CONCURRENCY IN PARALLEL PROCESSING SYSTEMS

Kenneth Ching-Yu Kung 1984
CSD-840039

UNIVERSITY OF CALIFORNIA

Los Angeles

Concurrency in Parallel Processing Systems

- A dissertation submitted in partial satisfaction of the
requirement for the degree Doctor of Philosophy
in Computer Science

by

Kenneth Ching-Yu Kung

1984

The dissertation of Kenneth Ching-Yu Kung is approved.

ke

C—#/m c

Milos Ercegovac

Mo Gt

Mario Gerla

4«:7‘9&;5

Beanet Lientz

_LFD

Steven Lippman

|74 .

Leonard Kleinrock, Committee Chair

University of California, Los Angeles
1981

To my wife Amy and my parents

iii

Table of Contents

page

List of FIBURES ..ottt e r st seree et e ee st sttt vi
List of Tables ..ot et ee e e e et eeeee o ix
AckBoWledBmEnts ..o e e e st ee e et een X
Vita and Publicalions ...ttt Xi
Abstract of the Dissertation ... e xii
LIBEPOAUCHION (oviiiiiccc et et eeeer st e e e s e e ee e e e e oo 1
1.1 Distributed Processing in a Network of Processorsocoo.oooooooioiooioio 1

1.2 Existing Examples ... e 3

1.3 Summary of Resulls ... reer e et st e e e et ete e 4
1.3.1 Fixed Process Graphso.ooooiiioiiioieeie oo eee e 5

1.3.2 Random Process Graphsoocoviiiiiiiinceineee e eee et 6

1.3.3 Communication. Overheado 7

2 Background and Related Work ...t 9
U Bl HiStory ..o ettt e 9

2.2 Graph Model of Behaviorcooooiiiiiiiiiiitiie e 10

23 Related Work .o e 11
2T Petri INets oo 11

2.3.2 Automatic Detection of Parallelism ..o 12

2.3.3 Multiprocessor Hardware OrganizatioDocooveovoeoeeviveosoeoeo) 14

2.3.4 Theory of Branching Processes ... 16

2.3.5 Bounds on the Average System Time .oooooooivoiiniinees oo eeeeee o 16

2.3.6 Task Scheduling ... e e 17

2 DUHSCUSSION .ooiieiiii e e e e e 19

3 A General Model oo e 21

3.0 ReSOURLES et e et oo 21

3.2 Process Graph ... e 22

B3 TAXOMOMY oottt ettt et e et e et eemeeeseem et v e et s s eaes. 29

B NOTBLIOI oot ettt ettt ee e e e s e e e en e 32

3.5 Cases Studied ottt 33

4 Fixed Process Graphs ... e e e et et e e 35

AL IREPOQUCION ..o e e er e e v eseee st e e s et e eee e st ee e 35

4.2 Fixed Number of Jobs (£, @, 2% P == 00) ot oeeeet e oo 35

4.2.1 The Exact Average System TimMe ...ooo.ooiiiiiiiiieeceeveee e et 35
4.2.1.1 Converting the Process Graph into a Markovian State Transition

T UDIABIAIM ittt ettt e ee st ee st er e 37

4.2.1.2 The Average System Timecocoriiirieiieer e e 39

4.2.1.3 The Concurrency Measureoovioveeerieeeeeeeeeeeereees e s oeeeeee e 42

4.2.2 Bounds on the Average System Timeccoocevvvmmeveviniiiieisieeee e 47

4.2.2.1 Blocking Time of Predecessor Tasksccoooeeeviviiimeirccnmeriiieennnn, 47

v

4.2.2.2 Bounds for Structured Process Graphs ...

. 4.2.2.3 Bounds for Non-structured Process Graphsc.ococormiivvinnnnnnnn.
4.2,2.4 Tightness of the Bounds (m =1}occcoenviiencnncrnenn, e

4.3 Arrivals of Jobs {A, G, 2°, P mm 00) oieiiciecccce et e
4.4 Stochastic Petri Nets (k, G, 2°, P < 00) woooiirreeeicececsvesires e s s asrarsnesr s e
4.5 Task Assigoment (£, G, 2, PLO0) oo iinerecsee v v v vnessss e s e v ssse s sssnns e
4.6 DISCUSBION .evuveerieeiiiiieiiinieieerassarrerassasassstssssasrereareerasrsrnssnsssssssseersassnsnnsoetasarsensorsnen

5 Random Process Graphs ... e v e er s s e bie s srsan e e e nrrrsar s
5.1 Introduction .
5.2 Some Properties of Random Process Graphs ..
5.2.1 Total Number of Arrangements with N Tasks
5.2.2 A Method of Constructing All Arrangements of Process Graphs wnth N
1 011 3. T O U
5.2.3 Distribution of the Number of Arrangementscovviiiiiiiiriinniecennenes
5.2.4 Chernofl Bound on the Tail Probabilitycooovvvvieivmrireircieerer e e

5.2.5 Generation of Random Process Graphs ..o e, _

5.3 Fixed Task Setvice Time (£, G*, z, P=ocoand \, G', 2, P=) ..ccccoveerreennnnn.
5.4 Random Task Service Times (k, G*, 2%, P = 00) .cooerrirmiiriris e see s seniaenes
5.4.1 Bounds on the Average System Time without the Number of Precedence
Relationships ..o et amess s st nprr s e e e s e e s seaan e s
S4LTUDPPEr BOURA ..o et r e s ree s s s s e e e en e
5.4. 1.2 Lower BOUDA ..ot siesieese et eneseabe e an e s aesbesesssesesenn e
5.4.1.3 DHSCUSSION .eenvviieririiicrereemricnarsscseercensenrermrtrrrerrassasrosssssneasse trnnseanersons
5.4.2 Upper Bound with a Fixed Number of Precedence Relationships
5.4.2.1 Minimally Connected Process Graphccoceviiviicciinnreinisennenenes
54.22 An Upper Bound ...ttt ety st ae ey
5.4.3 Comparison of The Two Upper Boundscocoiiiiiiiiiiimiici e
5.5 Trade Off between Average System Time and Utilization of Processors for a
Diamond-shaped Process Graph (k, G°, 2. P €) .coviciiiiimnieece e
5.6 Bounds on the Average System Time with a Limited Number of Processors
(K, G’ 20 P € 00) oottt e e ener et en s

3.7 DISCUSSIOI vevvivieiiiiei e et receee e vear e et e s rreasrrmmanereas e reemreateenarn e ean e st aaaeeneans

6 Process-communication Graphs ..ot ae e s aa et e
6.1 Communication Tasks (£, G, 2, P € 00 } ovivirric it
6.2 Limited Number of Processors Per Job { &, G, 2", P< 00) .ooocvviniciviniinenes
6.3 One Communication Bus (£, G, 2", P € 00 } v
5.4 DISCUSSIOI ooeeourieiiiinieiruraereeeiteeimtetnietttr nnt st areanaras saesan s as seetsasseanatas sesmnaronsesseansns

