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Abstract

This paper addresses the problem of distributively electing a leader in both syn-
chronous and asynchronous complete networks. In the synchronous case, we prove a
lower bound of fYn-logn) on the message complexity. We also prove that any message-
optimal synchronous algorithm requires (Y(logn) time. In proving these bounds we do
not restrict the type of operations performed by nodes. The bounds thus apply for geo-
eral algorithms and not just for comparison based algorithms. A simple algorithm
which achieves these bounds is presented. In the asymchronous case we present a
sequence of three simple and efficient algorithms, each an improvement on the previous,
the last of which has time complexity O(n) and message complexity 2-n-logn+ O(n}, thus
improving the time complexity of the previously known best algorithm ({10] by a factor
of logn.

1 Intrbdnction

In the election problem, a single node, the leader, has to be distinguished from a
set of nodes which differ only by their identifiers (ids). Initially no node is aware of the
id of any other node. The election algorithm is an identical program residing at each
pode in the network. An arbitrary subset of nodes wake up spontaneously at arbitrary
times and start the algorithm by sending messages over the network. When the mes-
sage exchange terminates, the leader is distinguished from all other nodes. This paper
addresses the problem of electing a leader in a complete network. In such a network,
each pair of nodes is connected by a bidirectional communication link. We consider
both synchronous and asynchronous modes of communication.

For arbitrary asynchronous networks a 8(m+n-logn) bound on the message com-
plexity was proved (3,4,8,11}, where n and m are the total number of nodes and links
in the network. (Xm) is a lower bound, since no algorithm may terminate before send-
ing at least one message over each link, otherwise an untraversed link could be the oaly
link connecting two parts of the network, each holding a separate election. Yet,
Korach et. al. [10] noted that the fi(m) lower bound does not hold in complete net-
works, where an election algorithm may terminate af{ter one node has communicated
with all its neighbors. Subsequently they proved a lower bound of {l(n-logn) messages
for the asynchronous complete network, and presented an algorithm that requires
5n-logn+ O(n) messages and O(n-logn) time. -

For synchronous networks, it was recently shown by Frederickson apd Lynch
(4] that one should distinguish between two types of algorithms: general, in which
nodes may perform any computation on the values of their ids, and comparison, in



which the values of ids can only be used for comparison with each other. They
addressed the problem of election in a synchronous ring, for which they presented a
general algorithm with O(n) messages, and proved a lower bound of {}(n-logn) messages
for comparison algorithms, thus proving that general algorithms are strictly more
powerful than comparison algorithms in a ring. This difference stems from the capabil-
ity of general algorithms to delay messages and processors as a function of the value of
their id"s.

In this paper we prove that the message complexity of any election algorithm,
comparison or general, in a complete synchronous or asynchronous network is
&(n-logn), thus proving that general algorithms are no more powerful than comparison
algorithms for the problem of election in complete networks. The difference between
synchronous rings and synchronous complete networks stems from the fact that in a
ring all nodes can be distributively awakened with n messages, whereas in the complete
getwork the awakening problem is as hard as the election problem, hence requiring
((n-logn) messages. If all the nodes of a complete network could be awakened with n
messages, then a general algorithm could take advantage of the synchronous mode of
communication to elect a leader in a linear number of messages by using the principles
suggested in [6)].

We also prove an (Xlogn) lower bound on the time complexity of any message
optimal election algorithm in synchronous complete networks. Specifically, we show
that if an algorithm, whether comparison or general, elects in at most 1/2lcg.n rounds,
¢-1
log.n

Following the bounds, we present a synchronous algorithm which attains the
above time-message tradeoff. When applying the algorithm in the asynchronous model
its time degrades to O(n) and its message complexity is 4n-logn. The asynchronous
algorithm is an improvement over the considerably more complicated algorithm in (10]
which takes O(n'logn) time and 5n-logn messages.

Finally, in an effort to reduce the message complexity of the asynchronous algo-
rithm to 2n-logn, we present a sequence of three algorithms (A, B, and C). The first
two algorithms present a tradeoff between time and message complexities. Algorithm A
(which was also derived independently in [8] ) has an O(n) time complexity and
9.773-n-logn message complexity. Algorithm B has an O(n-logn} time complexity but a
2-n-logn message complexity. Analyzing the communication and time complexities of
the two algorithms, we derive a third algorithm, algorithm C, whose time complexity is
O(n) and communication complexity is 2n-logn, an improvement on the C(n-logn) time
and 2n-logn messages of [12]. It remains open whether a sublinear time, message
optimal asynchronous algorithm exists. We conjecture that such an algorithm does not
exist, i.e., that the time complexity of any asynchronous election algorithm is {(n).

then its message complexity is at least n-logn.

