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ABSTRACT

Unknown prior probabilities can be treated as intervening variables in the deter-
mination of a posterior distribution. In essence this involves determining the minimally
informative information system with a given likelihood matrix.

Some of the consequences of this approach are non-intuitive. In particular, the

computed prior is not invariant for different sample sizes in random sampling with

unknown prior.



PRIOR PROBABILITIES REVISITED
N. C. Dalkey

1. Generalities

The role of prior probabilities in inductive inference has been a lively issue since
the posthumous publication of the works of Thomas Bayes at the close of the 18th centu-
ry. Attitudes on the topic have ranged all the way from complete rejection of the notion
of prior probabilities (Fisher, 49) to an insistence by contemporary Bayesians that they
are essential (de Finetti, 75). A careful examination of some of the basics is contained in

a seminal paper by E.T. Jaynes, the title of which in part suggested the title of the

present essay (Jaynes, 68).

The theorem of Bayes, around which the controversy swirls, is itself non-
controversial. It is, in fact, hardly more than a statement of the law of the product for
probabilities, plus the commutativity of the logical product. Equally straightforward is
the fact that situations can be found for which representation by Bayes theorem is unas-
sailable. The classic classroom two-urn experiment is neatly tailored for this purpose.
Thus, the issue is not so much a conceptual one, involving the "epistemological status” of
prior probabilities, as it is a practical one. In practice, the required prior probabilities
are often unknown, or poorly known.

The present paper presents an approach to the estimation of prior probabilities
when these are unknown. The approach is a generalization of maximum entropy
methods. It was derived with a quite different rationale, and thus represents a conver-

gence of two different streams of thought.



2. Figures of Merit

As a foundation for a theory of estimation, it is necessary to introduce a figure of

merit, a measure of the excellence of an estimate.

Figures of merit are commonly some form of discrepancy measure; ¢.g., if I am
asked to guess the height of a distant tree, the excellence of my guess is determined by
comparing it with the actual height. In the measurement literature a wide variety of
scores can be found--absolute difference, squared difference, percentage difference, and

the like.

Estimates of probabilitics have the difficulty that the true or actual probability is
rarely available for comparison. An ingenious way to sidestep this difficulty has been
found in the theory of proper scores (Savage, 71). Let E be a partition on an event
space, and ¢ an unspecified member of E. Let R be an estimate of the probability distri-
bution on E. Finally, let S(R, ¢) be a function which assigns the score (rating, reward,
payoff, etc.) if R is the estimated probability distribution on E and the event ¢ occurs. If
P(E) is the actual probability distribution on E, the expected score for the estimate R is
%P(e)S(R, ¢). Notice that the score S(R, ¢) can be assigned knowing only the estimate

R and the event ¢ that actually occurs, without knowing the actual probability P.

A score rule is called proper (reproducing, honesty-promoting, admissible, etc.) if
it fulfills the condition: '

%P(e)s (R, e) =< %P(G)S(P, e) M



i.e., a score is called proper if the expected score is a maximura when the estimate is the
same as the distribution which determines the expectation. (1) is analogous to the re-
quirement for a discrepancy score that the "error” be a minimum when the estimate is

precisely the same as the actual quantity.

It is convenient to introduce some definitions:
G(P,R) = 3P(e)S(R, ¢)
E
H(P) = G(P, P) = SP(e)S(P, e)
E
N(P,R) = H(P) - G(P,R)

G(P, R) is the expected (discrepancy) score if R is the estimate and P is the actual distri-
bution. H(P) plays a special role for probabilistic scores. For error measures that are
analogous to a distance, e.g., the absolute difference, H(x) = |t—x| = O for all x. How-
ever, for proper scores, H(P) represents a measure of the excellence of a distribution P
on its own, so to speak. N(P, R) is the net score if R is estimated and P obtains. Note

that from (1) N(P, R) is always non-negative.

Since G(P, R) is an expectation, it is linear in P. An important property of H(P)
is that it is convex (Dalkey, 82).

There is a very large family of scores that fulfill (1). They range from scores
derived from decisional payoff matrices to scores appropriate primarily for scientific con-
texts (Dalkey, 80). The most widely used of the latter is the logarithmic score,

S(R, e) = logR(e). Note that —H(P) for the logarithmic score is precisely the Shannon
entropy for the distribution P.