T EXLenSIONS OF This WOPK oottt et e rereatveesae e iasaressesesesss e rmnssen e senessnsrsnsensnnen

ROl BT I C®E ooeneeieeteeeee e aeeseseesaresasaunnsseesmkeesssttanseass iastan s sebstssss ieaenasns o sennnnssnsnsnnnssarssnesnnsnrs

57
57
39
39

74

List of Figures
page

Figure 2 Shuffle/Exchange NetWorkccoooummimmieeereeiimeeeeesoeeoeooeosooeoosos oo 15
Figure 3.1 An example of a process graph 23

Figure 3.2 Matrix loversion Process Graph 25

Figure 3.3 Shell Sort Process Graphc..oooooomeeeueeeeeeneeenneemseneoooooooooo 26
Figure 3.4 Quicksort Process Graphooocommmmremmceeneemmseenossoooooeooooe 7
Figure 3.5 Unusual Quicksort Process Graphcccoevvvovmemmeeommvemoeoo 28
Figure 3.6 Tax0R0MY TIEooooioeiirireeieeee et eeees s 30
Figure .12 CPU and 1/O OVerlapc.cooveuereoermmimeceeeeioseoeeeeeee oo 36
Figure 4.1b Markovian State Transition Digramcocomvemvemeeeemmveooooiooo 37
Figure 4.2 Algorithm CPM ..ot oo 38
Figure 4.3a Process Graphocoiomiiiioonieeeeeeeessee oo 39
Figure 4.3b Markovian State Transition Diagramc.ococoooovveno 40
Figure 4.4 Balance EQUation ..o 43
Figure 4.5 Process Graph ... 45
Figure 4.6 Markov CRaiBooooiiermeeeieee oo 46
Figure 4.7 Structured and Noo-structured Process Graph e, 51
Figure 4.8 Max ln-degree Nodes ..o 54
Figure 4.9 Process Graph with Average System Time Close to the Upper Bound 60
Figure 4.108 Process Graphcccocoviiiieieeeiiie e e 81
Figure 4.10b Petri Neto e e 62
Figure 4.11 Diamond-shaped Process Graphoooccoomeomomommmmemmeiesseoooooo 64
Figure 4.12 Y versus Plor L == 10, k== 5and mse 1 LTI RV 69
Figure 413 ¢ versus P for L = 10, k== S5and m== 2 ... 70
Figure 4.14 ¢/ VETSUS 2 oottt e e 72

vi

Figure 4.15

L O S 73

Figure 4.16- The Upper Bound for the Ratio %cocoourecrvvoremne 75
Figure 5.1a Arrangements of Process Graphs with 2 Tasks ... 20
Figure 5.1b Arrangements of Process Graphs with 6 Tasks and 3 Levels ... 81
Figure 5.2a Chernofl Boundc..cccouvvvvercvccereneessen oo 86
Figure 5.2b Prob [¥ 2 g w.oooooieseee oo 87
Figure 5.3 Legal Places for Precedence Relationshipscooooeevoreiiie 98
Figure 5.4 Reduced Blocking Effectouvvvroommmnemiooseno 99
Figure 5.5 Minimally Connected Process Graph e 100
Figure 5.6 Minimally Connected Process Graph with N=10and L =6 111
Figure 5.7 Diamond-shaped Process Graph e 115
Figure 5.8 Sversusp ... e oo 121
Figure 5.9 Sversus pwith L = 10 ..o 123
Figure 5.10 S versus pwith L =20 ..o 124
Figure 5.11 S versus p with L =30 .cccccommvmmrrioos 125
Figure 5.12 S versus pwith L =40 ... 126
Figure 5.13 S versus p with L = 50ooooerovovroonoeocioo 17
Figure 6.1a Process Graphccoicioiovovmvoiooe 133
Figure 6.1b Process-communication Graph e 131
Figure 6.2 Process-communication Graph e 135
Figure 6.3 Markov Chain of Figure 6.2 e 136
Figure 6.4 Process Graphcccccocovmmvmmmmeo 138
Figure 6.5 Process-communication Graphwith P=2 138
Figure 6.6 Process-communication Graphwith P=3 139
Figure 6.7 pSversus P ..o 140
Figure 6.8 uSversus P with a Family of @ ... 141

vii

Figure 6.9 A Process Graph ..ot 142

Figure 6.10

Figure 6.11
Figure 6,12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17

Figure 6.18

Process-communication Graph with P= 2 143
Process-communication Graph with P = 3 B T TP 144
Process-communication Graph with P=4 .o 145
Process-communication Graph with P=5 e, 146
Process-communication Graph With P= 6oooooocvvreee 147
BSVEISUS P oottt 148
#S versus P with a specific value of BE" e 149
Process Communication Graph oot 151
Markov Chain Generated from Figure 6.17 ... 152

viii

List of Tables

Table 5.1 Simulated S versus predicted S,

..

Table 5.2 Comparison of the P*’s

...

Acknowledgments

This research was supported by the Advanced Research Project Agency of the Depart-
ment of Defense under contract MDA 903-82.C-0064. Transaction Technology Inc. offered tui-
tion assistance while I was an employee there and supported this endeavor. To my fellow sty-
dents at UCLA, including but not limited to Richard Gail, Mart Molle, Michael Molloy, Randy
Nelson, and Hideaki Takagi, | offer my thanks for their stimulating discussions. Acknowledge-
ment is also due the staff of our research group, Trudy Cook, Amanda Daniels, Frank Heath,
George Ann Hornor, Linda Inl:eld, Lillian Larijani, Terry Peters, and Ruth Porty. Iam grateful
to members on both sides of my family for their moral support.

Most of all, I would like to thank my wife Amy, whose encouragement and understand-
ing made this possible.

VITA

March 20, 1953 Born, Taipei, Taiwan, ROC

1974-1976 — Teaching Assistant, University of California, Los Angeles
1976-1978 — Computer Programmer Analyst, System Development Corp.,

Santa Monica, California
1978 — B.S. in Engineering, University of California, Los Angeles
1978 — M.S. in Computer Science, University of California, Los Angeles
1978-1981 — Member of Technical Staff, Transaction Technology Inc.,

Santa Monica, California
1979-1984 — Post-Graduate Research Engineer, University of California,

Los Angeles

PUBLICATIONS

Kung, Kenneth C., 'Interactive Graphics for Graph and Network Applications,’ MS thesis,
UCLA, 1978.

Kung, Kenneth C, and Leonard Kleinrock, 'Flow Deviation Algorithm in a Multi-hop Packet
Radio Network,' Working Paper Report #81006, UCLA, 1981.