In Section 2 we present the lower bounds for the synchronous case. Section 3
gives the synchronous algorithm which attains these bounds. Section 4 contains the
asynchronous algorithms. Throughout the paper, unless specified differently we use log
to denote log;.



2 Lower Bounds

2.1 Definitions and Assumptions

We model a synchronous complete network of n nodes as follows: Each node is
connected by n-1 bidirectional communication links to all other nodes. A single global
clock is connected to all nodes. The time interval between two consecutive pulses of
the global clock is a round. In the beginning of each round each node decides, accord-
ing to its state, on which links to send messages and what messages to send. Each
node then receives any message sent to it in this round and uses the received messages
and its state to decide on its next state. All the links incident to a node, on which no
message was sent or received, are indistinguishable. Each node starts its participation
in the algorithm either by waking up spontaneously at the end of an arbitrary round,
or by receiving a message of the algorithm.

Let A be an election algorithm on a synchronous complete network. An event is
the sending of a message over a previously unused link (Two messages, sent in the
same round in opposite directions over a previously unused link, are considered two
events). With each event we associate a pair (s,d), where s is the source node and d is
the destination node of the corresponding message. With each round + of the algorithm
we associate a set of events, R, A sequence E={R,,R;, ' --)is called an ezecution. Apn
ezecution-prefiz E; is a prefix, (Rg, Ry, - . . ,R;), of an execution £. With each run of 4
we associate an execution, called a legai-ezecution, that includes all events which
occurred in the run, arranged in the corresponding rounds. Henceforth, any mention of
a message refers to an event.

A cluster in an execution-prefix E; is a maximal subset of nodes spanned by a
connected subnetwork of links which were used by events which occurred in £;. The
degree of a node v in an execution-prefix E; is the number of links incident to v which
were used by events in E,. The potential-degree of node v in an execution-prefix EZ; is
the degree of v in E; plus the number of times that v is a source node of an event in
R;+y. The potential-degree of a set of nodes is the largest potential-degree among its
nodes.

For the purpose of proving the lower bound results we introduce a slightly
different model, called the stopping-model. The stopping model allows us to withhold
the clock pulse, in the beginning of round j, from a cluster of nodes (C) in E;_, given
that no node in C is expected to receive a message, in round s from a node outside of
C. The stopping-model will be used to avoid large differences in the clusters’ growth
rates. The nodes in C are then said to be frozen in round j. Therefore, a frozen node
in a round neither sends nor receives any message in that round; nor does it change its
state.

A stopping-ezecution is an execution which corresponds to a run of A in the
stopping-model. A stopping-execution is a k stopping-ezecution il the cumulative
number of pulses withheld over all clusters throughout the rum, is & Thus, a 0-
stopping-execution is a legal-execution.

Lemma 1: For any k stopping-execution £ there exists a k-1 stopping-execution
E’ which contains exactly the same events as £ does.



sketeh of proof: Let | be the minimum index round in which any cluster is frozen, and
C a cluster which is frozen in /. An execution-prefix £* which satisfies the lemma can
be obtained from E by shifting all events, which occurred before round / and involve
nodes in C, one round forward. This effects, neither any event in later rounds, nor any
event which involves nodes mot in C. Notice that all nodes in ¢ wake up in E’ one
round later thanin £, @

Corollary 2 For any stopping-execution there exists a legal-execution which con-
tains the same events.

In the next two sections we will prove the lower bounds on the stopping model.
By Corollary 2 these bounds apply to the correct model as well. In our proofs we do
not restrict the type of operations performed by the nodes, hence proving the bounds
for general algorithms.

2.2 Message Complexity Lower Bound ,

At the end of any election algorithm all nodes know who the leader is, hence any
such algorithm has to send messages along the links of a spanning subnetwork, i.e., by
the end of the algorithm the whole network is contained in one cluster. Thus, no clus-
ter in the algorithm can defer indefinitely from sending messages to nodes not in the
cluster, since the rest of the network might not wake up spontaneously. In the follow-
ing proof of the lower bound we will use an adversary argument to construct a
stopping-execution which contains at least l/,nlogn events. In the beginning of each
round, the adversary first determines which clusters to freeze and then determines the
destination of messages sent in this round over previously unused links. The first
feature is used to delay the formation of larger clusters until later rounds in the run,
thus avoiding large differences in the clusters’ growth rates; the second feature is used
to send as many messages as possible within one cluster.

