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ABSTRACT

We conaider a distributed processing environment in which a total processing capa-
csty is aplit into smaller processing units (of the same total capacity), which collectively pro-
cess o stream of jobs. We study the performance ratio T (the mean responae time seen by
jobs in this distributed environment) with Ty (the mean response time seen by & job when it
is proccssed in o centralized environment by & aingle processer). The most general
configuration studied is that of a serics-parallel topology. In particulsr, we consider m parel-
lel chains, the kth of which contains n, proccasors in aseries, each of capacity C,
operationsfsccond. We assume that jobs arrive at the kth chain from & Poisson source et
rate X, jobafsccond and that cach job requires an czponentially distributed number of opera-
tions from each processor. We find, for the saymmetric ayatem (n, = n, Ay = \/m), that
Np)/ Tolp) = mn. For the gencral syatem {arbitrary n.} but with equal loading on cach

seriea chain, we show that Tp)/ To(p) = Yom;.
1

We find the optimal distribution of traffic among the chains; one property of this solu-
tion is that aome of the scrica chains carry zero traffic. When we optimize the capacity
assignment, we find that minn, < T(p)/ Ty(p) < Y ny. When we do the joint optimization,
we find that T(p)/ To{p) = minny. Distributed processing incresses the mean response
time! Lastly, we discuss the effect of processor costs on aystem performance.

1. Introduction

We have seen a steady progression from 8-bit processors to 16-bit processors and,
more recently, to 32-bit processors. The price/performance profile has been improving
dramatically due to the unprecedented revolution in the integrated chip technology. As a
result, computer system designers are now considering distributed processing configurations
with hundreds, thousands and possibly hundreds of thousands of processors. Many inter
connection and structural schemes have been proposed (ranging from precisely planned itera-
tive arrays to randomly configured systems) in an attempt to harness the combined power of
these processors in various kinds of applications.

How are we to measure the performance of a distributed processing system? Perhaps
the most traditional performance profile is the mean response time ( 7) versus the system
throughput (p). It is a normalized version of this measure that we adopt in this paper.
Specifically, we will evaluate the ratio T(p)/ Ty(p) where

T(p) =  mean response time for a dislributed processing configuration
(omitting any delays due to interprocessor communication),
and
Ty(p) = mean response time for the same job stream when it is processed
by a single centralized processor of the same capacity as that
coptained in the total distributed system.
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One would hope that the advantage of distributed processing wonld manifest itself by pro-
ducing a ratio such that T{p}/ To(p) << 1. For the model developed below, we show that
this is definitely not the case and, in fact, T(p)/ To(p) > 1. The key assumption whick leads
to this (apparently negative) result is that the collection of processors in the distributed sys-
tem has the same total capacily as that of the single processor to which it is being compared.
What this comparison ignores is the relative cost of “small" versus “large’” processors.
Specificaliy, it is currently true that a 10 MIP (millions of instructions per second) processor
costs far more than ten times that of 3 1| MIP processor. Thus, a more meaningful com-
parison would be to compare a distributed system to a centralized system of the same coat.
We approach that problem in Section 5 below. Beyond response time, throughput and cost,
there are other (more intangible) performance measures one should really introduce in any
such evaluation. For example, one should consider system reliability, flexibility, availability,
simplified climate control, user friendliness, etc. as factors favoring distributed systems; on
the negative side, one might include increased memory requirements, inter-processor com-
munication, ete. We do not consider these features in this paper.