Kung, Kenneth C, and Leonard Kleinrock, 'On the Bounds of the Average System Time for
Random Process Graphs,’ Working Paper Report #82009, 1982.

xi

ABSTRACT OF THE DISSERTATION

Concurrency in Parallel Processing Systems
by
Kenneth Ching-Yu Kung
Doctor of Philosophy in Computer Science
University of Californja, Los Angeles, 1984
Professor Leonard Kleinrock, Chair

The idea of multiprocessing has been with us for many years., We would like to know,
however, how much gain (i.e., speedup) is really achieved when multi-processors are used. In
this dissertation, we mode} a computer job as a Directed Acyclic Graph (DAG), each node in the
DAG representing a separate .task that can be processed by any processor. Foyr parameters are

used to characterize the concurrency problem which results in 16 cases. The four parameters

are:

1. How the jobs arrive: either a fixed number of jobs at time zero or jobs arriving from a
Poisson source;

2. the DAG: either the same for each job or each job randomly selecting its DAG;

3. service time of each task: constant or exponentially distributed;

4. the number of processors: either a fixed number or an infinite number (infinite number

of processors meaning that whenever a task requires a processor, one will be available).

For all cases studied, we define a common concurrency measure which gives a com-
parison of how much parallelism can be achieved. The concurrency measure is obtained exactly
for several cases by first converting the DAG into a Markov chain where each state represents a
possible set of tasks that can be executed in parallel. From this Markov chain, and by utilizing
a special feature in the chain, we are able to find the equilibrium probabilities of each state and

the average time required to process a single job.

xii

We also find upper and lower bounds for the concurrency measure for certain cases sty.
died. The upper bound is found by syochronizing of the execution at various places in the.
DAG. '

We present two algorithms for assigning the tasks to processors. One aigorithm minim-
izes the expected time to complete all jobs while the other algorithm maximizes the utilization

of the processors.
The communication cost between any two tasks that reside on different processors is

modeled as a task. We study the effect of the communication costs on the gains that are
achieved from multi-processing.

Xilt

CHAPTER 1
Intreduction

1.1 Distributed Processing In a Network of Processors

Central processing units have been the backbone of the computing centers for many
years. These machines are generally very powerful but also very expensive. Communication
networks transfer data among these central processors so that the processing power of several
processors may be combined and the processing resources may be shared with users of other
sites. But researchers recognize the fact that even though the processing capabilities of each
machine are shared by all users, the large communication time between hosts in comparison
with memory access times often precludes the parallel execution of the same job on more than
one machine if the networks are slow andfor costly. Thus the pracessors ate often loosely cou-

pled to each other with this tvpe of communication network.

Many applications, however, require the high speed capabilities not achievable with a
single serial processor. The quality of the answer a processor returns in the areas such as
meteorology. cryptography, image processing and sonar and radar surveillance [HAYNSg2,
POTT83. ROSES3| is proportional to the amount of computation performed. There are only
two avenues to improve the performance. One is to speed up the processor by having faster cir-
cuits, reducing the logic levels, reducing the cycle time per operation. having high speed algo-
rithms, and having better storage organization. The other method is to try to handle more than
one task within a job simultaneously. The latter is the direction taken by the Japanese Fifth

Generation Computer project.

But despite the impressive speed of many of the latest model computers, their basic
architecture limits them to being serial machines and kinders their usefulness to computationally
intensive problems. With the recent advances in the design and fabrication of VLS] circuits, a
computing center consisting of up to tens of thousands of computing elements can be built. [f
we can decompose a large problem into many small concurrently executable tasks and allow
several processors to work on them in parallel, we can improve the processing speed not attain-

able by serial machines.

Of course there is the complexity of multiprogramming and the low utilization associ-

ated with a processing center with so many processors.

Distributed processing can be defined as an architecture that has no masterfslave rela-
tions among a set of processors. Instead, all processors are equal and each can access any net-

work resources without the interference from centralized controllers [PARRS3].

Each processor in a distributed processing network, therefore, needs the same basic

software tools:

- the operating system software

- the application software

- the database access method and query language

- a dictionary defining the location and structure of the data in the network
- a directory defining the structure of the network

- a standard message protocol.

In order to distribute the processing of one function among various machines, these pro-
cessors must be connected in some fashion. Even though there is still some communication
delay, the delay between processors in a locally interconnected switch is much smaller than that

in long haul communication network as described before.

Many issues are involved in distributed processing among a network of processors. In

particular, the foilowing set of problems must be addressed:

1. eflicient multi-access communication protocols

2. management of the databases -- centralized or distributed

3. network management -- file directories [POPE81|, network resource directories
4. security and privacy [SCHE83]

5. reliability [AVIZ81, MAKAS1, NG80]

6. topology |[UPFAS82

7. scheduling

8. language for parallel processing [HOLT78, SCHUS1, HASE75, HASE77)

9. concurrency in processing jobs

In our research we concentrate on the last item in the above list. Concurrency of the
jobs is not very well understood because the machines have often been used in a serial fashion
and therefore the possibility of parallel execution in a single job has not been extensively

explored.

If we have a large number of processors and these computing elements can be organized
in such a way that they can cooperatively solve a single problem or attack many problems
simultaneously. tremendous speed improvement can be realized. We recognize that in addition
to the service time of jobs there are overhead associated with the organization of these proces-
sors. But this overhead is limited to the organization of the processors assigned to the jobs
rather than the organization of all processors. Besides the advantage of the speed, this type of
system offers a distributed processing environment with increased reliability, availability, expan-

dability and better utilization of resources.

In order to take full advantage of these cooperating processors, we must understand the
parallelism within computer jobs and systems. We wish to find out just how much speed up is
achievable, how do we really coordinate these processors, and whether the communication
between the processors is too costly for distributed processing. At the same time, the develop-
ment of programmiag languages for parallel processing must proceed at a faster pace. Most of
the existing languages do not allow parallel processing. To pick out the concurrency in these
programs requires extensive preprocessing. Since most of the algorithms are not sequential, once
the language for parallel processing is available, it will be easier to produce programs for the

multiprocessor environment.

1.2 Existing Examples

The idea of performing more than one operation simultaneously is at least 140 years old
[KUCKT77]. In an October 1842 publication Menabrea describes Babbage's lecture [MORRS61]:

.- when a long series of identical computations is to
be performed, such as those required for the formation of
humerical tables, the machipe can be brought into piay so as to
give several results at the same time, which will greatly abridge
the whole amount of the processes.”

So, clearly, the idea of parallel processing has been around for quite a while.

Since the early 1960's, there have been many attempts to speed up execution by giving
the hardware some multioperationaj capability. The IBM 360/91 is a pipeline machine which
operates on arrays of data, ILLIAC |V [BARNGS] Was a parallel array machine with 64 process-
ing elements. CRAY-1 was designed specifically for vector array processing [KOZDSOJ. The

benefits of CRAY-1's vector processing architectyre. This compiler vectorizes the innermost DO
loops such that they can be executed in parallel. [ENSL??] contains a list of multiprocessors
and parallel systems in chronological order for the years form 1958 to 1977,

currently, we can define each grid point at each iteratiop to be a separate task. Usually severa]
of these tasks are assigned to one processor. Solutions are found when the difference of the
value for each point between two consecutive iterations is smaller than a predetermined valye or

the solution is not obtainable due to the unstability.