Theorem & For any election algorithm A on a synchronous complete network of -
n nodes there is a stopping execution which contains at least */;-logn events.

Corollary §: The message complexity of any election algorithm in a synchronous
complete network of n nodes is at least */;-logn.

proof of Theorem 3: Assume that n = 2™ (which can easily be relaxed). We define a
sequence of partitions (P, . ..,Pa) on the nodes such that each subset in P, contains
one pode, and each subset in P; contains two subsets from P, 1<j<m. Hence, each
subset in P; contains 2/ nodes.

We construct, in m steps, a sequence of stopping-execution-prefixes
(Eij - - - &) io=0, each being a prefix of the next. E; is an empty execution-prefix in
which all nodes have been awakened and the potential-degree of each is at least 1.
This is possible by withholding the clock pulse from any node whose potential-degree is
at least 1 until there is no node with potential-degree 0. Inductively we assume that:
1. Any cluster in E; is contained within one subset in P;. 2. The potential-degree, in E;

of every subset in P, is at least 2/. Obviously, E; satisfies these assumptions.

Assuming that £,  has been constructed, we describe how the adversary coem-



structs E;, j<m. In each round in the j** step, we freeze all the subsets in P; which
contain at least one node whose potential-degree > 2/, When all subsets are frozen
step j is finished. The source and destination nodes of any message sent in this step
are both in the same subset in P;. This is always possible since every node that has a
potential-degree > 2/ is frozen. Clearly, E; satisfies the inductive assumptions. In the
m' step no freezing takes place. After that step, the network is contained in one clus-
ter and the algorithm is assumed to produce no more events.

Clearly, there are at least */,, nodes whose potential-degree is at least 2/, for
j=0,...,m-1. Thus, the total number of events is at least "/,logn. @

Given that the message complexity of any election algorithm on a synchronous
complete network is {n-logn), the question arises how fast a message optimal algorithm
can be. In the next section we prove that the time complexity of any message optimal
algorithm is (l(logn). -

2.3 Time Complexity Lower Bound

In this section we will extend the techniques of the previous one to prove, that
the shorter the execution length, the larger the lower bound to the number of events it
must contain.

Theorem. 5: Any stopping-execution of an election algorithm in a synchronous
complete network of n nodes which terminates in less than 1/,log.n rounds, contains at

least -ii-u-logn events.
loge

Corollary 6 The time complexity of any message optimal election algorithm in a
synchronous complete network of n nodes is ()(logn) rounds.

proof of Theorem 5: Let A be an election algorithm whose time complexity is at most
'f,log,n. Assume that n==c™ (which can easily be relaxed). A construction similar to the
one in the proof of theorem 3 will be used here. We construct, in m steps, a sequence
of stopping-execution-prefixes (£, . . . ,E, ), io=0, each being a prefix of the next, and a
sequence of partitions (P, . . . ,P;), the subset of each containing ¢ subsets of the previ-
ous. E; is an empty execution-prefix in which all nodes are awakened spontaneousiy.

In P, each subset contains one node, thus, each subset in P, contains ¢/ nodes. Indue-
tively we assume that: 1. Any cluster in Z; is contained within one subset of P;, and

2. The potential-degree, in E; of every subset in P; is at least ¢’/. Obviously, both E,
and P, satis{y these assumptions.

Assuming that E; has been constructed, the adversary comstructs E;, by first
defining the subsets of P, and then constructing E; . Let (S;, . ..,S), k="/ ., be the
subsets of P;_, indexed in increasing order of their potential-degrees in E; , then the gtk
subset of P; is defined as the union of S 1je+1, - - - ,Sic V=1,..." . Which implies that
if subset S in P; contains one subset from P;., whose potential-degree is at least ¢,

then all subsets from P, , in § have potential-degree at least ¢/, with the exception of
at most one subset of P, called the boundary subset.