2. The Model

We consider a distributed processing environment in which a total processing capa-
city, C (operations/second), is aplit into a number of smaller processing units (of the same
total capacity), which collectively process a stream of jobs,

The most general configuration studied in this paper is that of a series-parallel topol-
ogy as shown in Figure 2.1 below. In particular, we consider m parallel chains, the ith of
which contains n, processors in series, each of capacity C;, operations/second, such that

m
C= 2 nkC, (2.1)
f )|
(and, at no loss of generality, we assume that Ci2C2 - - - 2C,). We assume that jobs
arrive at the kth chain from a Poisson source at rate A, jobs/second such that
m
A= Y\ (2.2)
dew )

When a job passes down the kth chain, we assume it receives 1 /un; operations, on the aver-
age, from each of the n, processors in that chain (i.e., a pipelined processor configuration);
thus, each job receives a total number of operations, whose mean is 1/p operations/job. We
further make the independence assumption [KLEI 64), i.e., that the service received at each
processor is an i.i.d. exponeatial random variable with mean 1/pun,Cy seconds. In all cases,
we assume that

P = MfunC, < 1 (2.3)

so, each processor is a stable queueing system.

Figure £2.1: The General Series-Parallel Topology




3. Performance Evaluation

For the centralized processor, we have an M/M/1 queueing system for which the
mean response time is ([KLEI 75, Eq.(3.26)]

Tip) = —Z_ :
olP) 1y (3.1)
where T = E [service time] = L and p = AT == _X_ Thus,
uC nC

1

T = — .
olp) PYeEN (3.2)
For the distributed system shown in Figure 2.1, we have {KLEI 78, Eq.(5.17)]
m A
o) = ¥, 2T, (3:3)
k1

where T, == E [response time to pass down the ¥** parallel chain). Since the k** chain con-
tains n, processors ia series, we have

Ti == ﬂkT(k) (34)

where 7(¥ is the mean response time for each processor in the kth branch. Each of these
processors behaves as an M/M/1 queue with input rate \,, mean number of operations
1/pn; and capacity C} operations/second. Thus, 7 has the same form as given in
Eq.(s.l) with "’ml/pn}Ck and p=)«,,:'t'. Thus,
T(k) —_ I/a“nkck —_ 1
I - M/um Gy LN

From this last equation and Eqs.(3.3} and (3.4), we get

m Ak ng
Mp) = 3

—— 3.5
b1 A B, (3:5)

This is the governing behavior of our general series-parallel topology.

Finally, we have the general form of our performance measure:

Ny} _ f: ’\k"k_ #C-\ (3.6)

T & N G

This last may also be rewritten as
M) _ &, Pe/(1-py)
Tole) S ' el(1-p)
where pp = A\./un,Crand 0 < p, < 1.

(3.7)

Let us now evaluate 7(p)/ Ty(p) for some interesting, special cases:



THE PURE TANDEM

This system is depicted in Figure 3.1 and has the following parameter
values: m==1, my=n, \;=\, 1/p;=1/np and C;=C/n. Substituting into Eq(3.8), we
have

ir) An . pC-\

= . = n (3.8)
TO(p) A “n_c_‘__x
n
a /21 ’
A c/n C/n . e @
_k{“n 1/un Vun

Figure 8.1: The Pure Tandem System

THE PURE PARALLEL SYSTEM

This system is depicted in Figure 3.2 and has the following parameter
values: m=1, My=\/m, 1/p=1/p, Cy=C/m for k==12,..,m. Substituting into

Eq.(3.6), we have
Np) _ & Am uCx
Tolp) El x o~ m (3.9)
m m

THE SYMMETRIC SERIES-PARALLEL SYSTEM

This system is depicted in Figure 3.3 and has the following parameter values:
me=n, \y=X\/m, 1/p,=1/np, Ci==C/mn for k=1,2,...,m. Substituting into Eq.(3.8), we
have

Mp) _ & Anfm pCN
Tole) & X punC X\ nm (3.10)
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Figure 8.2: Figure 8.9:
The Pure Parallel System The Symmetric Series-Parallel System
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THE SERIES-PARALLEL SYSTEM WITH UNIFORM TRAFFIC

This system is depicted in Figure 2.1 and has the following parameter values:
M=2/m, 1/ pg=1/n, p, C,e=C/mn, for k=1,2,...,m. Substituting into Eq.(3.6), we have



T _ f:ku:.- "_G"‘ = Y (3.11)

Thus, we see, for all of the simple configurations, that things seem to be getting
worse as we add more distributed processors! Indeed, we show below that, no matter how
one selects A, and G}, subject to constraint Eqs.(2.1, 2.2 and 2.3), one must have

M>minn>l 3.12
T = ™2 12)

4. Optimising the Distributed System

In the previous section, we evaluated the behavior of the general series-paralle] sys-
tem. In this section, we consider some optimizstion problems, where we allow ourselves to
adjust A\, andfor C} (subject to constraints 2.1, 2.2 and 2.3) in order to minimize

T\p)/ To(p).