Proper scores can play the same role in inductive logic that truth-value plays in
traditional logic. In fact, the truth-value is a form of proper score. If an individual be-
lieves a given statement is true, but asserts the negation, his expected "score” is false,

clearly less excellent than if he had asserted what he believed.

Proper scores enable the verification of statements of the probability of a single
case, a possibility usually denied in the literature of probability theory. If an estimator
asserts P (¢) = p, where e is a specific event such as "rain tomorrow", one need only
wait until tomorrow and (for the logarithmic score) award the prediction with the score
log p if it rains, or log (1—p) if it doesn’t. The dependence upon the occurrence of a
specific event gives the requisite tie to reality needed for a verification procedure, and
the dependence on the asserted probability furnishes the requisite dependence on the

content of the assertion.
3. Min-score Induction

Given an appropriate figure of merit, it is feasible to formulate an inductive logic
that is an extension of classical logic. A genera.i structure for a logic is a collection of
rules which transform a set of premises into a conclusion. In the classical case, if the
premises are true and the inference is valid (i.c., follows the rules), then the conclusion
must be true. That simple guarantee is, of course, precisely what makes classical logic
useful in inquiries. As might be expected, the nature of the guarantee is somewhat

more complex in inductive logic.



In the most elementary case, consider a partition £ on an event space, where E
represents the events of interest, i.e., E specifies the events for which a probability dis-
tribution is desired. We assume that there is a probability distribution on the event
space, and thus, in particular, there is a distribution P(E) on the partition E. Suppose
the partial information consists of knowing that P(E) is in some class X of distributions
on E. In the extreme case of no information, X is the set of all possible distributions on
n events, where n is the number of events in E; i.e, X is just the simplex Z, of all proba-
bility distributions on n events. If X is a unit class, then P(E) is completely known. In

intermediate cases, K is some subset of Z,.

We can take the specification of X as the premises of an inference. What is
desired as a conclusion is some estimate R(E) of the distribution on E. Since by assump-
tion the actual distribution P is in X, it might be supposed that R must be selected from
K. However, there is no formal constraint that R be in K; it could be any distribution in
Z. Assuming that a score rule § has been adopted, the actual expectation is G(P, R).
The inductive rule to be employed in this paper is derived from two postulates:

Pl. The selection rule should guarantee at least the expected score of R--i.c., it

should guarantee H(R). Formally, this requires G(P, R) = H(R), for any P in

K.

P2. The selection rule should assure the positive value of information--i.e., if ad-

ditional information is obtained, then the expected score should not decrease.

Formally, if X' C K, then H(R’) = H(R).



These two postulates lead to a specific selection rule which could be called the
min-score rule: Select the R in the closure of the convex hull of X that minimizes H(R)
(Dalkey, 82). If X is convex and closed, then R will be in K; if X is not convex and
closed, then R may not be in K, but will be in the closure of the convex hull of X (Dal-

key, 85).

P1 appears to be essential for any kind of inference. The user of the conclusion
must be confident that he will achieve at least as high an expected score as the conclu-
sion promises. P2 is more germane to induction. In the case of complete information,
the positive value of information is a theorem (Lavalle, 78). It appears a-fortiori plausi-
ble that additional information should be constructive in the case of incomplete informa-

tion.

If the score rule adopted is the logarithmic score, then for the elementary case
under consideration, the min-score rule is precisely the maximum entropy procedure.
As noted above, the expected log score is just the negative of the entropy. For more
highly structured problems, the min-score approach may lead to a different analysis than
current practice with maximum entropy methods. This divergence will show up in the

analysis of unknown prior probabilities.
4, Prior Probabilities

The elementary min-score rule does not involve the distinction between prior and
posterior probabilities. The information class X does represent "prior information”, but
is not expressed as a probability.



