FAST AND MESSAGE-OPTIMAL SYNCHRONOUS
ELECTION ALGORITHM FOR COMPLETE NETWORKS

Eli Gafni October 1984
Yehuda Afek CSD-840041
Leonard Kleinrock

FAST AND MESSAGE-OPTIMAL SYNCHRONOUS
ELECTION ALGORITHM FOR COMPLETE NETWORKS

Els Gafns
Yehuda Afek
Leonard Klesnroek

Computer Science Department
University of California, Los Angeles, CA 90024

1 Introduction

In the election problem, a single processor, the leader, has to be distinguished
from a set of processors which differ only by their identifiers (ids). Initially, no proces-
sor is aware of the ¢d of any other processor. The election algorithm is an identical
program residing at each processor in the network. An arbitrary subset of processors
spontaneously wake up at arbitrary times and start the algorithm by sending messages
over the network. When the message exchange terminates, the leader is distinguished
from all other processors.

This paper addresses the problem of electing a leader in a synchronous complete
network. In such a network, each pair of processors is connected by a bidirectional
communication link, and all processors are connected to a global clock. We assume
that all the links incident to a processor on which no message was sent or received are
indistinguishable.

For arbitrary asynchronous networks, a ©{m+n-logn) bound on the message
complexity was proved [3,4,5,7], where n and m are the total number of processors and
links in the network. {}{m) is a lower bound since no algorithm may terminate before
sending at least one message over each link; otherwise, an untraversed link could be the
only link connecting two parts of the network, each holding a separate election. Yet,
Korach et al. [6] noted that the £)(m) lower bound does not hold in complete networks,
where an election algorithm may terminate after one processor has communicated with
all its neighbors. Subsequently they proved a lower bound of (}(n-logn) messages for
the asynchronous complete network and presented an algorithm that requires
5n-logn+ O(n) messages and O(n-logn) time.

For synchronous complete networks, {}(n-logn) is also a lower bound on the mes-
sage complexity, as is recently shown in [1], where it is proved that O(logn) rounds is a

*This research was supported by the Defense Advanced Research Projects Agency of
the Department of Defense under Contract MDA 903-82-C-0064. The second author is
an IBM Graduate Fellow.

lower bound on the time complexity of any message optimal synchronous algorithm.

In this paper we employ the observation of Korack et al. [6] and the fact that in
a complete network every processor may be the root of a star spanning tree to con-
struct a synchronous election algorithm for complete networks, which attains the above
message and time lower bounds. The message complexity of the algorithm is 3n-logn,
and its time complexity is 2logn rounds.

An O(1) time and O(n?) messages algorithm is easily constructed as follows:
every initiator sends messages to all its neighbors as soon as it wakes up. All the initia-
tors will then elect the highest id initiator as the leader. The message complexity can
be reduced to O(n-logn) by using the algorithms suggested in [2} !. There, each initia-
tor sends, at most, one message at a time, and thus the time complexity is increased to
O(n). In this paper we use the synchronous model of communication to achieve an
Oflogn) time complexity while maintaining the O(n-logn) message complexity.

In Section 2 the model of a synchronous complete network is presented. Section
3 gives the algorithm. Throughout the paper, unless specified differently, log denotes

log,.

2 Model and Assumptions

We model a synchronous complete network of n processors as follows: Each
processor is connected by n-1 bidirectional communication links to all other proces-
sors. A single global clock is connected to all processors. The time interval between
two consecutive pulses of the global clock is a round. In the beginning of each round,
each processor decides, according to its state, on which links to send messages and
what messages to send. Each processor then receives any message sent to it in this
round and uses the received messages and its state to decide on its next state. All the
links incident to a processor on which no message was sent or received are indistin-
guishable. Each processor starts its participation in the algorithm either by waking up
spontaneously at the end of an arbitrary round, in which case it is called snslsator, or
by receiving a message of the algorithm.

3 Synchronous Election Algorithm

The algorithm is initiated by any subset of processors, each of which is a candi-
date for leadership. Each candidate tries to capture all other processors by sending
messages on all the links incident to it. The candidate that has succeeded in capturing
all its neighbors elects itself as the leader. To guarantee that only one processor
succeeds, all candidates but one are kslled.

1 - Although the mechanisms there are for asynchronous networks they can be easily
modified to work on synchronous networks.

All candidates use a variable called age to count the number of rounds passed
since they have started the algorithm. Every captured processor has an owner-age and
owner-id variables which are the age and id of the oldest candidate from which it has
received a message (age ties are resolved by selecting the highest id).

Every live candidate performs the following operation: In round 2¢, 20 of its
algorithm, it sends 2' messages containing its age and id to 2 new mneighbors in an
attempt to capture them. If in round 2i+1, the candidate receives acknowledgements
to all the messages which it sent in round 2f, it proceeds as a candidate to the next
round. On the other hand, if not all the acknowledgements are received, the candidacy
of the processor is eliminated. In every round, a processor acknowledges a message
only if the <age, sd > pair of the message is lexicographically larger than that both of
any other message it has received and of its owner. Whenever a processor ack-
nowledges a candidate, that candidate becomes the processor’s owner.