Before we proceed with these optimization problems, let us establish certain convex-
ity properties of our objective function Eq.(3.8), which we repeat here.

M) _ & MM p0 = BCN &y .l
Tol)) 2 N #mCih, 2O (41)
where
Ay
%= G-y (42)

We shall now prove that U, is a convex function of its various arguments; then, since our
performance ratio as given in Eq.(4.1) is a sum of the terms U, we shall have established
that the performance ratio itself is a convex function of the system parameters (a sum of
convex functions is convex). First we prove that Uj is a convex function of the traffic
parameter A\, by twice differentiating, namely,

tF Uk 2}"!&2 Ck

DE = T (43)

iy (BmCi-2y)
This second derivative is clearly greater than zero, thereby establishing the convexity of U
with respect to A;. Thus, our objective function is a convex function of the traffic parame-
ters A,. We now repeat the procedure with respect to the capacity, C). Twice
differentiating, we obtain

ﬁUh _ 2ﬂ2kkﬂb3 (4 4)
dCy? (£ Ci-2y)° '
Since p; = A /unC, < 1 (i.e,, we are assuming a stable system), then we have that the

second derivative given in Eq.(4.4) is greater than zero, and this establishes the convexity of
our performance ratio with respect to the capacity parameters C;.

The set of optimization problems we wish to address may be identified by referring
to Figure 4.1. In that figure, box A refers to a system with an arbitrary set of parameters for
which no optimization has been performed; thus, the performance of box A is given by
Eq.(3.8).



The first problem we address is to hold C} and ny fixed and optimally select the
trafflic pattern, A, in order to minimize our performance ratio T{p)/ Ty(p). This leads us to
box B. The second problem we solve is to hold A, and n, fixed and optimally assign the
total channel capacity C among the set of distributed processors, once again minimizing the
performance ratio T{p)/ To(p), which leads us to box C. To reach box D, which is the joint
optimization of both A, and C}, we may either move from box B by optimizing the capacity
or move from box C by optimizing the traffic. As we show below, both solutions are identi-

cal.

[~ L=

AnBITRARY | OFTIMIZE 4,

Ay, Cu.
¥ OPTIMIZE C, ¥ OPTIMIZE C,

(<] o
OPTIMIZE A, I_

Figure .1

We begin with the problem characterized in box B, namely,
Minimize M
A Tolp)

subject to Eq.(2.2) for a given set Cj, n, and pu. Clearly, this is equivalent to minimizing
T(p) since Ty (p) is a constant for this problem. Thus, we set up the Lagrangian

G = Tp)+B8(5-N) (4.5)

k|

where § is the Lagrangian undetermined multiplier. Forming the partial derivative of G
with respect to X\, setting it equal to zero for each k and solving for A}, we obtain

M = pmCy - V-u [\ B np /G (4.8)

In order to determine the unknown constant, namely, V- / X B, we simply form the con-
straint condition, Eq.(2.2), by summing Eq.{4.8), equating it to A\ and then solving for the
unknowxn constant. The result of this evaluation yields, finally,

/G

Ap = pmCy - pC(1-p) — (4.7)
/G
tam |
Rewriting this in terms of p;, we have (for C,>0)
P o= 1- C(l,_g’) — (4.8)
¢ E LAY, Cs'
v |