Historically, the notion of prior probability has been employed in the context of
“updating”. A probability distribution is known for an event set E. New evidence /, ei-
ther planned as in an experiment, or fortuitous as in casual observation, comes to atten-
tion, and the problem arises of revising the probability distribution on E to reflect the
new evidence. In this case, the old distribution P(E) is the prior and the new distribu-
tion P(E|I) is the "posterior”. Of course, P(E|/) can operate as a new pricr if further
evidence arises. The distinction is significant only for a given instance of updating.
Another way of putting the same point is that the distinction between primary events
and evidence is not a formal aspect of the calculus of probabilities.

As long as the updating is conducted with complete information (all the relevant
probabilities known), there is no conceptual difficulty. A variety of updating procedures
is available, depending on what is known concerning the relationships between the evi-
dence and the primary events. The one most frequently employed is the theorem of

Bayes, P(E|I) = P(E)P(I|E) / P(I).

Difficulties do arise, of course, if the relevant probabilities are not completely
known. Essentially, what the analyst needs to know for the updating step is the joint
distribution P(E.I). A frequent situation is that in which the likelihoods P(/|E) are

known, but not the joint distribution.

In the context of min-score inference, the class K can be taken to be a set of joint
distributions, constrained by the requirement that they generate the known likelihoods,

i.e., P(E.) is in K if P(E.I) / D P(E.I) = P(I|E).
I



In the given instance, the class X can be characterized equivalently by the set of
joint distributions P(E.I) = P(E)P(I|E) where P(E) can be any distribution on n events
(since P(E) is totally unknown). However, it is clearly incorrect to select the min-score
distribution in Z, for P(E) since this ignores the role of the score rule. Tae score for the
updating problem is related to the posterior probability P(E|l), not to the prior. In col-
loquial terms, the analyst is not being paid to estimate the prior, or, from the standpoint
of the decision maker, his payoff will be determined by implementing the posterior, not

the prior.

A further complication arises in imposing the score rule for the case of incomplete
information. With complete information, it is legitimate to ignore all potential evidence
except the specific item that actually obtains. Considering I as a set of possible items of
evidence (observations, data, signals, etc.), and / as a member of /, then in practice
what is wanted is P(E}i) when i is known. This feature has been elevated to the status
of a principle by some writers--the posterior determined by an item of evidence / should
be a function solely of { and not of any other potential evidence that might have been
observed.

That principle cannot be maintained in the case of incompiete information. For
the illustrative case where the likelihoods, but not the prior, are known, the information
in the likelihood matrix concerning potential (but not observed) evidence is relevant to
the assessment of the observed evidence. As a simple example, consider the case of two
events e and ¢ (the bar indicating negation). Suppose there are two possible pieces of

evidence, i andi. Let P(ile) = ¢ and P(ife) =r. Without loss of generality, we can let
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q > r. (If ¢ = r, the evidence is trivial.) Set P(e) = p. With
p = ri(q+r), P(eli) = 172. Thus, whatever q and r, a prior probability can be assigned
that makes the evidence completely uninformative (at least for any symmetrical score

rule).

The example clearly generalizes to several events and several potential items of
evidence. Thus, for the assessment of evidence in the case of incomplete information, it
is necessary to treat the evidence and the events of interest as an information system,
and the selection of a prior probability as the design of a min-score information system.
For the logarithmic score, this requirement can be restated as designing a minimally in-
formative information system (Dalkey, 80).

Summarizing: For the updating problem, the probabilities of interest are the pos-
terior conditional probabilities P(E|I); it is the expected score of these probabilities which
determines the value of the new evidence. However, there is a separate posterior for
each potential item of evidence; thus, the complete assessment consists of the average of
these expectations over the potential items of evidence. Denoting the average expected

score by H(E|I), we have

H(EY) = ;P(i) %P(eli)s(i, e) )

where S(i, e) is shorthand for "the score given that P(E|i) is the estimate, and e occurs”.

For the logarithmic score, (2) can be unpacked in the form of a well-known for-

mula in information theory:
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H(EY) = H(E) + HU[E) — H(I) )
That is, the average information furnished by an information system (E, /) is the infor-

mation contained in the prior distribution P(E), plus the average information in the
likelihood matrix P(/|E) minus the information in the initial distribution on the evidence
P(I). Notice that there is a simple duality between events and evidence. From (3),

H(IE) = H(I) + H(E|[) — H(E).

