THE ANATOMY OF EASY PROBLEMS:
A CONSTRAINT-SATISFACTION FORMULATION

Rina Dechter December 1984
Judea Pearl Report No. CSD-840063

MASTER COPY






The Anatomy of Easy Problems:

A Constraint-Satisfaction Formulation

Rina Dechter and Judea Pearl
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90024
telephone number:(213) 325-3243

netmail adress: dechterQUCLA-LOCUS.ARPA
judea@UCLA-LOCUS. ARPA

Topic: problem solving (automatic reasoning)

Keywords: constraint-satisfaction, backtracking, heuristic-discovery, relaxation

Word count: 4900

Abstract

This work aims towards the automatic gemeration of advice to guide the solution of
difficult constraint-satisfaction problema (CSPs). The advice is generated by consulting relaxed,

easy models which are backtrack-free,

We identify a subset of CSPs whose syntactic and semantic properties make them easy
to soive. The syntactic properties involve the structure of the constraint graph, while the seman-
tic properties guarantee some local consistencies among the constraints. In particular, problems
supported by tree-like constraint graphs, and some width-2 graphs, can be easily solved and are
therefore chosen as the target mode! for the relaxation scheme. Optimal algorithms for solving
easy problems are presented and analyzed. Finally, an efficient method is introduced for extract-

ing advice from easy problems and using it to speedup the solution of hard problems.



1. Introduction

1.1 Why study easy problems?

An important component of humaa problem-solving expertise is the ability to use
knowledge about soiving easy problems to guide the solution of difficuit ones. Only a few works
in Al [Sacerdoti 1974}

[Carbonell 1983], , have attempted to equip machines with similaz capabilities. Gaschnig
[Gaschnig 1979] , Guida et.al [Guida 1979]. and Peari [Pearl 1983] suggested that knowledge
about easy problems could be instrumental in the mechanical discovery of heuristics. Accord-
ingly, it should be possible to manipulate the representation of a difficult problem until it is
transformed into an easy one, solve the easy problem, then use the solution to guide the search

process in the original problem.

The implementation of this scheme requires three major steps: 1. simplification 2. solu-
tion 3. advice generation. Additionally, to perform the simplification step, we must have a sim-

ple, a-priori criterion for deciding when 2 problem lends itself to easy solution.

This paper uses the domain of consiraint-satisfaction tasks to examine the feasibility of
these three steps. It establishes criteria for recognizing classes of easy problems, it provides spe--
cial procedures for solving them, and it introduces an efficient method of extracting advice from

them.

Constraint-satisfaction problems (CSP) involve the assignment of values to variables sub-
ject to a set of constraints. Understanding three-dimensional drawings, graph coloring, electronic
circuit analysis, and truth maintenance systems are examples of CSP problems. These are nor-
mally solved by some version of backtrack search which may require exponential search time (for

example, the graph coloring problem is known to be NP-complete.)

In general, a problem is considered easy when its representation permits a solution in
polynomial time. However, since we are dealing mainly with backtrack algorithms, we will con-

sider a2 CSP easy if it can be solved by a backtrack-free procedure, Normally, a backtracking



algorithm instantiates variables in a predetermined order, and for each next variable it chooses
one value that is consistent with all previous assignments. If it doesn't ind one, it backiracks to
the previous variable, tries 2 new assignment for it, and continues from there. The algorithm
stops when all variables have been assigned values or when no new untried values are left for the
first variable. A backtrack-free search is one in which the backtracking algorithm completes

without backtracking, thus producing a solution in time linear with the number of variables.

Most of our discussion is based on the concept of constraint-graphs [Mackworth 1977] in
which the nodes represent variables and the undirected arcs represent the existence of an explicit
copstraint between them. Freuder [Freuder 1982] has identified suficient conditions for a con-
straint graph to yield a backtrack-free CSP, and has shown, for exampie, that tree-like con-
straint graphs can be made to satisfy these conditions, with a small amount of processing. Our
main purpose here is to further study classes of constraint graphs lending themselves to
backtrack-free solutions and to devise efficient algorithms for solving them. Once these classes
are identifled they can be chosen as targets for a problem simplification scheme; constraints can
be selectively deleted from the original specification so as to transform the original problem into
3 backtrack-free one. The simplified problem can then provide advice oa choices pending in the
original problem. For example, we propose to use the “number of consistent soiutions in the
simplified problem” as a figure of merit to establish priority of value assignments in the back-
tracking search of the originai problem. We show that this figure of merit can be computed in
time comparable to that of finding a single solution to an easy problem. (For details regarding

the process of constraint-deletion see [Dechter 1984] )