Either Eq.(4.7) or (4.8) gives the solution for the optimal assignment of traffic to the general-
ized series-parallel distributed processing network. However, we observe that the constraints
on p are 0 < p. < 1. Clearly, the upper constraint is satisfied as long as p < 1, a condi-
tion we have assumed. It is the lower constraint which can be violated if, indeed, the capa-
city, Cj, is too small. That is, we must take care that our optimization problem does not
trv to vlace a neaative flow X. on the kth parallel chain! Since we know that the objective
function is a convex functior of the flows, then when )\, tries to go negative, the optimiza-
tion procedure will force us to keep it at its boundary value of zero. Thus, the solution for
A given in Eq{(4.7) will hold only il the following condition is satisfied (C’ p* and &’
defined below):



C(1-
V0 2 'r(_ﬂ‘ (4.9)

;[;":V C&

e
Any chain k for which condition (4.9) is not satisfied will lead to an optimum flow of value
A; = 0. Since we have assumed that the capacities, C}, are monotonically decreasing
with the index k, then we may define k* as the maximum value of k for which condition
(4.9) holds. For k= k’+1,.., m, the solution in Eq.(4.6) does not apply, but due to the
convexity of our function with respect to A\, we recognize that \; must lie at the boundary
of our constraint space, thereby yielding the solution Ay, = 0 for k = k“+1,..., m. Return-
ing once again to Eq.(4.6), which is now valid only for ¥ = 1,2,...,k°, we must re-evaluate
the undetermined constant V- / A §; we do this again by forming the constraint Eq.(2.2),
but we now recognize that we must sum not over all £ but only over the range
k= 1,2,....,k°. The result of this operation, along with our earlier observation, yields the
final result for our traflic assignment, namely,

. "u/a; .
ﬂank - ﬁC (I—p') - k= l,2,...,k
A\ = El"n/a
-
0 E=k+1,...,m (4.10)
where we have defined the following quantities .
k.
C' = Y nG, (4.11)
e |
p’ = M\ uC’ (4.12)

In order to determine the optimum performance ratio, we now substitute our optimized
traffic assignment as given in Eq.(4.10) into the performance equation, Eq.(3.6), to yield

) | _ pse-9) (& *_ NU-p)
Tole) i | VGl ’ (413
opt X,

where we have defined N° to be the total number of processors in our distributed system
which carry a non-zero traflic, namely,

k.
N = Y'n, (4.14)
kunl
Eq.(4.13) is the solution to the optimization problem represented by box B.

The optimization problem we just solved is, clearly, the solution to the Flow Assign-
ment (FA) problem described in [KLEI 78], except that here we have a special topology to
work with; so, we are able to develop an explicit analytic solution rather than the usual
algorithmic solution (e.g., the Flow Deviation (FD) methed in [KLEI 78, Sect.5.8]). We
observe that { (¥ the “length” (defined for the FD method) of the kth parallel chain is

k* 2
IV

=t | k=12
1 =1 X | c1-p)
L (4.15)

x416i



It ean be seen from Eq.{4.9) that ! #) tor k = k°+1,..., mis strictly greater than { (M fop
k= 1,2,....,k". Thus, each of the zero-traffic parallel chains (k> k*) is longer than each of
the positive-traffic chains ( k<k*), which (by the FD method) implies that no traffic should
be deviated onto the zero-traflic chains. Further, since each of the positive-traffic chains has
the same “length,” then no traffic should be deviated amorg those chains. Thus, our solu-
tion is in complete agreement with the FD method.

Now, let us proceed from box A to box C, namely, let us assume that the traffie A
remains fixed and that our objective is to optimally assign the total capacity, C, among the
set of processors, that is, we must Min‘l;ms'ze T(p)/ To(p) subject to constraint Eq2.1)

and, of course Eq:(2.3). The appropriate L;grangian in this case is
G = Tp)+58 (E mCy - 0) (4.16)
1

Again, due to the convexity of our performance ratio with respect to C,, we may form
8G [ 3C, = 0for all kin order to determine the optimal value for C}. Carrying out this
differential, evaluating the undetermined multiplier A by forming the constraint as given in
Eq.(2.1) and solving for C}, we obtain the optimal capacity assignment as
A A1-p)\/A4]n
G = -0 + — L (417)
g 2 VA