If the prior probabilities P(£) are not known, the min-score inference rule
prescribes minimizing H(E|l) as a function of the distribution P(E) over the class K of
joint distributions P(E.J) constrained by the likelihood matrix P(/|E). The maximum

entropy rule (for the log score) is now extended to a maximum expected entropy rule.

For the illustrative case of two events described above,
H(E) = plogp +(1-p)log(1-p),
H(E|) = p(qlogq + (1-g)log(1—q)) + (1-p)(rlogr +(1-r)log(1-7)),
H(I) = (pg +(1-p)r)log(pq +(1-p)r) + (p(1~q) + (1-p)(1-r)log(p(1-9) + (1-p)(1-1)).
(T've expanded this elementary case in somewhat tedious detail because the role of the
prior probability p is different from the usual form of max entropy analysis.) H(E|l) can
be minimized as a function of p by elementary differentiation and setting the result
equal to 0. The solution is obtained by solving for p the implicit equation

q-r

P H(g)-H() = [ pg + (1-pr )

1-p p(l-_q) + (1-p)(1-r)

The solution is not particularly intuitive. If ¢ and r are symmetric, i.e.,

r = 1—gq, the min-score p is the classic uniform distribution, p = 1/2. However, if ¢
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and r are not symmetric, and each is rather far from 1/2, the min-score prior is not uni-
form. For example, if ¢ = .9 and r = .02S, the min-score prior is about .63. Roughly
speaking, the min-score solution puts greater weight on the “less informative” prior

event.

An even less intuitive result is obtained if the observation is iterated, e.g., if two
independent observations are made. The min-score prior computed from the extension
of (4) to two observations is not the same as the prior computed form one observation;
e.g., the min-score prior for ¢ = .8, r = 0, is .625 for one observation and is .69 for
two .independcnt observations. The "discounting” of the more informative event is more
drastic for the two-observation case; the difference between ¢ and r has a more pro-
nounced effect on the likelihoods for two observations.

In the classic calculus of probabilities, the effect of an additional observation can
be computed by "updating”, i.c., by using the posterior probability for one observation
as the new prior for an additional observation. This procedure is not valid for the case
of an unknown prior. One way of expressing what is going on is to note that in the
min-score analysis, the solution is sensitive not only to the inputs , but also the precise
question being asked. As remarked above, the question being asked in the case of .addi-
tional evidence is the posterior probability given the evidence. If the evidence changes,
then a new prior must be computed. Another way of saying the same thing is that the
relevant X for the case of one observation is a set of joint distributions of the form
P(E.I); for two observations the relevant X is a subset of distributions of the form

P(E.1,.I,). This characteristic of the min-score rule has serious implications for general
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purpose inference mechanism, €.g., expert systems. In a medical expert system, for ex-
ample, there is a basic difference between the diagnostic and the prognostic use of data
from the min-score point of view. A system could not use the same set of "best-guess
priors” for both types of estimate.

Some readers may find this dependence on the specific question being asked a
serious drawback to min-score procedures. There is no question but that it is a serious
practical complication. A single prior distribution cannot be computed and then plugged
into each new problem. However, the "difficulty” serves to emphasize the basic differ-
ence between complete and partial information. In the case of partial information and
updating on new evidence, the prior probabilities are "intervening variables”, serving to
complete the analysis, not to advance knowledge. The new knowledge is contained in

the posterior estimates.
S. Random Sampling with Unknown Prior

The classroom example of the previous section has a highly structured frame of
reference. In practice most problems are not so neatly packaged. A case in point is ran-
dom sampling with unknown prior. An elementary example is an exotic coin with
unknown probability of heads. Another example is the case of the possible loaded die
treated by Jaynes (Jaynes, 82). In the classroom cxample, there are two well-defined
"states of nature” and a fairly clear interpretation of the prior probability--someone
presumably selected one of the two states, ¢.g., one of two urns, according to a specific
probability distribution. In the case of the exotic coin, the states of nature are not

"given" and a mechanism to incarnate a prior probability is even less apparent.
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A frame of reference for such problems was devised by Laplace. For the exotic
coin, each potential probability of heads is considered to be a separate state. For the
loaded die, each potential probability distribution on the six faces is a state. The prior
probability, then, is a distribution on these states. If it is assumed for the coin that any
probability of heads from 0 to 1 is possible, then a prior probability would be density on
the interval 0--1. For the die, with similar freedom, a prior probability is a density on

the simplex of distributions for six events.