1.3 Definitions and Nomenclature

Definition 1 { [Freuder 1982] ) An ordered conatraint graph is a constraint graph in which the
nodes are linearly ordered to reflect the sequence of variable assignments executed by the back-
track search algorithm. The width of a nodeAis the number of arcs that leads from that node to
previous nodes, the Width of an ordering is the maximum width of all nodes, and the width of a

graph is the minimum width of all the orderings of that graph.



C B c A 3
A ° A C ¢
B a((_nc,ecitdh
o f .
Figure | cwadawtiatiow

Figure 1 presents six possible orderings of a constraint graph. The width of node C in
the first ordering is 2 while in the second ordering it is 1. The width of the first ordering is 2
while the second is 1. The width of the coustraint graph is, therefore, 1. Freuder provided an
efficient algorithm for finding both the width of a graph and the ordering corresponding to this

width. He further showed that 3 constraint graph is a tree ifl it is of width 1.

Montanari [Montanari 1974] and Mackworth [Mackworth 1977] have introduced two
kinds of local consistencies among constraints named arc consistency and path consistency. Their
definitions assume that the graph is directed, i.e., each symmetric constraint is represented by

two directed arcs.

Let D, stand for the domain of variable V,; R, {x,y) stands for the assertion that {xy) is
permitted by the explicit constraint R, between V| and V.
Definition 2 { [Mackworth 1977] ). Ditected arc (V,,V)) is src consistent ifl for any value x ¢ D,
there is 2 value y eD, such that R, (z,y)
Definition 8 { [Montanari 1974] ): A path of length m through nodes (i3, . . . ,ia) i path con-

sistent iff for any value x eD,. and ¥y eD,' such that R.&.(z,y), there is a sequence of values

2eD,, ..., ima€D,_, such that



R, (2.5} and R, (2:,2;) and...and Ry, {zn.1.p)-
R, s 3y also be the universal relation e.g., permitting all possible pairs.

A constraint graph is arc (path) conmsistent if each of its directed arcs (paths) is are
(path) cousistent. Achieving "are-consistency” means deleting certain values from the domains of
certain variables such that the resultant graph will be arc-consistent, while still representing the
same overall set of solutions. To achieve path-consistency, certain pairs of values that were ini-
tially allowed by the local constraints should be disallowed. Montanari and Mackworth have
proposed polysomial-time algorithms for achieving arc-consistency and path comsistency. In
[Mackworth 1984| it is shown that are consistency can be achieved in ofed) while path con-
sistency can be achieved in o{n*}?). n is the aumber of variables, k is the number of possible

values, and e is the number of edges.

The foilowing theorem is due to Freuder.

Theorem 1

(a) If the constraint graph has a width 1 (i.e. the constraint graph is a tree) and if it is arc con-

sistent then it admits backtrack-free solutions.

{(b) It the width of the constraint graph is 2 and it is also path consistent then it admits

backtrack-free solutions.

The above theorem suggests that tree-like CSP’S (CSP's whose constraint graph are
trees) can be solved by first achieving arc consistency and then instantiating the variables in an
order which makes the graph have width 1. Since this backtrack-free istantiation takes o(nk?)
steps the whole problem can be solved in o{n#®) and, therefore, tree-like CSP's are easy. The test
for this property is also easily verified; to check whether or not a given graph is a tree can be

done by a regular O(n?) spanning tree algorithm.

It is important to note that a given CSP may have several equivalent representations, in
the sense of admitting the same set of solutions. Yet each representation may have a different

constraint-graph, one of which may be a tree. However, testing whether a CSP has an



equivalent tree representation and finding such a representation might be a very difficuit task.