As long as p < 1, then the optimal capacity assignment given in Eq.(4.17) always holds, as
opposed to the traflic assignment problem where we encountered negative flows. If we now
plug this optimized capacity assignment into our performance ratio as given in Eq.(3.0), we
then obtain the minimized response time ratio, namely,

m 2
AT)N - E} ,/x,n,hl (4.18)

Tolp)
opt G,

Note the similarity of this capacity optimization procedure and solution to that given in

Eq.(5.28) of [KLEI 76]. Tke optimum performance profile for box C is that given in

Eq.(4.18).

Let us now further optimize the solution in Eq.(4.18) with respect to the traffic flows
A\p, namely,

Minimize o) 4.19
3 Tolo) (419)
opt Gy

The solution procedure here is almost identical to that given in Exercise 5.5 of [KLEI 76)
and leads to the following traffic assignment:

{x k=ky
A\ = 0 kiéko (4.20)

where kg is such that ny, < ng for all k; in the case where more than one value of ¥ qualify
for the value kg, then selecting any one of them will yield the same optimum solution. We
are assuming, in this double optimization problem, that each time the )\, assignment
changes, then the optimized capacity assignment follows that change (i.e., through Eq.(4.17);
thus, the solution to problem (4.19) will yield a traffic pattern where all the traffic travels
down the minimum length parallei chain, and that chain will contain the total capacity, C,
uniformly spread out over n, processors. In this case, we have now arrived at a pure tan-
dem, whose solution is known from Eq.(3.8); so, the performance ratio which applies to box
D, arrived at through this capacity and then traffic assignment optimization (i.e., box A to
box C to box D), gives



LT wa
opt G‘.,k.

On the other hand, we could have begun with the solution from box B and then
done an optimum capacity assignment to arrive at box D, a procedure which we now
describe. Thus, we carry out the following minimization

Minimi o) 4.22
m&mze To(p) (4.22)
opt X,

Of course, this result must lead to a performance ratio as given in Eq(4.21). The approach
here is not quite as simple as going from box C to box D. In particular, the problem comes
about from the way in which we progressed {rom Eq.(4.7) to Eq.(4.10), namely, we required
Ay =0 for k= k°+1, ... ,m in order to prevent those values of \, from going negative.
However, now that we allow ourselves to optimize the capacity to match the traffic flow (i.c.,
we will move from box B to box D), we may take the liberty of ignoring this non-negativity
constraint, optimizing the capacity and then checking, after this capacity optimization, to
see that the non-negativity constraint is satisfied by the X ,’s. Thus, for a given set, C}, and
chain lengths, n,, we accept that the optimum traffic assignment is given by Eq.(4.7) for all
k. Given this assignment for A;, we will now move from box B to box D by optimising the
capacity relative to the A, found from Eq.(4.7). But, of course, we have already carried out
the capacity optimization in moving from box A to box C, and the solution is given in
Eq.(4.17). Let us evaluate this optimized capacity assignment by substituting \; from
Eq.(4.7) into our expression for C) in Eq.(4.17), namely,

A1-p) /Gy , Aoy

Cb - Ck - ™ m (4-23}
E ﬂ'-\/a 2 yin;
1==] s |
where
N 1/2 1- 1/2
¥ = [..;f.] = |uC, - M (4.24)

[t )]

Cancelling C; on both sides of Eq.(4.23) and solving, we obtain

VG = (3 n/T) == (4.28)
=1 Zyinl'

fom ]

Observing that y, is a function of Cj, what are the solutions to this set of equations
(k= 1,2,...,m)? It can be shown that there are exactly m solution sets to this equation,
each of the form

{C/ﬂv k=¥

where the m solutions correspond to the m possible values for ¥ , namely, ¥ = 1,2,...,m.
Plugging any one of these solutions for C} into Eq.(4.24), we find

