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Abstract

The message complexity of an election algorithm in a general network is
O(m+n-logn). Recently, an O(n logn) election algorithm for a complete network was
presented [6]. However, the algorithm is quite complicated in terms of understanding and
programming. Here, we present simple and short election algorithms which are as
efficient. The suggested algorithms are of practical importance for users who are actually
interested in programming the election algorithm on a complete petwork of processors.

1 Introduction

The election algorithm is an identical program residing in every node in the net-
work. Initially, nodes differ only by their identifiers (ids). The nodes elect a leader by
exchanging messages. When the message exchange terminates, one node is distinguished
from all others. '

In {5], an O(m+n-logn) election algorithm for general networks was presented
where m is the number of links and, n is the number of nodes in the network. It was
later proven in [1,7] that O(n-logn) is a lower bound. A lower bound of O(m} is obvious
since any untraversed link could be the only link connecting two parts of the network,
each holding a separate election algorithm.

In, [8] Korach et. al. showed that the O(m) lower bound does not hold for the
special case of a complete network, i.e., when every node has a link to every other node
in the network. The authors then presented an election algorithm for complete networks.
The algorithm follows that presented in [5] and, in terms of understanding and program-
ming, is as complex.

*This research was supported by the Defense Advanced Research Projects Agency of the
Department of Defense under Contract MDA 903-82-C-0064. The first author is an IBM
Graduate Fellow.



In complete networks, an election algorithm may terminate if all the the neighbors
of one node have been visited. This is not the case in the general network. Taking
advantage of the simplicity of termination detection, we apply principles suggested in
[4,5] for general networks to derive two simple and elegant algorithms (A and B) for elec-
tion in complete networks. The two algorithms present a tradeoff between time and mes-
sage complexities. Algorithm A has an O(n) time complexity and 2.773'n-logn message
complexity. Algorithm B has a 2'n-logn message complexity but an O(n-logn) time com-
plexity. Analyzing the communication and time complexities of the two algorithms, we
derive a third algorithm, algorithm C, which achieves the time complexity of algorithm A
and the communication complexity of algorithm B. The principles in [4] have already
been successfully applied in [2] to produce an efficient election algorithm in unidirec-
tional networks. These results suggest that the principles behind the presented algo-
rithms are fundamental to the area of distributed algorithms.

2 Algorithms for Election in Complete Networks
2.1 Overview

We present three algorithms (A, B, and C) for election in a complete network.
The underlying mechanism for all three algerithms is similar. Each algorithm is initiated
by any subset of nodes, each of which spawns a process. Each spawned process tries to
capture all the other nodes by successfully traversing in both directions all the links
incident to its initiator, called the base. The base node whose process has succeeded in
capturing all its neighbors, elects itself as the leader of the network. To guarantee that
only one node is elected, all processes but one are killed.

Processes in the different versions of the algorithm use a combination of two vari-
ables, ¢d and level, in order to contest each other. The process id is the id of its base
node. The process level is an estimate of the amount of work it has already done. Pro-
cess level could, for example, be some function of the number of nodes it has captured,
the number of processes it has killed or both.

To keep track of its owner process, every captured node has two link pointers,
father and potential-father. In general, the father pointer points to the link through
which the node was most recently captured. The potential-father pointer points to the
link through which a process which tries to capture the node has arrived.

Every captured node has a level variable, which is the highest level process it has
observed.

A process that arrives at a node with a larger level than its own, kills itself. On
the other hand, if the node's level is smaller or equal to that of the process, the node’s
level is replaced by the process level, which is then said to survive. The surviving process
may then try to kill the previous owner of the node. The different criterion which the
process uses to kill the previcus owner give rise to the different algorithms.



The simplicity of the election algorithms stems from the simplicity of termination
detection and process synchronization in a complete metwork. Termination is easily
detected by a base node when its process has captured all its neighbors. Synchronization
between two conflicting processes is easy since each captured node is at most one hop
away from its owning base node.