In each round in the j* step, j=1,...,m-1, we [reeze all the subsets in P, which



contain at least onme node whose potential-degree > ¢/. When all subsets are frozen
step s is finished. The destinations for messages to be sent by node v are selected from
the subsets which included v in partitions Py, ... ,P; in that order of priority. This is
always possible since every node that has a potentla.l-degree > ¢! is frozen. Clearly, E
satisfies the inductive assumptions. In the m* step no freezing takes place. After tha.t
step, the network is contained in one cluster and the algorithm is assumed to produce
no more events.

We now show that every node is the destination of at least !/,(c-1)log.n events in
E,. Since the time complexity of A is at most ™/,, every node in E; must have been
frozen in all the rounds of at least ™/, (complete) steps. Otherwise, the legal-execution
which corresponds to £, would contain more than '/log.n rounds, contradicting the
assumption on the time complexity of 4. Each node v in a subset which was frozen in
all the rounds of step j, is the destination of ¢-1 messages, one from each of the subsets
which joined the subset of v in P,.;, to form P;. (unless v is in a boundary subset.) The

total number of events in £, is thus, l:;lc-n-]ogn-n-c. The n-c term is due to the nodes

in the boundary subsets. B

3 A Synchronous Election Algorithm

The algorithm, which is also reported in [5], is initiated by any subset of nodes,
each of which is a candidate for leadership. Each candidate tries to capture all other
nodes by sending messages on all the links incident to it. The candidate that has suc-
ceeded in capturing all its neighbors, elects itself as the leader. To guarantee that only
one node is elected, all candidates but one are killed.

All candidates use a variable called, age, to count the number of rounds passed
since they have started the algorithm. Every live candidate performs the following
operation: In round 2i, i>0 of its algorithm it sends 2' messages, containing its age
and id over 2* untraversed incident links in an attempt to capture the neighbors at the
other end. In rounds 2i+1 the candidate receives the replies for those messages.
Whenever a candidate sees another one with a lexicographically larger <age, f#d> pair
than its own, it kills itself. Clearly, after 2logn rounds there is only one live candidate
which has captured all the network and caused the death of any other candidate. The
message complexity of the algorithm is 4n-logn (its analysis is omitted from this
abstract). Thus proving that the lower bounds are tight.

4 Asynchronous Election Algorithms

Essentially, the same idea of the synchronous algorithm will also work in an
asynchronous network. However, unlike the synchronous case, when two candidates of
the same age meet, the information they have on one another is limited. It might be the
case that the candidate with the lower id has assumed already a larger age. This neces-
sitates the synchronization of candidates by sending messages to each other, The mes-
sage complexity remains 4n-logn+O(n), but alas, the need for synchronization increases
its time to O(n). We postpone the detailed description of the algorithm to the full
paper.

In the rest of this section we present a sequence of three algorithms (A, B, and



C) with the aim of reducing the message complexity to 2n-logn+O(n), while at the same
time keeping the time complexity linear in n [1]. The underlying mechanism for all
three algorithms is similar. Each algorithm is initiated by any subset of nodes, each of
which is a candidate for leadership. Each candidate tries to capture all the other nodes
by initiating a process which traverses all the links incident to it in both directions.
The term candidate will be applied interchangeably to both the process and its initiat-
ing node. The candidate which has succeeded in capturing all its neighbors becomes
the leader. To guarantee that only one node is elected, all candidates but one are
killed. '

Candidate processes use a combination of two variables, id and level, in order to
contest each other. The id is the id of the initiator. The level is an estimate of the
amount of work the candidate has already done. Every captured node has a level vari-
able, which is the highest level candidate it has observed. All level variables are initial-
ized to 0. -

A candidate that arrives at a node with a larger level than its own, kills itself.
However, if the candidate’s level is larger or equal, the node’s level is replaced by the
candidate’s level. The candidate may then claim the node and try to kill the previous
owner of the node.

The main difference between the three algorithms is the way that candidates
determine their level. In algorithm A, the level of a candidate is the number of nodes it
has captured, similar to [7]. In algorithm B, it is the number of candidates it has
killed. Algorithm A achieves a better time complexity while algorithm B achieves a
better communication complexity. In algorithm C, candidates use a combination of the
above two level functions to attain the time complexity of A and the message complex-
ity of B.