Figure 1 shows the formal description of the algorithm. Upon waking up, every
processor in the network spawns a process, called node. Processors which wake up
spontaneously spawn an additional process, called candidate. A logical bidirectional
link, which behaves in the same way that a physical link does, is extended between the
two processes of a spontaneously waking up processor. Thus, the candidate process of
every initiator is connected by n links to n node processes, one in each processor in the
network. Each candidate process tries to capture all the node processes in the net-
work. Two types of messages are used by the algorithm, candidate, which includes the
< age, id> pair of some candidate, and acknowledgement, which is the reply to a candi-
date message. All messages received by a processor are grouped according to their
type. The candidate messages, which are sent by candidate processes, are forwarded to
the node process. The acknowledgement type messages, which are generated by node
processes, are forwarded to the candidate process.

Time and Message Complexities

Let p be the largest id candidate from the set of oldest candidates. We observe
the following three facts:

Fact 1: The owner-age of every node strictly increases from round to
round.

Fact 2: 2logn rounds after it was awakened spontaneocusly, candidate p
has captured all the nodes and is elected as the leader of the network.

Faet 8: At most, 2‘_n_l candidates reach age 21, 1< i<logn.

/* The candidate process program */

unused := { the set of n links incident to the candidate process }
age := -1,
Each round do:
age .= age + 1;
If age is even
Then
If unused is empty
Then
ELECTED, STOP
Else
E := Minimum { 2*°, | unused |) ;
Send (age, id} over E links from unused, and
remove these links from the set unused ;
Else /* ageisodd */
Receive all acknowledgement type messages
If received less than E acknowledgements
Then
Stop /* Not a candidate any more */
End each round.

/* The node process program */

L* :=nil ;
owner-age ;== -] ;
Each round do:
Send an acknowledgement over L* ;
owner-age == gwner-age + 1 ;
Receive all candidate type messages { (age, id) over link L } ;
Let (age*, 1d*) be the lexicographically largest (age, ¢d) candidate message, and
L* the link over which it arrived ;
If (age*, id*) >(owner-age, owner—id)

Then

(owner-age, owner—id }:= (age*, id*) ;
Else

L* := il ;

End each round.
Figure 1: The Algorithm

Fact 1 follows immediately from the program for node processes. Fact 2 holds
because all of p's candidate messages get acknowledged, and a node whose owner is p
does not acknowledge any other message. Fact 3 follows fact 1 and the observation
that every node acknowledges at most one message in which the age is i, 0<i<logn,
i.e., the sets of 2! nodes that are captured by candidates at age 21 are dlS]OlIlt

According to fact 2, the time complexity of the algorithm is 2logn. Since every
node sends at most 1 acknowledgement to candidate at age 24, the total number of
acknowledgments is n logn, each with O(1) bits. Due to fact 3, the total number of

candidate messages is é 2—2’ = 2n-logn, each with logn+loglogn bits.

yum]

A continuum of algorithms can be easily devised to close the gap between the
trivial O(1) time and O(n?) messages algorithm and the O(logn) time and 3n-logn mes-
sages algorithm. Each algorithm in the continuum is the same algorithm as the above,
except for the fact that each candidate in age 2/ is trying to capture ¢' neighbors,
2<¢<n. The time complexity of the algorithm is 2log,n, and its message complexity is
2¢'n-log,n. In [1] it is proved that each of the algorithms in the continuum is optimal
in the following sense: For a given ¢, any algorithm which is faster in the worst case
will require more messages or, alternately, any algorithm which sends fewer messages is
slower.

[1]

[2]

3]
[4]

[5]

[6]

[7]

References

Yehuda Afek and Eli Gafni, Time and Message Bounds for Election in Syn-
chronous and Asynchronous Complete Networks, UCLA, Los Angeles, Califor-
nia. in preparation.

Yehuda Afek and Eli Gafni, “Simple and Efficient Algorithms for Election in
Complete Networks,” in Proceedings Twenty-Second Annual Allerton Confer-
ence on Communication, Control, and Computing, Allerton, IL (October 3-5,

1984).

J. E. Burns, A Formal Model for Message Passing Systems,” TR-91, Indiana
Univ., Bloomington {(May 1980).

Greg N. Frederickson and Nancy A. Lynch, “The Impact of Synchronous
Communication on the Problem of Electing a Leader in a Ring,” pp. 493-503
in Proceedings of the 16th Ann. ACM Symp. on Theory of Compuling, Wash-
ington, D.C. (1984).

Robert G. Gallager, Pierre A. Humblet, and P. M. Spira, “A Distributed Algo-
rithm for Minimum Weight Spanning Trees,”” ACM Trans. Program. Lang.
Syst. 6, pp.66-77 (Jan 1983).

E. Korach, S. Moran, and S. Zaks, ‘“Tight Lower and Upper Bounds for Some
Distributed Algorithms for a Complete Network of Processors,” in Proceedings
of the ACM Symp. on Principles of Distributed Compuling, Vancouver BC
(August 1984).

J. Pachl, E. Korach, and D. Rotem, ‘“A Technique for Proving Lower Bounds
for Distributed Maximum-Finding Algorithms,” pp. 378382 in Proceedings of
the 14th Ann. ACM Symp. on Theory of Computing, San Francisco CA {1982).