The model is illustrated in Fig. 1 for the coin. There is a continuum of states, la-
beled by the probability p of heads. The prior is a density D(p) whose integral is 1; and
the likelihoods are just the probabilities p for a single flip of the coin. For multiple flips,
‘assuming independence, the likelihoods are the Bernoulli probabilities

P(p, n,m) = (™)p™(1-p)"™ for the casc of m heads in n flips of the coin.
For the logarithmic score, the continuous version of (3) holds, where
H(E) = .ED(PHOED(P)"P
HUE) = [00) 3 P, n, MiogP G, n,

m=0

. ! 1
H(l) = 3, [D(p)P(p, n, m)dp log [D(p)P(p, n, m)dp

m=0 0 a

The min-score problem, then, is to find D°(p) which minimizes H(E).
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Because of the symmetry of the state space--for every state p there is an antisym-
metric state 1—p--we can expect the min-score D°(p) to be symmetrical in p. For one
observation, symmetry implies that P(/) is uniform, i.e., P(heads) = 1/2. Thus, the
term H(J) is invariant under changes in D{p), and we have

| D*(P) x e~H®) f_ )
and since —H(p) = Entropy(p), equivalently i B

D°(p) x Ent () 5
The posterior density of p, given the observation {, is then

-H(p)
D°(pli) = —FF—— ©
Jpe~*®)ap
0

In Fig. 2, the prior and posterior densities are drawn for the case of a single ob-
servation. Also shown in dashed lines are the uniform prior and the posterior density
for the uniform prior. If we take the average of p for the posterior distribution as the
"best guess” p, then, for the uniform prior it is 2/3, and for the min-score prior it is .64.
The difference is not large for a single observation.

For multiple observations, it is no longer the case that H(I) is invariant under
changes in D(P). It is instructive, however, to glance at the result if H(7) is assumed to
be invariant. In that case we would have

D°(p) = £~"1) )
i.e., the prior density becomes increasingly concentrated around 1/2 with increasing a,

where n is the number of observations. Fig. 3 shows this "first approximation” D°(p)
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for several n. It is clear that for this approximation, D°(p) converges to a distribution

concentrated at p = 1/2 as n-®.

I do not have an exact solution for the case of n>>1. If we consider two extreme
distributions, the uniform distribution D, (p) = 1, and the distribution D,,(p) concen-

trated at p = 1/2, we can say that H(I|[E) = H(I) for D,,(p), i.e., H(I|[E) — H(I) = 0,
and H(E) = ®. At the other extreme, D,(p), H(E) = 0, H(I|E) =-‘—2£ and

_ 1 - 1 & n . . . .
H(I) = log — T " T mz-:olog[‘"‘]- Since H is convex, and H(I|E) is an average while

H(1) is an H of averages, H(I|E) is always greater than H(J), but the difference is con-
cave. Thus, D° is intermediate between D, and Dy,. H,(/|E) —H, ()~ as n-», thus

D° -‘Dm as n-oo,

Even without an exact solution, then, we can conclude that as n-o, the asymptot-
ic D? is massed at 1/2. Qualitatively, this implies that the amount of information in
large samples with unknown prior is less than classical theory would imply. For binary

events, this implies that the best guess is closer to 172 than the classic % guess, where m

is the observed frequency of an event in » trials. This result is compatible, e.g., with
the observation that opinion polls are, on the average, too extreme, i.c., they tend to
predict a larger margin of winning than is actually observed (Dembert, 84). Of course,
political polls involve potential forms of error other than the statistical analysis, and thus

the compatibility with our present result is only suggestive.
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The present treatment of random sampling with unknown prior deals with fixed-
sample experiments. The number n of samples is fixed before hand, and a posterior dis-
tribution, P°(Eli), is computed for each potential sampling pattern i. Furthermore, the
computation is conducted under the supposition that the score will be determined by the
posterior distribution P°(E[i). In effect, this requires that the actual probability p be ob-
served before the score can be awarded. For the textbook two-urn case there is no diffi-
culty; determining which urn was selected is straight-forward. However, in more realis-
tic contexts, this requirement may not be implementable. For the possibly biased coin
case, there is no way to directly observe the actual probability.