4.1 Algorithm A

In this algorithm, the level of a candidate is the number of nodes it has already
captured. When a candidate replaces the level of an already captured node, it has to
kill the previous candidate which owned the node before it may claim the node to
itself. Thus, the sets of captured nodes, each owned by a different live candidate, are
disjoint. To prove that the communication complexity of the algorithm is O(n-logn) we
apply a Lemma which was introduced in {7].

Lemma 7 For any given k, the number of candidates that own */, nodes or more
is, at most, k.

Lemma 7 gives rise to a 4'n-lnn (=2.773:n-logn) bound on the message complex-
ity. The time complexity of the algorithm is O(n). Its analysis, formal description and
correctness were omitted form the abstract.

In algorithm A the number of candidates at a particular level is controlled by the
disjointness among the sets of nodes that each live candidate owns. This entails the
need to "check the situation” with a node’s owner, although this owner might not be a
candidate any more. Thus, a candidate might have to “kill” the same deceased owner
as many times as the number of nodes the latter has captured. In algorithm B that fol-
lows we rectify this.



4.2 Algorithm B

In this algorithm whenever a candidate sees another one with a higher level, it
kills itself. If a candidate sees another one at the same level but with a smaller id, it
kills the other candidate and increases its leve/ by one. Thus, the level of a candidate is
the number of candidates it has killed. Unlike algorithm A, a candidate captures a
node whose level is smaller than its own without killing the previous owner of the node.

Since, at most half of the candidates at level ¥ proceed to level ¥ +1, the max-
imum level achievable during the execution is logn. Clearly, every time a node is recap-
tured its level is increased by at least one. The total number of messages due to cap-
turings is at most 2n-logn, since each capturing incurs two messages. At most 2n mes-
sages may be incurred by the killings as no more than » killings take place. The time
complexity of the algorithm is O(n-logn). Its analysis and the formal description were
omitted from the abstract.

The reason for the high time complexity of algorithm B is that killings are
independent of the number of nodes captured by each of the disputing candidates. A
candidate which spent a lot of work (and time) capturing nodes might be killed by a
candidate which did not capture nearly as much. In the next algorithm we eliminate
the problems of both algorithms A and B by making the level a function of both, the
number of nodes captured, and candidates killed.

4.3 Algorithm C

Here we make two modifications to algorithm B to achieve a linear time com-
plexity with no increase in the communication cost. First, we combine an estimate of
the amount of work spent by each candidate into the level function. Second, we
enable candidates with high levels (>logn) to capture many nodes in parallel (in one
time unit).

Candidates increase their {eve! according to two rules: First, as in algorithm B, a
candidate increases its level whenever it kills another one at the same level. Second,
candidate sets its level to the maximum of level and the log of the number of nodes it
has already captured.

Lemma & The maximum level reachable during any execution of algorithm C is
logn + loglogn + 1. (the proof is omitted from the abstract.}

Using the same arguments as in algorithm B we find that the total number of
messages spent by algorithm C is bounded by 2-n-(logn+loglogn+2), the length of each
message is at most logn+log(logn+loglogn) bits.

With the above modification it can be shown that the time complexity of algo-
rithm B was reduced to O(n-loglogn). In order to further reduce the time complexity to
O(n), candidates at level higher than logn will try to capture ", nodes in parallel.

To analyze the modified algorithm we observe that, the maximum attainable
level in the algorithm is still bounded by logn+loglogn+1, and that a maximum of logn
candidates reach level logn.

The total time delay of the algorithm is bounded by n+logn-loglogn, its analysis
is omitted from the abstract.



5 Conclusions .

The effect of synchronous and asynchronous communication on the problem of
distributively electing a leader in a complete network was examined. On the one hand,
it was proved that the message complexity is not affected by the choice of the commun-
jcation mode. In both modes, the message complexity was shown to be &(n-logn). On
the other hand, it remains open whether the choice of communication mode affects the
time complexity of a message-optimal algorithm. With synchronous communication,
the time complexity of message optimal algorithms is proved to be ©(logn), whereas in
the asynchronous mode, ozly an O(n) bound on the time complexity was obtained. The
lower bound on time for asynchronous communication remains an open question and is
the subject of the following conjecture:

The time complexity of any message optimal asynchronous election algorithm on a com-
plete network is ((n).

The implication of the conjecture is that synchronous communication is faster
by a factor of ™. than asynchronous communication. An analogous result was
obtained in [2] where a particular synchronous system of parallel processors was
proved to be faster by 2 factor of logn than the corresponding asynchronous system.
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