1.3 Summary of Resuits

In Chapter 3, the concurrency problem is modei by 4 Parameters; they are:

1. How the jobs arrive: either a fixed number of jobs at time zero (k) or jobs arriving from
a Poisson source {\)

2. The DAG: either the same for each job {G) or each job randomiy selecting its DAG (G

3. Service time of each task: constant {z) or exponentially distribyted (9

4. The number of processors: either a fixed pumber (P) or an infinite number (P = oo}

A process graph is defined (in Section 3.2) as a directed acyclic graph where the nodes represent
the tasks within a job and the edges represent the precedence relationships among the tasks.

We use the shorthand notation "a, 8, v, & where a, 8, 7 and & represent how the jobs
atrive, the type of DAG, the service time of each task, and the number of processors, respec.
tively. For example, k, G, z, P= oo is shorthand notation for a system with a fixed number of
jobs at time zero, a fixed process graph, a constant service time for each task and an infinite

number of processors,

From these four parameters, we have sixteen separate cases as shown in Figure 3.6.
Besides the two trivial cases (k. G z, P= 0, and A G, z, P= o) discussed in Section 3.5, the
case of fixed process graphs is discussed in Chapter 4 and in Chapter 5 we discuss random pro-

1.3.1 Fixed Process Graphs

For the k, G, z°, P = o0 case {Section 4.2}, we develop a method for finding the average
system time. Because the number of processors js assumed to be infinite, the results obtained
are independent of the pumber of jobs, k. The process graph G is first converted into a Markov
Chain by Algorithm CPM {Section 4.2.1.1) where each state represents a possible set of tasks
that can be processed in parallel. Since we know the rate out of and inte each state, we have a
set of balance equations. If we put these balance equations in a matrix format, we have a lower
triangular matrix which ean be inverted easily to obtajn the equilibrium state probabilities.
From these equilibrium probabilities, we can find the average system time and the coacufrency

measure ¢.

Bounds on the concurrency measure are relatively easier to obtain than the exact valye.
An upper bound can be found by forcing the execution of a job to synchronize at each level of
the process graph. No tasks in a level can start execution uatil all the tasks in its previous level
have completed execution. We first study the average time required for a node to wait for all
its predecessors in the previous level to complete. Ip each level there exists a gode which has

the maximum number of edges entering it. Therefore, no tasks in this level can start executing

until all the predecessors of this task have been completed. By summing the time required at
each level to process the task with the maximum in-degree, we obtain an upper bound on the

average system time.

A lower bound is simply the average processing time of a task multiplied by the number
of tasks in the longest path from the initial node to the terminating node.

For the X, G, z*, P = oo case (Section 4.3), the results obtained in Section 4.2 can be
applied directly. With an infinite number of processors, once a job enters the system, it is
immediately served and no waiting time is required.

We briefly discuss the case of k, G, z*, P < oo using the Stochastic Petri Nets model in
Section 4.4. Any process graph can be converted into a Petri Net. A ’place’ representing the
available processors is added to the Petri Net such that at each 'transition’ if a processor is
needed, a 'token' is obtained from this place, and whenever a transition with a processor token
finishes, the token is also returned to this place. By using the analysis provided by Stochastic

Petri Nets theory, we can find.the average utilization of the processors.

In Section 4.5, we study the assignment problem for the case of k, G z, P< co. Two
scheduling algorithms are analyzed for diamond-shaped process graphs - one algorithm gives the
worst case assignment and the other algorithm gives the best case assignment. By studying the
ratio of the average system time using the worst algorithm and the best algorithm, we find that
the ratio between the two assignments is not large (less than two). Therefore, if we allow for
random assignment (an available processor is given to any task that is ready to execute}, the

resulting average system time will fall in between the two boundary values.

1.3.2 Random Process Graphs

In Chapter 5 we look at some of the properties of random process graphs. We find (in
Section 5.2.3) that the number of arrangements for N tasks with respect to the number of levels
may be approximated by a Gaussian distribution (recognizing that this approximation permits a
negative number of levels, which is clearly impossible). Since no arrangements can have less
than one level, we assume the probability of any arrangement, with less than one level equals to

zero. In other words, most arrangements have L:- levels as N becomes large. Using the

Chernoff bound, the tail probability of this distribution is found in Section 5.2.4.

In the case k, G*, z, P= o0, as N approaches infinity, where N is the number of tasks

within a job, we find the average system time approaches the value of ‘]2_1 multiplied by the

A 1
average task service time, and the COnCuUrrency measure approaches 7

For the case &, G* 2° P = oo, we found and proved an arrangement that will provide
the upper bound for system time over all arrangements with A nodes. An upper bound is
presented in Section 5.4.1.1 while a lower bound is presented in Section 5.4.1.2. Both bounds

are expressed probabilistically; they are approximately —;— -;N- <5< -j— N where Sis the aver-
U

age system time of a job, N is the number of tasks within a job and 1 is the average service
U

time of a single task.

If the number of precedence relationships is also given, then we define the minimally
connecled process graph in Section 5.4.2.1. M, is defined to be the minimum number of edges
required to fix all the nodes of a particular process graph at their proper levels. We also give
expressions for Maz M, and Min M, for any process graph with N nodes and £ levels. Using this
concept, we give an upper bound in Section 5.4.2.2. Section 5.4.3 then compares the two upper
bounds obtained in Section 5.4.1.1 and 5.4.2.2.

in Section 5.5, we try to find the optimal number of processors a diamond-shaped pro-
cess graph in the case k, G*, z, P < oo will require such that a function called power is maxim-
ized. Power is defined to be the average utilization of the processors divided by the normalized
average system time [KLEI?Q]. Ar expression is provided for the optimal number of processors

per job,

Section 5.6 briefly discusses two loose bounds for the average system time for the case
k G 1 P < co.

1.3.3 Communlecation Overhead

For the case k, G, z%, P = 00, we study the eflects of the communication overhead
between processors. We add a communication task between any two neighboring tasks in G
that do not reside on the same processor. The average time for the commuapication tasks is
expressed as a multiple 'a’ of the average service time for a regular task. Using the same tech-

nigue presented in Section 4.2, we find the resulting average system time as a function of 'a’,

In Section 6.2, we limit the number of processors to P, and study the eflects of the com-
munication overhead with various values of P on a process graph. By varying the parameter ',

we obtain a family of curves for the average system time versus the number of processors.

In Section 6.3, we put a further condition on the commugication overhead by allowing
only one commuaication bus. Thus, only one communication task may be transmitting at any
particular instant. We modify the technique of Section 4.2 for the analysis required in this sec-

tion.

CHAPTER 2
Background and Related Work

2.1 Brief History

In the late 50's, relatively few people knew how to work with computers, and an entire
computer was dedicated to one person at a time. If one needed to use the computer, he would
reserve a time slot, and the machine during that time period would be dedicated to him. Each
user waited for an empty time slot in order to use the machine (i.e., the sign up sheet was the
scheduler}. The advantage of this concept was that each user had the fu]] processing power of
the machine while he was using it. The drawback, on the other hand, was the low utilization of
the processor since users spent great deals of time thinking,

As the machine becime faster and more costly, it was not economically feasible to
maintain the previous arrangement. To utilize the machine more efliciently, users were required
to punch their computer jobs on cards and submit them to a computer operator. The computer
operator would then schedule jobs by putting the cards of different Jobs into the card reader in
some predefined order. In this manner, the computer was kept busy most of the time, but the
turnaround time for jobs could not be predicted and could vary from several hours to several
days.