The .second part of the theorem tempts us to conclude that a width-2 constraint graph
should admit a Backtrack-free solution_after passing through a path-consistency algorithm. In
this case, however, the path consistency algorithm may add arcs to the graph and increase its
width beyond 2. This often happens when the algorithm deletes value-pairs from a pair of vari-
ables that were initially related by the unmiversal constraint {having no connecting arc between
them), and it is often the case that passage through a path-comsistency algorithm renders the
constraint-graph complete. It may happen, therefore, that no advantage could be taken of the
fact that a CSP possesses a width-2 constraint graph if it is not already path copsistent. We are

not even sure whether width-2 suffices to preclude NP-completeness.

In the following section we give weaker definitions of arc and path consistency which are
also sufficient for guaranteeing backtrack-free solutions but have two advantages over those

defined by [Moutanari 1974] and [Mackworth 1977] :
1. They can be achieved more efficiently, and

2, They add fewer arcs to the constraint-graph, thus preserving the graph width in a larger

classes of problems.
3. Algorithms for achieving directional consistency

3.1 Case of Width-1

In constraint-graphs which are trees, full arc-consistency is more than what is actually
required for enabling backtrack-free solutions. For example, if the constraint graph in figure 2 is
ordeted by (Vy,Vy Vs, V), nothing is gained by making the directed arc (Vy,V)) consistent. To
ensure backtrack-free assignment, we need only make sure that any value assigned to variable
V, will have at least one consistent value in D,. This can be achieved by making only the
directed are (V;,V,) consistent, regardless of whether (V;,V)) is consistent. We therefore see that

arc-consistency is required only w.r.t a single direction, that specified by the order in which the



<

\—‘< w<'

F 9 gre L
backtrack algorithm will later choose variables for instantiations. This motivates the following

definitions.
‘Definition: Given an order d on the constraint graph R, we say that R is d-arc-consistent if all
the directed edges which follow the order d are arc-consistent.

Theorem 2

Let d be a width-1 order of an ordered constraint-tree, T. If T is d-arc-consistent then the back-
track search along the order d is backtrack-free.

proof

Suppose V,,V,, ...,V were already instantiated. The variable V.., is connected to at most
one previous variable (follows from the width-1 property), say V,, which was assigned the value
v,. Since the directed are (V,,V,y,) is along the order d, its arc-consistency implies the existence
of a value v+, such that the pair (v,v,s;) is permitted by the constraint R,;+,) Thus, the

assignment of v,4, is consistent with ail previous assignments.

An algorithm for achieving directional arc-consistency for any ordered constraint graph

is given next (The order d =(V|,V,,...,V,} is assumed)
DAC- d-arc-consistency

1. begin
2. For i=sn to 1 by -1 do



3. For each are (V,,V)); j < ido
REVISE(V,, V)
end

end

Ne ;o

end
The algorithm REVISE(V,,V,), given in [Mackworth 1977 , deletes values from the domain D,
until the directed are (V,,V)) is arc-consistent.

1. begin
For each xeD, do

2
3. if there is no value yeD, s.t. R, (2,5) then

4 delete x from D,
5. end
6. end

To prove that the algorithm achieves d-arc-consistency we have to show that upon ter-
mination, any are (V,,V,) alovg d (j < i), is arc-consistent. The algorithm revises each d-directed
are once. It remains to be shown that the consistency of an already processed arc is not violated
by the processing of coming arcs. Let arc (V,,V)) (j < i) be an arc just processed by
REVISE(V,,V,). to destroy the consistency of (v, V) some values should be deleied from the
domain of V, during the continuation of the algorithm. However, according to the order by
which REVISE is performed from this point on, only lower indexed variables may have their set
of values updated. Therefore, once a directed arc is made are-consistent its consistency will not
be violated.

For comparison, the algorithm AC-3 that achieves full arcconsistency [Mackworth 1977] is given

next:



AC3

1. begin

2. Q<-{(V,V))|(V,V)) € ares, ik j}
3. while Q is not empty do -

-

select and delete are (V,,V,)) from Q
5. REVISE(V),V,)
it REVISE(V,,V,,) caused any change then
Q <- QU{(V,. Vi) | (V., Vi) ¢ ares ,izék,m}

The directional arc-consistency algorithm takes ek® steps since the REVISE algorithm, taking ¥*
tests, is applied to every arc exactly oopce. It is also optimal, because even to verify directional
arc-consistency each are should be inspected once, and that takes & tests. By comparison, the

complexity of AC-3, achieving full arc-consistency is, O(e#®).