The main difference between the three algorithms is the way that processes deter-
mine their level. In algorithm A, processes use the number of nodes they have captured
as their level. In algorithm B, processes use the number of processes they have killed.
Among the two algorithms, algorithm A achieves a better time complexity while algo-
rithm B achieves a better communication complexity. In algorithm C, processes use a
combination of the above two level functions to achieve the message complexity of algo-
rithm B and the time complexity of algorithm A.

2.2 Algorithm A

In this algorithm, the level of a process is the number of nodes it has already cap-
tured. When a process replaces the level of an already captured node, it has to kill the
previous owner of the node before it may claim the node to itself.

To resolve ties, the process id (base id) is appended to the level of every process
and every node, and comparisons are carried out lexicographically. Nodes initialize their
level to 0. Processes initialize their level to 0 appended by their base-id.

A process that arrives at an already captured node v whose level is smaller than
its own, replaces v's level with its own and becomes v's potential-father. The
potential-father process is then sent to the base node which owns v. If the process sur-
vives at v's base node, and no other process became v's potential-father in the
meanwkhile, then it becomes v's father.

Figure 1 shows the formal description of algorithm A. In the algorithm, E is the
set of edges incident to a node. Every base node maintains a list of edges, called
untraversed, which it's process has not yet traversed in any direction. The untraversed
list is used by base nodes, live and dead, to decide whether a visiting process is one which
tries to capture it or is a conflicting potential-father. A process which comes over a link
from the untraversed set is a capturing process while a process which arrives through an
already traversed link is certainly a disputing potential-father. In this way the algorithm
has only one type of message.

The algorithm is deadlock free since processes never wait for each other, and the
{level, id) pair is lexicographically increasing along any chain of processes which kill each
other.

The time complexity of the algorithm is O(n) since processes never wait for each
other and a process which has done more work is never killed by a process which has
done less work. Thus, each killed process spent less time, in the worst case, than the pro-
cess killing it.



level := owner-id :== 0 ;
untraversed := E ; father := nil ;

/* The following is performed by initiator nodes */

Base (id ) :
while { untraversed # &) do;
¢ := any( untraversed ) ;
send(¢d,level) on e ;
R: receive(id’ level’) over ¢’ ;
if (id’ = id) then /*process returns from successful capturing.*/
level := level + 1
untraversed := untraversed - ¢ ;
else /*another process tries to capture the node.*/
if (level’ ,id" < level,id) /* comparison done lexicographically*/
then Discard the message, goto R ;
else goto Killed ;
end while;

a.nnounce(ELECTED,terﬁlinate the algorithm) , STOP;  /* untraversed =& */

/* The following is performed by non-initiator nodes */
Captured:
for ever do;
Teceive(sd’,level’) over ¢’ ;
case level’, id’ of :
(1) level’ id’ < level, owner—id:
Discard message ;
(2) level’ vd' > level,owner-id :
Killed : potential-father := ¢’ ;
level := level’
ouner—id 1= id' ;
/*Now check if id’ is a disputing potential-father or a capturing process*/
if (¢’ €untraversed) then send(id’,level’) over ¢’, goto Captured ;
if father = nil then father:=potential-father ;
send(id’ level’) over the father link ;
(3) level’, id’ = level,owner-id:  [* Potential father has killed the father */
father := potential-father ;
send(id’, level’) over the father link ; /* Return the process to it’s base.*/
end case ;
end for _ever;

FIGURE 1: Algorithm A

The analysis of the communication complexity of the algorithm relies on the fol-
lowing observation: The sets of captured nodes, each owned by a different live process,
are disjoint. This is because every node has at most one father, and when a node
changes a father, the previous one is dead. Hence, if one process owns the entire net-
work, it is the only live process in the network.



To prove that the communication complexity of the algorithm is O(n'log n) we
use a Lemma which was introduced in [4].

Lemma 1: For any given k, the number of processes that own 2 podes or more is,

k

at most, k.