The next step was 3 compromise between the two extremes of either low utilization byt
dedicated machine or high utilization but long turnaround time. Operating systems were
developed so several jobs could share the processing facilities of the system at the same time.
Priorities were given to jobs so that interactive users who required small amounts of processing
time had the highest priorities and long batch jobs had the lowest priorities. Because the
memory was also shared among the users, paging and the technique of virtual memory were
developed. Various methods of sharing the processor were studied and used to increase the
throughput and to lower the average waiting time of jobs.

An expensive and powerful central processing unit has several drawbacks. The over-
bead of the operating system software in controlling a multi-programming environment is high.
Jobs are constantly being swapped in and out of the high speed memory. Such operating sys-
tems are also very cumbersome, as witnessed by the fact that there are still errors in the
IBM/MVS operating system.despite many releases.

The central processor also has the problem of reliability and availability. When the
processor in a single processor machine goes down, the entire machine is not available to users.
A few computer manufacturers have tried to solve this problem by introducing the fault-tolerant
machine (e.g., NONSTOP MACHINE™ py TANDEM). It is comprised of several processors
and memories with the operation of one processor backed up by another processor; so, whenever

one processor goes down, its twin processor will start up right away.

This leads to the multi-processor environment that we are addressing. As computer
jobs enter the system, they are processed by one or more identical processors. Thus, the system
will be runping even though several processors might not be available, and it is more reliable
since any processor can process all the jobs. As the price of the VLSI keeps on dropping, it will
be possible to build a computer center consisting of large numbers of processors. They are many
difficult issues related to multi-processors as mentioned in Chapter 1, but we would like to
explore the concurrency within the jobs and to take advantage of multi-processing for improve-

ment of system performance.

2.2 Graph Model of Behavior

Our representation of jobs, as described in Chapter 3 and used throughout the later
chapters, is similar to the UCLA Graph Model of Behavior (GMB), which uses a control graph
and an associated data graph. The control graph is, essentially, a variation of the Petri Net
because the edges represent conditions and the circles the transitions. Logic expressions are
assigned to the sets of both input and output edges. These expressions are made up of 'and’ and
‘or’ logic. Computation is simulated by the movement of tokens from edges through nodes to
edges. The logic expressions determine from which input edges the tokens are removed and to
which edges the tokens are delivered. Each processor is associated with one or more operations
in the control graph. When an operation is initiated by the control graph, the processor associ-
ated with that operation executes its procedure. For each operation, the data graph provides
the locations for both the input data and the stored output data. After the control graph has
been determined, analysis of the GMB is carried out by simulation. This requirement for simuy-
lation places a large overhead on the analysis of each problem. Part of our work is based on a
whole class of jobs instead of an individual job; hence, it is easier to obtain system parameters

and to generalize for a large number of jobs.

10

In a series of works on GMB, a sequence of researchers [ESTRé63, MART66, MART67a,
MART67b, MART®67¢, MART69, BAER6S, BOVESS, RUSS69] associated various types of input
and output logic with each node of a directed graph model identified the random variables
which arise as a resylt of the application of programs to diflerent sets of input data and applied
the model to evaluation of the effectiveness of parailel processor systems. In the course of these

transformed cycle [MARTG?b]. They developed effective algorithms to calculate the probability
of ever reaching a given node in the graph [BAERTO] and formed upper and lower bounds on the
oumber of processors required for maximum parallelism [MART69, BAER69]. Fernandes

processors. Using GMB, Ramamoorthy [RAMAT9] also scheduled the tasks such that the tota
execution time is minimized, and the minimum number of Processors required to realize this
schedule is obtained.

2.3 Related Work

2.3.1 Petr} Nets

Petri Nets [PETEB1] were designed to model systems with interacting concurrent com.
ponents. They are widely used in the area of software verificatjon. By modeling a program
using a Petri Net and generating all possible 'markings,” we can detect the existence of
deadlocks. By themselves, though, Petri Nets ignore the random time duration betweep the
fiting of two transitions, ie., the time interval between two markings of a Petri Net In
[RAI\L»‘\SO], 3 constant time uait is associated with each transition. The performance IS meas-
ured by finding the minimum cycle time, which is the time required to process a job. Molloy
[MOLLSI] introduced the Stochastic Petri Net {SPN), in which a random variable representing
the firing delay is assigned to each 'transition.’ Each marking in the Stochastic Petri Net, which
Tepresents a set of concurrently active tasks, is associated with state in a Markov chain. By
solving for the state probabilities in this Markov chain, we can obtain the density of 'tokens' in
each place or each marking. In Chapter 4 we will show how this modet can assist us in solving

for some system parameters.

11

A disadvantage of the SPN is that each marking reachable from the initial marking is a

state in the Markov chain. As the number of tokens increases, the number of states in the Mar-

kov chain grows at an even faster rate, making the SPN apalysis very difficult. For this reason,

the SPN cannot model a system with open arrivals, where the number of jobs is undetermined

or the number of tokens and states is unlimited. Even when analysis is possible, a generaliza-

tion of the result obtained for one specific job to other jobs is not possible,

2.3.2 Automatiec Detection of Parallellsm

Parallelism in programs may be either explicit or implicit. Explicit parallelism is

specifically indicated by programming features such as COBEGIN/COEND.

stated.

Implicit parallelism is the parallelism that exists in the algorithm but is not explicitly

Some common techniques used by compilers for detecting implicit parallelism are:

Loop Distribution

Sometimes the statements within the loop may be executed in parallel. This idea was
introduced by Muracka |[MURA71] and later was implemented by Kuck
[KUCK72,KUCKT74] in their FORTRAN program analyzer to measure potential paral-

lelism in ordinary programs.

Tree Height Reduction
By making use of the associative, commutative and distributive properties, compilers
may detect implicit parallelism in algebraic expressions and produce object code for

multiprocessors. For example,
({(p+q)+r)-9)

can be replaced by
(p+g)+(r-s)

and
a#(brcrdte)

can be repiaced by
atbecrd + ase

Assuming that only associativity and commutativity are used to transform expressions,
Baer and Bovet [BAER68] gave a comprehensive tree-height reduction algorithm.

12

Later, Beatty [BEAT72] showed the optimality of this method.

Russell [RUSS69] developed an interactive system in which a graphical display of poten-
tial paralielism in Fortran Programs together with detected bottlenecks, js presented for further

analysis by the use.

In [KUCK77], the possibility of speed up is FORTRAN Programs is also studied. Three
levels of parallelism were discussed. They are:

I. Parallelism within a line of code
This referred to the reduction of the tree beight in an arithmetic expression.

2. Parallelism within a program
Concurrent execution of the loops in a program was explored.

3. Parailelism within the hardware

The hardware organization of pipeline and array processors was discussed.