In particular, when the constraint graph is a tree, the complexity of the directional arc-
consistency algorithm is O(n#%).
Theorem 3
A tree-like CSP can be solved in O(n#?) steps and this is optimal.
proofl
Given that we know that the constraint graph is a tree, finding an order that will render it of
width-1 takes O(n) steps. A width-1 tree-CSP can be made d-arc-consistent in n-k° steps, using
the DAC algorithm. The backtrack-free solution on the resultant tree is found in n#*. Finding a
solution to tree-like CSP's takes, therefore, 20 + O(n) == O(ni®). This complexity is also
optimal since any algorithm for solving a tree-like problem must examine each constraint at least

once, and each such examination takes O(#).

Interestingly, if we apply DAC w.rt. order d and then DAC w.r.t. the reverse order we

get a3 full arc-consistency for trees. We can, therefore, achieve full arcconsistency on trees in



O(n#). Algorithm AC-3, on the other hand, can be shown to have s worst case performance on
trees of O(n#*). On general graphs, however, the (fuil) arc-comsistency algorithm cannot be

improved, and the AC-3 algorithm is optimal (see [Dechter 1984] ).

Returning to our primary aim of studying easy problems, we now show how advice can
be generated for solving a difficuit CSP using a relaxed tree-like approximation. Suppose that
we want to solve an n variables CSP using a backtracking procedure with V,,V,, ...,V as the
order of instantiation. Let V, be the variable to instantiate next, with v,,v, . . . ,v,; the possible
candidate valyes. To minimize backtracking we should first try values which are likely to lead to
a consistent solution but, since this likelihood is not known in advance, we may estimate it,
instead, by counting the number of coasistent solutions that each candidate admits in some
relaxed problem. We generate a relaxed tree-like problem by deleting some of the explicit con-
straints given, then count the number of consistent solutions containing each of the possible k
assignments, and finally use these counts as a figure of merit for scheduling the various assigne
ments. In the following we show how the counting of consistent solutions can be imbeded within

the d-arc-consistency algorithm, DAC, on trees.

Any width-1 order, d, on a constraint tree determines a directed tree in which a parent
always precedes its children in d (ares are directed from the parent to its children). Let N(v,)
stands for the number of solutions in the subtree rooted at V), consistent with the assignment of

vy to V,. It can be shown that N(.) satisfy the following reccurance:

N("}l) = 1 E N(”cl)

{C' v. 18 & chid of v‘.} {',]‘DJ R’("".J}

From this reccurance it is clear that the computation of N(v;,) may follow the exact same steps
as in DAC; Simuitanecusly with testing that a given value vy, is consistent with each of its chil-
dren nodes, we simply transfer from each chiid of V, to vy, the sum total of the counts computed
for the child’s values that are consistent with v, The overall value of N(v,) will be compated
later on by multiplying together the summ‘at.ions obtained from each of the children. Thus,
counting the number of solutions in a tree with n variables takes O(n#?), the same as establishing

directional arc-consistency.

10



2.2 Case of Width-2

Order information can also facilitate backirack-free search on width-2 problems by mak.

ing path-consistency algorithms directional.

Montanari had shown that if » network of constraints is consistent w.r.t all paths of
Jlength 2 (in the complete network) then it is path-consistent. Similarly we will show that direc-
tional path-consistency w.r.t. length-2 paths is sufficient to obtain a backtrack-free search on a
width-2 problems.
Definition: A constraint graph, R, ordered w.rt. order d = (V,V, ..., V,}, is d-path-
consistent if for every pair of values (x,y), xeV, and yeV, s.t. R, {2,y) and i<j, there exist a value
2eV, , k>j st Ru{2,2) and Ry(2,y) for every k > i
Theorem 4
Let d be a width-2 order of an ordered comstraint graph. If R is directional arc and path-
consistent w.r.t d then it is backtrack-free.
proof
To ensure that a width-2 ordered constraint graph will be backtrack-free it is required that the
next variable to be instantiated will have values that are consistent with previous chosen values.
Sappose V,,V,, . . ., V, were already instantiated. The variable V)., is connected to at most two
previous variables (follows from the width-2 property). If it is connected to V,and V,, ij, < k
then directimial path consistency implies that for any assignment of values to V,,V, there exist a
consistent assignment for V. If V., is connected to one previous variable, then directional

arc-consistency ensure the existence of a consistent assignment.