The proof of Lemma 1 relies on the disjointness property. Details can be found in

[4].

I

Corollary 2 The largest process to be killed by another process owns at most >

n
nodes, the next largest at most 3 ete.

Since to capture a node a process makes at most 4 hops, we arrive at the following:
Lemma 3: The total cost of algorithm A is 4'n In n.

proof The cost incurred by a process of size k is 4'k messages. From corollary 2, the
n

total cost is bounded by 4:n-%; l messages. Hence, the total message complexity of the
il

algorithm is bounded by 4'n‘lnn (2.773-n-logn) messages. B
Each message of algorithm A contains at most 2-logn bita.

The principle behind algorithm A is that the node sets owned by different live
processes are disjoint. Thus, a process has to verify that the father of every node it tries
to capture is dead before claiming the node to itself. This mechanism causes a process,
which captures many nodes from another process, to “kill® that other process as many
times as the number of nodes it captures from it and hence, causing the factor 4 in the
message complexity. In the next algorithm we relax the disjointness requirement, thus
enabling a process to claim a node without killing its previous owner. This modification
reduces the message complexity to 2-nlogn messages (2.885: n ‘lnn).

2.3 Algorithm B

As in the previous algorithm, the level of a process is initialized to 0; however,
here we do not append the process id to the process level. Whenever a process sees
another one with a higher level, it kills itself. If a process sees another one at the same
level but with a smaller id, it kills the other process and increases its level by one. Thus,
the level of a process is the number of processes it has killed. As in algorithm A, the
node’s level is the highest level-process it has seen.

Unlike algorithm A, processes in this algorithm may claim a node of another pro-
cess without killing the other process. However, a process may replace the level of a node
only if the node level was less than the process level, in which case the father pointer of
the node is set to the link through which the process arrived.



If the process level equals node v's level and its id is larger than that of v's owning
process, then the process becomes v's potential-father. The potential-father is then sent
to v's father, f, in an attempt to kill it. If another process in the same level with an even
higher id arrives at v before the potential-father returns from f, then this other process is
killed. If the potential—father survives at [ it returns to its base (via v which it now owns)
and increments its level by one. However, if the potential-father process arrives at node
{ and f was killed already, then the potential-father kills itself.

To analyze the performance of the algorithm we note that the maximum level
achievable during its execution is logn. The reason being, that at most half of the
processes at level k can go up to level k +1. Clearly, every time a node is recaptured its
level is increased by at least one. Hence, the total number of captures possible, is at most
nlogn. Each capture costs 2 messages which sums to a total of 2:n-logn. The extra
message cost incurred by processes which go over father links to other bases is at most
2-n, since each such traversal results in the elimination of ome live process. Thus, the
total message complexity of the algorithm is bounded by 2-n-logn + 2'n and the message
length is logn + loglogn.

The time complexity of the algorithm is O(n-logn) as can be seen from the follow-

ing scenario. We will show how it is possible for % of the nodes to be captured log-g-
times. The algorithm is started by node, v, which captures Z nodes and is still in level

2
0. Then, a new node, v,, spontaneously starts the algorithm, kills v, increases its level to

1 and captures the % nodes. After v, has captured the g' nodes, two new nodes spon-
taneously start the algorithm, try to kill each other and the one which survives, v,,
reaches level 1. Node v, then kills v, and recaptures the -'2”- nodes at level 2. The

scenario continues until node Y 2 recaptures the entire network and is elected as a
gy :
leader.

The reason for the high time complexity of algorithm B is that killings are
independent of the number of nodes captured by each of the disputing processes. Hence,
a process which spent a lot of work (and time) accumulating nodes might be killed by a
process which did not spend nearly as much. Although algorithm A does not suffer from
this problem, it had the problem that processes could be “killed” many times. In the next
algorithm we eliminate both problems by employing both techkniques simultaneously in
one algorithm.