Several specific FORTRAN programs were analyzed [KUCKT?.KUCKH]. They showed the
speedup of the programs and the efficiency and utilization of processors for each of the pro-
grams. All of the programs resulted in some speed up, most of them by a large amount. The
utilization is, as expected, quite low. But most interestingly, they conelude that, as the gumber
of processors increased, the speed up is more than the logarithm of the number of processors
predicted by Amdah] in [AMDA67].

13

2.3.3 Multiprocessor Hardware Organization

One of the problems in the design of a multiprocessor system is determining the means

of connecting the multiple processors and the I/O processors to the storage units.

o

The four commoa multiprocessor system organizations are:

Bus
The bus organization uses a single commuaication path (such as Ethernet) between all
functional units -- processors, storage units and I/O processors. Multi-access protocols

are required to share this common transmission medium.

Crossbar-switch
In this organization, there is a separate path to every storage unit. The hardware must

be capable of resolving conflicts within the same storage unit.

Shuflle/Exchange [THANSI|
In the Shuffle/Exchange network, there exist log, N columns of routing switches connect-
ing N processors to N memory modules. Each column consists of N/2 two-input, two-

output switches. Figure 2 shows an example of this organization with N = 8.

Hierarchical [THANSI|
A hierarchy is imposed on the set of processors and memory units. In such a structure,
each processor has immediate access only to part of the system memory. Any reference

to remaining memory must be handled by a higher level processor.

Two examples of this organization are C-mmp and Cm’ C-mmp
[SIEW78a,SIEV /785, WULF80| is a 16-processor system consisting of PDP-11/40 mini-
computers. The processors share 16 storage modules through a crossbar-switch matrix.
Cm® [SIEW78a, SIEW78b,HAYNS82b] consists of 50 LSI-11 microprocessors. It is con-
structed from processor-storage pairs called computer modules. Each of these is referred
to as a Cm. Cm's are grouped into clusters, and clusters are connected by intercluster

busses.

14

MO

M1

M2

M3
M4
M5

M6

M7

PO

P1

P2

P3
P4
P5
P6

P7

Figure 2 Shuffle/Exchange Network

15

2.3.4 Theory of Branching Processes

The theory of the branching process [HARRG63] deals with the problem of having one
node initially, with probability, p,, that there will be £ descendents at each iteration, §, for each
of the nodes.on the (i-1)* level, k = 0,1,2 --- .It deals with the expected number of des-
cendents at the 1" iteration would be, and what would be the probability that, after { iterations
(for a large i), there would be no descendents left. The tree of descendents obtained is similar to
the structured process graph described in Chapter 4. Since the number of descendents at each
level is random, the resulting tree can also be thought of as a random process graph (defined in
Section 3.3).

The generating function of the number of descendents at the i** iteration was found to
be [/ (2)]", where k is the number of descendents at the (i-1)" iteration,

[=3p 2
==

and z is the transformation variable. The expected value and the variance of the number of

nodes at the i*® iteration have been found.

Two problems, however, prevent this model from representing the tasks in computer
jobs. One is that there exists the possibility that the descendents will not die out. This
corresponds to the fact that a computer job will not terminate. If the descendants do die out,
another problem is how to merge the task having no descendants together. This corresponds Lo
the question of how, after individual tasks are completed, the results are to be incorporated into

each other to form the final solution.

2.3.5 Bounds on the Average System Time

In [ROBI79], bounds on the average system time of a tree-shaped process graph were

obtained, using arguments similar to those that we have used in Section 4.3.

Since the process graph is in the form of a tree, there exist distinct paths from each task
toward the root of the tree {the terminating task). Let €. Gy - -+, Cp be all the paths from
leal tasks (i.e., tasks without any precedence relationships entering it} to the terminating task,
and let H, be the set of all tasks at level i, for 1 < i < L, whete L is the number of levels in the
tree. Assume that the number of processors is infinite and that each task T, has a random pro-

cess time equals to f,, Then, the expected time to process this process graph, S, is bounded by

16

Maz

Iigm

rZ,‘::E“’]] <5< ¥ E(Maz:,]

1<tV TeH,

In Section 4.2.2, we develop this bounding technique for general process graphs {using
the concept of a "structured process graph”) instead of restricting to the special case of a tree-
shaped process graphs.

2.3.8 Task Scheduling

There are many scheduling algorithms in the literature. However, the majority of them
deal with the single processor scheduling problem. In this section we look at some algorithms
that discuss the scheduling problem in the multiprocessor situation.

Price [PRIC83] discussed a shortest path algorithm which is used to solve the scheduling
problem of assigning tasks to processors. First, a distributed algorithm for finding the shortest
path from one node to all other nodes in a directed acyclic graph (DAG), using as many proces-
sors as needed, is presented. At the i* iteration of the algorithm, the shortest path from the
root to node j, a‘,'). is computed as the minimum of the distance obtained at the (+1)* iteration,
df,"”, or the distance from other nodes at the {i-1)* iteration plus the edge cost to node j, €ty

where & is a neighbor of node J
4" = min (4", dfMye,)

This computation can be performed in parallel at each node. For an N-node DAG, this algo-
rithm will find the shortest path to all nodes at the end of the A™ iteration. To use this algo-
rithm to solve the task assignment problem, we execute the following changes. Suppose €, is
the cost of executing task i on processor j, and ¢, is the cost of communication incurred if task ¢

and task k reside on different processors. The desired assignment [PRIC81, PRIC83] is one which

minimizes
N P N N M PN
C=)y ¥ ey Ty + Y Y cu- ¥ E E Cik Ty Ty
=] =) ==l k=] =1 ol baxid]

P
where z,, = 1 if task 1 is assigned to processor j, Z, = 0 otherwise, ¥, T, == | for all ¢ {each
=

task {is assigned to exactly one processor) and P is the number of processors.

17

If the process graph is tree-shaped, then a DAG is generated from it by creating N+P
nodes

(1] LA 2P N (N

where node [i,j] represents the assignment of task i to processor ;. In addition there is an initial

node [0] and a terminating node [#}. Edges are generated by the following rule:

- edges from [0] to [ij] are labeled with e, where i corresponds to the root task in the pro-

cess graph.
- edges from [7,j] to [k.j] are labeled ¢,,
- edges from [i,j] to {r,g| are labeled (¢,, +¢,).
- edges from [i,j] to {1, and from }i,j] to |,j] do not exist.

- edges from [i,)] to [{] are labeled with the value O for every task i that is a terminal task
in the process graph.
A specific assignment of N tasks to the P processors consists of a path from node [0] to node (¢,

and the optimal assignment is the path that minimizes the objective function C.

Stone [STONT7| uses the Network Flow Algorithm to solve for the optimal solution of
assigning tasks to two processors. The N tasks are so connected that the edge weights represent
the cost of inter-task references (the communication costs} when the two tasks are assigned to
different processors. Next, two nodes, 5 and S, which represent processors P; and P,, are con-
nected to each task with the edge weight representing the cost of executing this task on that

processor.