An algorithm for achieving directional path-consistency on any ordered graph will have
to manage not ouly the changes made to the constraints but also the changes made to the graph,
i.e. the arcs which are added to it. To describe the algorithm we use a representation in which a
constraint R, is given by a matrix whose rows and columns correspond to the values of the two
variables, and the entries are o, and 1 for disallowed and allowed pairs, respectively. The matrix
R, whose off-diagonal values are 0, represents the set of values permitted for variable V. Two

operation on relations are needed: Intersection and Composition.

11



Intersection: If two constraints, R',, and R",, should hold simultaneously, then their intersection
R, is written: R, = R',, 8 R",,-, and the entries in the corresponding matrices combine, term by
term, by a logical A.

Compoasition: Suppose relatios R, holds between V, and V; and R,y between V, and V| then
the induced relation transmitted by V, is the composite relation R;y and it is defined by the

matrix maltiplication
Ry = Ry Ry

Given a network of constraints R = (V.E) and an order d = (V,V;, ..., V,), we next

describe an algorithm which achieves path-consistency w.r.t. this order.

DPC-d-path-consistency
begin
)P =R
{2) tor k== n to 1 by -1 do
(a) V i<k connected to k do
Y, =Y, 8Y, Yy Y,/® this is REVISE(i,k)
(b) Vij kst {V,V))(V,Vi)eE do
Y, =Y 8 Y, v, - vy
E<-EU{(V,V)
end

end

Step 2a is the equivalent of the REVISE(ik) procedure, and it performs the directional are-
consistency. Step 2b updates the constraints between pairs of variables transmitted by a third
variable which is higher in the order 4. If V,,V,, i,j < k are not connected to V, then the rela-
tion between the first two variables is not effected by V; at all. If only one variable , V,, is con-
nected to V,, the eflect of V, on the constraint (V,,V)) will computed by step (2a) of the algo-
rithm. The only time a variable V; eflects the constraints between pairs of earlier variables is if

it is connected to both. It is in this case only that a new arc may be added to the graph.

i

12



The complexity of the directional-path-consistency algorithm is O(nk*). For variable V,
the number of times the inner loop, 2b, is executed is at most O((i-1)?) (the number of different
pairs less then i), and each step is of order i*. The computation of loop 2a is completely dom-

inated by the computation of 2b, and can be ignored. Therefore, the overall complexity is
L ]
L (-1 =0(n*t®)
12

Applying directionakpath-consistency to a width-2 graph may increase its width and
therefore, does not guarantee backirack-free solutions. Consequently it is useful to define the
following sabclass of width-2 CSP problems.

Definition: A constraint graph is regular uidib-2 if there exist a width-2 ordering of the graph

which remains width-2 after applying d-path-consistency, DPC.

A ring constitutes an example of a regular-width-2. Figure 3 shows an ordering of a

ring's nodes and the graph resulting from applying the DPC algorithm to the ring. Both graphs

Vs

are of width-2,

V,

pPC
3 — A ——
i
Theorem 51 VI F;}U? e 3

A regular width-2 CSP can be solved in O(n’t?)

Proof i

Regular width-2 problem can be solved by first applying the DPC algorithm and then performing
a backtrack.free search on the resuiting graph. The first takes O(n*F®) steps the second O(n?F)

steps.

13



The main problem with the preceding approach is whether a regular width-2 CSP can be
recognized from the properties of its constraint graph. One promising approach is to identify
nonseparable components of the graph and all its separation vertices [Even 1979).
definition: A connected graph G(V.E) is said to have a separation vertez v if there exist vertices a
and b, such that all the paths connecting 3 and b pass through v. A graph which has a separa.
tion vertex is calied: separable, and one which has none is called nonseparable.