What can be observed (in theory, at least) is further samples. It might be sup-
posed that an operational scoring mechanism could be devised by using the computed
posterior to predict the probability of further observations, and base the score on the oc-
currence or non-occurrence of these observations. However, as we have seen, to intro-
duce further observations requires expanding the frame of reference to (E.1,./,), where
1, is the initially observed sample, and I, is the predicted sample. This analysis can, of
course, be carried out, and is a legitimate application of the min-score formalism; but, as
seen carlier, this requires, in essence, computing a new best guess prior. In the former
case, the figure of merit is H(E}l,); in the latter case, the figure of merit is H(I,|l,), and

these two may give divergent results.

6. Constraints and Statistics
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The justification of the min-score rule assumes that the unknown probability func-
tion P is contained in the knowledge set K. In other words, it is assumed that whatever
constraints delimit K are categorical. In contrast, it is common in applications of maxent
methods to introduce constraints that do not have this property. A frequently used form
of constraint is one derived from an observed statistic; i.e., given a statistic §, with ob-
served value s, it si assume that the class X consists of those probability distributions
whose expectation S is the observed value 5. As an example, in the case of the biased
die analyzed by Jaynes, he assumes that the probability distribution under investigation

has a theoretical average equal to the observed sample average.

It is clear that such statistical constraints are not categorical. For the die exam-
ple, any distribution within the interior of the simplex of all distributions on six events
could give rise to the observed statistic. Many of these would have very small likelihoods
of generating a sample with the observed average, but that is a fact to be exploited by
the analysis, not ignored. The justification of the step from sample data to theoretical
expectations is somewhat obscure in the literature. Jaynes uses terms such as "compati-
ble with the given information" (Jaynes, 68) or "allowed by the data” (Jaynes, 82), but
in light of the compatibility of the observed statistic with any underlying distribution, it

is not clear how these terms are being used.

If the complete frequency table arising from a random experiment is available to
the analyst then the maxent procedure becomes irrelevant. The constraint convention--
expectation = observed value--leads to P; = f/N where f; is the observed frequency for

event i, and N is the total number of sample points. Some obscurity arises in this regard
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concerning the question whether the justification of the procedure is intended to be
asymptotic (infinite sample) or not. But, in practice, it seems clear that the procedure is

intended to apply to finite samples.

In the min-score approach, observations are not considered as constraints on the
knowledge class X, but rather are elements of an information system. In the case of the
loaded die, what is sought is the best-guess posterior density on probability distributions
on the faces of the die given the observed average. The class X is all joint densities
D(P.A), where P is a probability distribution on six events, and A is a potential observed
average over N tosses of the dic. Analysis consists of finding the minimally informative
information system with this structure. As in the case of the binary event sampling
analyzed in the previous section, there is no constraint on the possible probability distri-

butions P.

If it is presumed that uncertainty arises in a given experiment, not from "error”
but from the fact that the expectation of a statistic need not be the same as the observed
value, then the min-score procedure is a way to deal with uncertainty without the addi-

tion of an error term.
7. Comments

The analysis of unknown prior probabilities presented above leaves a great deal to
be desired as far as mathematical implementation is concerned; but there does not ap-

pear to be any deep mathematical issues involved.



The same cannot be said for logical issues. One that appears particularly critical
is the fact that a min-score estimate is simply a best guess that depends on the score rule
and on the specific question being asked. This characteristic seems to deny the possibili-
ty that min-score inference can be used to add to the store of knowledge. In a sense,
this result is inherent in the formalism. By definition, all that is known is the class X
and observations /.

This issue will be explored at somewhat greater depth in an upcoming paper (Dal-
key, 85).
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Figure |. Laplace model for binary-event random

sampling with unknown prior.
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Figure 2. Min-score prior density D% p), and

min-score
posterior density D (pli) for single observation
(solid lines). with uniform prior Du(p) and

corresponding posterior density D (pli) (dashed

u
lines).
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Figure 3. Approximate min-score priors, ke "H(P), for various

sample sizes n.
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