Assuming that all the edge weights are the capacities in a flow network, Stone finds the
maximum fow from S; to S,. A cut set is found which divides the tasks into two sets. The
tasks in the same set as 5, are assigned to processor P;, and the other tasks are assigned to pro-

cessor Py
Although this method does provide the optimal solution, it is not easy to generalize into

cases with more than two processors. In the case where P is very large, this method is, indeed,

very difficult to apply.

18

Van Tilborg [VANTS8]] discussed the Wave Scheduling technique. The processors are
organized into a tree-shaped hierarchical structure with the 'worker’ processor at the leaves and

'manager’ processors at the higher levels in the coantrol tree.

Assume that a job requiring S processors enters any processor (either worker or
manager). If this is a worker processor, it will pass the request to its manager. The manager at
this level will try to assign S tasks to the workers under its control that are not busy. If it can-
uot schedule a job of size S, the job is passed up the control tree one level at a time until a
manager can find at least S workers under its control that are not busy and assigns the workers
to the tasks. Because of the communication delay, the manager might not have updated infor-
mation regarding the busy status of all the workers under his control; therefore, the manager
will always try to assign the S tasks to P processors where P is slightly larger than S. The

difficulty is then to estimate the value of P,

Lee [LEE77] studied the problem of optimally assigning tasks to processors by minimiz-

ing a cost function, which is the sum of two parts:

1. processing cost of a task on the processor assigned;

!Q

communication cost, which is the product of the volume of data to be transferred and
the distance of the two processors measured by the number of hops or the physical dis-

tance.

He then discussed several assignment algorithms that minimize the above cost function for tree-

shaped process graphs and more generalized process graphs.

Except for the algorithms discussed in [LEE77|, none of this previous work included pre-
cedence relationships among the set of tasks. In Chapters 4 and 5, we do incorporate pre-

cedence relationships among the tasks into the scheduling algorithms.

2.4 Discussion

In this chapter, we introduced some background information on why multi-processor
systems have become more important. We looked at some results obtained from the analysis of
the Graph Model of Behavior and some previous attempts which take advantage of parallelism
existing in programs. Some multi-processing hardware organization(s) and the scheduling prob-
lems on muiti-processors were also studied. As summerized in Section 1.3 we extend these
results to our model of computer jobs and find the speed up achievable in the multi-processor

19

environment.

CHAPTER 3
A General Model

We define our system to be a set of processors plus a queue with unlimited waiting
room. In the case where there are a fixed number of jobs in the system, all jobs are initially
present; otherwise, jobs arrive at the system by some random atrival process. Each job brings
to the system a set of tasks represented by a process graph (described in section 3.2), and each
task requires processing by a resource (described in section 3.1). A job departs our system after
its final task has been completed. The system time of a job is defined as the interval from the

time of arrival until the completion time of the last of its tasks.

3.1 Resources

The resources studied here consist of a set of identical processors, connected via a local
communication network, and each capable of independent operation on a single task. In this
dissertation, we concentrate on the problem of task assignment; we defer questions regarding the
types of connection networks most suitable for parallel processing communications, the amount
of storage required for each processor in order for it to process the largest task assigned to it,
the amount of communication bandwidth necessary to keep the communication time small in
comparison to the processing time and the overhead of this communication to the references
[METC76, BUX81, KIESSI, LELAS‘.B]. Of course, we recognize that there will be higher com-
munication delay if the tasks of the same job are assigned to processors far apart in the proces«
sor network. In Chapters 4 and 5, however, we assume that this communication cost is free {or
as an approximation, that the average delay is incorporated into the processing requirement of

each task}); in Chapter 6 we bring the commuaication cost into the model.

The processors are identical in terms of their capabilities in processing speed and
storage, Usually, the total number of processors is assumed to be a fixed constant, P. In some
cases where we have encugh processors to keep all executable tasks busy, we assume P is

infinite,

21

3.2 Process Graph

Each computer job is represented by a set of tasks, T, and a partial ordering of these
tasks (given by a set of precedence relationships). We represent a task by a node and represent
a precedence condition, where task i must be completed hefore task j, by a directed edge from
to f, denoted by [i,j). In the following, all directed edges point dowaward in the graphs; there-
fore, we will not put the arrows on the edges. In the following discussion, we distinguish neither

between nodes and tasks nor between edges and precedence conditions.

We use the directed acyclic graph to represent the tasks in a computer job. Each node
is a task that requires processing, and the edges (i,7) are used to prevent the starting of task j
unless task i has been completed. Two tasks can be executed in parallel if and only if every
predecessor of one task does pot include the other task, and vice versa. The precedence rela-
tionship into a node is an 'and’ type operator. Suppose {z,,z, - - ' ,z,} are the nodes having
edges into node z;, Then z, may start execution only after all of the z, for i=1,2, - - - n, have
completed execution. Without loss of generality, we assume there is only one starting node and
one terminating node for each job. If there are several nodes with in-degrees of zero, we can
add a new node with in-degree zero and which points to each of these nodes. Similarly, for
several nodes with out-degrees of zero, we can add a new node with out-degree zero and then
create new edges from all these nodes to this new node. The resulting directed acyclic graph is

called a process graph. Figure 3.1 gives an example of a process graph.

Two parameters characterizing a process graph are its length and width. The lengtk in
a process graph, sometimes referred to as the total number of levels, is the number of tasks in
the longest path between the starting and terminating nodes. We place a node j at level ¢ if

= max [6u] where &, is the number of tasks in path u from the initial node to node j, and 'is
uL

the set of all paths from the initial node to node ;. The width of a process graph is equal to

max [number of tasks in level i]. In Figure 3.1, there are 5 levels and a width of 3.
l

Process graphs have a hierarchical structure so that each task in a process graph could,
by itself, represent another process graph. This property can be useful in describing an operat-
ing system or a computer program. In an operating system, the podes in a process graph could
represent the jobs to be run. Within each job (or node), there is another structure of pre-
cedences which represents the execution order of the tasks. A similar situation exists in a pro-
gram environment. Subroutines can be represented by a node in the process graph, and within
each subroutine another process graph could exist with each node representing an executable
block of statements. This hierarchical structure provides a useful tool in studying the schedul-

ing problem at several different levels of complexity. When a more detailed schedule is required,

b) (1.2). (1.3, (1.4). (2,5, (3.5), (4.6), (5.7)
(5.8), (6.8). (6.9), (7.10), (8.10), (9,10)

Figure 3.1 a) a process gtaph

b) a list representing the precedence relations
in a process graph in a).

(i.e., directed edges)

each node of the process graph can be expanded into a finer process graph so that more detailed
tasks could be individually scheduled. The opposite is also ttue; we cag schedule the nodes,
each of which represents a group of tasks in the original process graph.