= {\/"7"1:I k=K
"=, iy

It is now easy to verify that Eq(4.28) satisfies Eq.(4.25). Each of these m solutions
corresponds to a pure tandem, for which the performance ratio is given in Eq.(3.8), namely,



M = ny (427)

Tolp)

Among the m possible solutions, that whick minimizes this performance ratio is clearly the
case K = ko where, we recall, k; is defined as that chain with the minimum number of
series processors, namely, n, < ny for all £ This then yields the optimum performance

profile for box D (by travelling from box A to box B to box D), namely,

—H—L‘o = n (4.28)
Tolp) ke
opt A &4

Thus, we see that the double optimization, in both cases, has led to a solution where
all the traffic and all the capacity are placed on that chain with the fewest number of nodes
in series. We now observe that the solution in box B allows us to put tight upper and lower
bounds on our performance profile for any capacity-optimized series-parallel system. The
general form for T(p)/ To(p) is given in Eq.(4.18). If we let a5 = VA and b, = \/n_,,,
then we may apply the Cauchy-Schwartz inequality (see Eq.(4.59) in (KLEI 75)), namely,

(Y ) € ¥ 02 3 ¥ (4.29)
e 1 e} -1
to obtain
wiC)N B (4.30)
= ] -
To(p) k§1
opt C,
Furthermore, since n; > n,, then (}\/\, nkh)z > n X, )u)z. Now, since

/A <1, it follows that /A /N D A/, and so, (VA 2 (M) =1
Thus we have shown that Eq.(1.18) is lower bounded by Ny, that is,

< M < 3 431
e = To(p) - k§l " (431
opt C}

From Eq.(4.28), we see that this lower bound is, indeed, achieved in box D. (Note also that
the upper bound was achieved in the series-parallel system with uniform traffic (Eq.(3.11)).

If one had the further freedom to select the length of this minimum-length chain,
then it is clear that one would select ng, = 1 to obtain the absolutely optimum perfor-

mance, which corresponds to our centralized system! Thus, we see that, so far as this per-
formance profile is concerned, distributed processing can only hurt us,

5. Cost Considerations

As promised, we now return to certain issues involving cost. In particular, we were
disappointed to find that distributed processing offers no advantage as far as our perfor-
mance ratio is concerned, and we argued earlier that this negative result is due largely to the
assumption that the single, centralized processor of capacity C costs the same as a distri-
buted system whose total capacity, Ciw i3 equal to C. However, as we pointed out earlier,
there is, basically, a dis-economy in scale for the cost of processor capacity due to the
integrated chip revolution, and it is this fact that has the potential for ‘‘saving”’ distributed
processing so far as our model is concerned. In order to introduce this factor into our
analysis, we will ind how mnch more capacity we must place in the distributed system rela-
tive to the centralized system in order that T(p)/ To(p) = 1; i.e., we shall adjust Ciiu 50
that the distributed system and the centralized system give the same mean response times.



Let us consider the symmetric series-parallel system, introducing the two different capacities.
Re-deriving Eq.(3.11), we find

A1) 1 S
Tole) Yoy (43%)

Forcing this ratio to be unity, we find that the ratio of capacities in the two systems must
be

C..

% = mn-p(mn-1) (4.33)
where, once again, p = A\/uC. We note that this ratio of capacities is dependent upon the
centralized system’s load, p. In particular, we notice that lin% Ciin/C = mn and also

'—.

lim C,/C = 1; i.e., at light load we require an increase in capacity equal to the number
=1

of processors in the distributed system, whereas at heavy load we need only an infinitesimal
extra capacity (due to the steep slope of the mean response time near saturation).

8. Conclusions

We focussed on the ratio of response time of a distributed system to that of a cen-
tralized system as our performance measure. We found that distributed processing can
never improve that ratio unless we introduce a dis-economy of scale in the cost of process-
ing. We solved a number of related optimization problems, finding the optimum traffic
assignment and the optimum capacity assignment, and when both those assignments are
optimized jointly, we were led back to the centralized system. A number of extensions to
this model are currently being investigated.
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