North-Holland, Amsterdam (June 15-17
1982). Proc. IFIP WG 5.2 Working Conference on CAD
Systems Framework.

Stonebraker, M. R. and K. Keller, “Embedding Expert
Knowledge and Hypothetical Data Bases into a Data
Base System,” pp. 58668 in Proceedings ACM-SIGMOD
Conference, Santa Monica, California (May 14-18, 1980).

Sucher, Daniel J. and Donald F. Wann, “A Design Aids
Data Base for Digital Components,” pp. 414-420 in
Proc)eed:'ngs 16th Design Automation Conference (June
1979).

Valle, Giorgio, ‘‘Relational Data Handling Techniques in
Integrated Circuit Mask Layout Procedures,” pp. 407-413
in Proceedings 12th Design Automation Conference (June
1975).)

Webber, B. L., “Logic and Natural Language,” Computer
18(10), pp.43-46 (October 1983).

277

[Wilm79]

[Wong78]

[Wood83]

Wilmore, James A., “The Design of an Efficient Data
Base to Support an Interactive LSI Layout System,” pp.
445-451 in Proceedings 16th Design Automalion Confer-
ence (June 1979).

Wong, S. and W. A. Bristol, “A Computer-Aided Design
Data Base,” pp. 398-405 in Proceedings 16th Design Auto-
mation Conference (June 1979).

Woods, William A., ‘“What's Important About
Knowledge Representation,” Computer 16(10), pp.22-27
(October 1983).

278