An O([E]} algorithm for finding all the nonseparable components and the separation vertices is
given in [Even 1979} It is also shown that the conmectivity structure between the nonseparable

components and the separation vertices, has a tree structure.
The following points can be made:

1. Given any ordered coustraint graph in which the separation vertices and the nonseparable
compounents are identified, the directional path-consistency algorithm adds ares only

within each component.

2. Let R be a graph and SR be the tree in which the norseparable components C,,C,, ... ,C,
and the separating vertices V,V,, ..., V, are represented by nodes. A width-1 ordering
of RS dictates a partial order on R,d4*, in which each separating vertex precede all the
vertices in its children components of SR. It can be shown that if there exist a d° order-
ing on R such that each nonseparable component is regular-width-2 then the total order-
ing is regular width-2.

As a corollary of these two points we conclude that a tree of simple rings is regular width-2.

3. Summary and conclusions

This paper examines the process of harnessing easy problems to help in the solution of
complex constraint-satisfaction problems. Of the three main steps involved in this process -~

simplification, solution, and advice generation — we concentrated on the following:

1. The simplification part; we have devised criteria for recognizing easy problems based on their

underlying constraint graphs. The characteristics that meet these criteria can be used as

14



goals for simplifying complex problems by deleting some of their constraints. The intro-
duction of directionality into the motions of arc and path consistency enable us to
extend the class of recognizable easy problems beyond trees, to include regular width-2

problems.

2. The solution part; using directionality we were able to devise improved algorithms for solving
simplified problems and to demonstrate their optimality. In particular, it is shown that
tree-structured problems can be solved in O(nk?) steps, and regular width-2 problems in

O(n*&") steps.

3. The advice generation part; we have demonstrated a simple method of extracting advice from
easy problems to help a backtracking algorithm decide between pending options of value
assignments. The method involves approximating the remaining part of 2 constraint-
satisfaction task by a tree-structured problem, and counting the mumber of solutions
consistent with each pending assignment. These counts caa be obtained efficiently and

can be used as figures of merit to rate the promise offered by each option.

15



References

[Carbouell 1983] Carbonell, J.G., “Learning by analogy: Formulation and generating plan from
past expericnce,” in Machine Learning, Michalski, Carbonell and Mitchell, Ed.
Palo Alto, California: Tioga Press, 1983,

[Dechter 1984] Dechter, R. and J.Pearl, “A problem simplification approach that generates
heuristics for constraint satisfaction problems.,’ UCLA-Eng-rep.8497, Los
Angeles, California, 1984.

[Even 1979| Even, 5., Graph Algorithms, Maryland, USA: Computer Science Press, 1979.

[Freuder 1982] Freuder, E.C., “A sufficient condition of backtrack-free search.,” Journal of the
ACM, Vol. 29, No. 1, 1982, pp. 24-32.

[Gaschnig 1979] Gaschnig, J., “A problem similarity approach to devising heuristics; frst
results,” in Proceedings 6ih international joint conf. on Artificial Intelligence.,
Tokyo, Jappan: 1979, pp. 301-307. :

[Guida 1979] Guida, G. and M. Somalvico, “A method for computing heuristics in problem
solving,"” Information Sciences, Vol. 19, 1979, pp. 251-259.

[Mackworth 1977|Mackworth, A.K., “Consistency in networks of relations,” Artifficial intells-
gence, Vol, 8, No. 1, 1977, pp. 99-118,

[Mackworth 1984|Mackworth, A.K. and E.C. Freuder, “The complexity of some polynomial coa-
sistancy algorithms for constraint satisfaction problems,” To sppear in Af
Journai , 1984.

[Montanari 1974] Montanari, U., “Networks of constraints :fundamental properties and applica-
tions to picture processing,” information seience, Vol. 7, 1974, pp. 95-132.

[Pearl 1983] Pearl, J., “On the discovery and generation of certain heuristics,” A7 Magazine,
No. 22-23, 1983,

[Sacerdoti 1974] Sacerdoti, E. D., “Planning in a hierarchy of abstraction spaces,” Arlificisl
Intelligence, Voi. 5, No. 2, 1974, pp. 115-135.

18