2.4 Algorithm C

Here we make two modifications to algorithm B in order to achieve a linear time
complexity with no increase in the communication cost. First, we combine an estimate of
the amount of work spent by each process into the level function of algorithm B.
Second, we enable processes with high levels (>logn) to capture many nodes in parallel
(in one time unit). We start describing the algorithm with the first modification. The
second modification will be introduced during the performance analysis.



/* The variable size is for algorithm C only */

level ;= size == 0 owner-id := potential-id := 0 ;
untraversed :== E ; father := potential-father := nil ;

/* The following is performed by initiator nodes */

Base (id ) :
while { untraversed # &) do;
e ;= any{ untraversed ) ;
send{level,id) on ¢ ;
R:  receive{level’,id’) over ¢’ ;
if (¢d’ = id) then /*process returns from successful capturing.*/
level := level’
untraversed :== untraversed - ¢ ;
else-if (level’,id’ < level,id) then /* comparison done lexicographically*/
Discard the message, goto R ;
else-if ¢’ € untraversed then goto Killed ; /* capturing process from base id"*/
else send(level’,id’) over ¢'; goto Captured ;/*disputing poten.-father process*/

end while;

announce(ELECTED, terminate the algorithm ), STOP ; /* untraversed =& */
/* The following is performed by non-initiator nodes */

Captured:
while {not terminated) do;
" receive(level’,id’) over ¢’ ;
if (¢’ €untraversed) then Discard message ; /* cannot kill a dead process * /
else
Killed : case level’ of :
1) level’ < level : Discard message ;
2} level’ > level :  /* Replace the father */
father := ¢’ ; level := level’ ; owner—id := id";
potential-id := 0; potential—father :== nil ;
send(level’,id’) over the father link ;
(3) level’ = level :
if (owner-id = 0) then /* id’ becomes the father */
Jather := ¢’ ; level := level’ ; owner-id := id’ ;
potential-id ;= 0; potential-father := nil ;
send(level’,id’) over the father link ;
else-if (id’ < owner-id) then Discard message ;
else-if ( id’ = potential-id ) then
Jather := potential-father ; level’ := level’ +1 ;
owner-id 1= id’ ; potential-id := 0 ; potential-father ;= nil ;
send(level’,id’) over the father link ;
else-if there is already a potential-father then Discard message ;
else /* there is no potential-father */
potential-id := id’ ; potential-father .= ¢ ;
send(level’,id’) over the fatker link ;
end case ;
end while ;

FIGURE 2: Algorithm B



As before, the level of any process or node is initialized to 0. Processes increase
their level according to two rules. First, as in algorithm B, whenever a process kills
another one, it increases its fevel by 1. Second, when the process returns from a success-
ful capturing, the base node replaces its level with the maximum of level and the log of
the number of nodes it has already captured.

The algorithm is similar to algorithm B. In this algorithm base nodes use a sze
variable to count the number of nodes they have captured. Base nodes increase their size
by ome for each node captured by their processes and update their process level by
Maz(level log size).

The formal description of the algorithm is similar to that of algorithm B. The
only change is, to replace the first then clause, within the while loop of a base node pro-
gram to:

then
size:= aizetl ;
level:= max( level’ logaize) ;
untraversed := untraversed - e ;

To analyze its performances we will first show that:

Lemma §: The maximum level reachable during any execution of algorithm C is
logn + loglogn + 1.

proof Let N; be the total number of processes that reach level i during the execution of
the algorithm. Consider the maximum number of processes which could possibly pass
from level i-1 to level i. There are two ways in which a process can grow from level -1
to level i. First, by capturing 2°-! nodes at level i-1, for i<logn and second, by killing
another process which is at level i~-1. We note that N is maximized if as many processes

as possible pass from level i-1 to level i by capturing other nodes (i.e., 2?_1 ) and the rest
of the processes (i.e, N;_l--2—:i'i-) kill each other in pairs. Hence,
n
(N.--a—F) .
Solving (1) for N; we get:
N; < ) (2)

Substituting N; = 1 in (2) and solving for i gives us the maximum level which is,
logn+loglogn+1. @



Using exactly the same argument as we used for the message complexity of algo-
rithm B we get that the total number of messages of algorithm C is bounded by
2-n-(logn+loglogn+2) where each message contains at most logn+log(logn+loglogn)
bits.

With the above modification it can be shown that the time complexity of algo-
rithm B was reduced to O(n-loglogn) without any degradation in the big O message com-
plexity. In order to further reduce the time complexity to O(n), processes at level higher

than logn will try to capture nodes in parallel. Thus a process which has reached

n
logn

level logn will send messages over

lo:n untraversed links incident to its base. Each of
these messages carry the (level, id) of the base pode. When arriving at the adjacent
nodes they compare their level to that of the nodes. If the message level is higher it
replaces the (level, id) of the node thus becoming the father of the node and returning to
the baasc notifying it of a successful capture. If the message level is smaller, it returns no
message. Finally, if the message level is the same as that of the node but the message id

is higher, a notification to that effect is sent back to the base.

The base node waits for all the messages. If all the messages indicate a suc-

n
logn

cessful capture, the base proceeds to the next

lo:n untraversed incident links. If on the
other hand, some of them indicate that they have encountered the same level, one of
them is arbitrarily chosen and a process that behaves as in algorithm B is sent along the

link. If the process return, the base node increases its level and proceeds to the mext

ogn untraversed links (links on which no successful capture was reported are not con-
o

sidered traversed).

To analyze the algorithm with this modification we make two observations: First,
the maximum attainable level in the algorithm is still bounded by logn+loglogn+1.
Second, by substituting ¢ = logn in equation (2), we find out that the maximum rumber
of processes which reach level logn is logn.

The }ast modification has increased the communication complexity of the algo-
rithm by at most O(n) messages. Each node is still captured at most logn+loglogn+1
times, however the death of a processes at level greater than logn might be assoctated

with at most 2-——
logn
due to killings is bounded by O(n).

messages. Since there are at most logn such processes the increase

To show that the time complexity of the algorithm is O(n) we arrange the
processes in a rooted tree. Each level of the tree corresponds to the processes that have
reached that level in the algorithm, i.e., the nodes at level i in the tree correspond to the
processes that have reached level i in the algorithm. The parent of a process at level i in
the tree is either the process that caused the death of the given process or, the same pro-
cess at the next fevel. The time delay of the algorithm is the sum of the delays incurred
by processes along the path from the first process spontaneously waking up, at level 0, to
the root.



To evaluate this time delay we note that no process that either survives or is
killed at the ¢* level, spends more than 2'"! time units in the i** level for i<logn. In lev-
els higher than logn no process spends more than logn time units since it captures nodes

at a rate of per time unit. Hence, the total time delay of the algorithm is bounded

logn Iogongﬂosiogn )
by Y 2! + Y.  logn = n+logn-loglogn. Note that we scale a time unit to be the
sam] i=logn

maximum delay it takes to capture one node, which is a constant.

In the above calculation of the algorithm's time delay we did not include the
actual time it takes processes to kill each other. Since, there are, at most, n processes
and, no process tries to kill a dead one (unlike algorithm A), this delay is also bounded
by O(n).

3 Conclusions

We have presented a sequence of algorithms for an election in a complete graph
where each algorithm was devised to circumvent the problems of its predecessors. This
sequence concludes with algorithm C, which has time complexity O(n) and message com-
plexity 2'n-logn+0O{n). Yet, the major contribution of the paper is the study of various
methods we believe to be recurrent in a number of election algorithms. We have com-
bined these methods to derive an algorithm better than those employing any one of the
methods alone. Recently [3] ,we have applied this to derive an Oflogn) time and
O(n-logn) messages, synchronous election algorithm for a complete network. We are now
in the process of investigating the ramification of this idea to election in general net-
works.
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