Examples of process graphs representing some actyal jobs include:

L. N x N matrix inversion
After the initialization task, we can concurrently calculate the determinant and the A2
cofactors. But each of the cofactors (say, i row and j* column) is, in turn, computed
from the (N-1)x(N-1) submatrix by eliminating the i row ang 7* column of the origi-
nal matrix. Therefore, each task may expand into more subtasks. This recursion stops
when there is only a 2x2 matrix remaining in each of the subtasks. Figure 3.2 gives a

typical process graph for the matrix inversion problem.

2. Shell Sort
Shelt Sort [KNUT73] sorts every h? oumber in order. It ther sorts
Ay, By, - - and h* aumbers in order at each iteration, respectively. The numbers
hy By, - hy are intégers with k, > k,_,; so, the number of parallel sorts depends on

how many numbers are to be sorted and the values of h i=1,2 ..t Figure 3.3 shows
a typical process graph for the shell sort.

3. Quicksort
Quicksort [KNUT73] uses the first number (the key number) in the list to divide the list
into two parts. The left list contains all the numbers smaller thap the key aumber: the
right list contains all the numbers greater than the key number. These two lists can
then be sorted independently by repeating the above procedure (i.e., use the first
number of each list as the key number and sort each list into two more lists). This sub-
division continues until there is only one ot no task remaining in the subdivided list.
Hence, a typical process graph might lcok like Figure 3.4. Because this sorting pro-
cedure depeads on the value of the first number jg the list, however, some ypusual pro-

cess graphs such as those in Figure 3.5 can result.

In later chapters, we will consider two cases of process graphs. In one case, the struc-
ture of the process graph for each job is fixed and known in advance. In the second case, each
graph has a random structure; 50, each job may have a different process graph.

COFACTOR
EVALUATION

Figure 3.2 Matrix Inversion Process Graph

Figure 3.4 Quicksort Process Graph

27

Figure 3.5 Unusual Quicksort Process Graph

3.3 Taxonomy

We have divided the task assignment and scheduling problems into sixteen cases, The

parameters used for the classifications are:

1. Number of Jobs

We can have a fixed number of jobs, k, at the start (time t=0), or we can allow jobs to

arrive from a Poisson source with an average arrival rate of) jobs/sec.

2. Types of Process Graph

Each job in our problem can have an identical process graph, G, or each job can have 2

random process graph, G*.

3. Processing Requirement of each Task

Each task may have either a constant or a random processing requirement. In the latter
case, the random task time for a fixed process graph can be sampled once at the begin-
ning and used by all jobs or can be sampled each time the task is being processed. If the
random sampling is done only once, it can be reduced to the constant processing
requirement case by transforming each task into a chain of tasks, the length of each
equal to the service time requirement and each task in the chain having one normalized

time unit of service demand.

4. Number of Processors
The number of processors is given by P. If there are enough processors so that each task

can be processed whenever needed, then P cap be treated as infinite.

With the terms defined above, we can summarize the sixteen cases with the taxonomy

tree in Figure 3.6.

passnasip jou
A

bt < |

oo >

o0 m=f

o>

passnas|p

£r
)

o0

ou
(J

o0 >d

passnasip
Se 10U
L) 0O
oo e=d
BVQ

9g
L] GG
() @
oo =
oo >d
X
@
D
N

() ())
=y ooy
00 3>
()
v
<
~
X)
£
]
1
5
9 =
©
o™
=
=]
50
[5

At the first level, we distinguish whether there is a fixed nember (£) of jobs at time t=0
or whether jobs keep on arriviag (at rate of A) after time t=0. The second level deals with the
type of process graph for each job. All jobs have either the same process graph (G) or random
process graphs (G*). The next level separates jobs with constant task time (z) from jobs with
random task time (z°) service demands. We also include a fourth level for any situation in
which the number of processors, P, is greater than the maximum number of concurrent tasks

that demand processors.

For all these cases we are interested in a parameter we call the concurrency measure, o,
which is defined to be the average system time required using P processors (S(P)) divided by
the average system time required using one processor { S(1)), that is

_ S(P)
T

1 measures just how much parallel processing is possible for a particular job, that is, L is the
c

) S - .
"speedup” factor. Note further that p the efliciency of each processor. In our notation,

when P = oo, we really mean that we have a large number of processors, say P’ (ie, max-

imum width of a process graph multiplied by the number of jobs) instead of an infinite number

.. 1 . .
of processors; thus, the efficiency =5 1s not to be interpreted as zero for "P = co” but rather
o

the efficiency is -
g P

i, as defined above, measures the parallelism within a particular job. Furthermore, if
a

. o . . Kk

k jobs, on the average, are running in a P-processor environment, then the speedup is —. For
a

all cases where we have a fixed number of jobs at time zero and P = oo, F = k; the speedup

over all k jobs is then —. For all cases where jobs are arriving from a Poisson source {with a
-

mean arrival time of %). =) S|P }; the speedup over a time span is A—'ng-—} =X §1).

A large speedup may appears as a good architecture, but the efliciency of the processors
is also important. It is easy to get an efficiency of 1, but this system will be very slow. This
tradeofl is studied when we discuss the issue of power (in Section 5.5). Note also that the max-
imum speedup is

S(1)
S(P)

1 <P
[22

21

Some of the other parameters not considered are

- task interruptibility (preemption)

- homogeneous versus heterogeneous processors

Preemption is not considered since the communication overhead required for each

preemption may be

too large in a distributed processing environment. For simplicity, we have

assumed homogeneous processors, If heterogeneous processors are used, all assignments must be

optimized so that the speed of the Processors with respect to each job must be considered.

3.4 Notation

Following is a partial list of notations used throughout the rest of this dissertation.

Additional notation will be introduced as used.

k

r,L.

number of jobs present at the beginning {time i=0)
arrival rate of jobs from a Poisson source

fixed process graph

random process graph

constant processing time of a task

random processing requirement of a task
number of processors in the system

number of levels in a process graph

width of a process graph

total number of tasks in a process graph
average system time required to complete a job

concurrency measure

32

3.5 Cases Studied

Many performance objectives are available:
= minimize the completion time of the slowest job;

- minimize the number of processors required;

minimize the average system time;

minimize the processor idling time or maximize the processor utilization.

These objectives can be used in combination or by themselves. In our work, we have
chosen to use the minimization of the average system time (referred to in some literature as the

flow time) as the performance objective.

Of the sixteen cases shown in Figure 3.6, eight of them have 2 limited number of pro-
cessors (P < oc). Therefore, these cases require scheduling of the tasks in each job. We defer
most of the scheduling problem to the references cited in Chapter 2 and concentrate on the
cases where we can assume that enough processors exist for all jobs and tasks that demand

them.

Two of the cases, & G, ,P=occand) G 1, P= oc, are very simple to analyze. All
the parameters are deterministic; therefore, all the measures can be easily calculated. For both

systems, we find the average system time, § (in fact, a constant for all jobs). by multiplying the

number of levels, r, by the task processing time: S=r z. Hence, ¢ = —_:- For the arrival sys-

tem. by Little’s Result [LITT61), the average number of jobs in the system is k= A S=) r .
Since we have an M/D/20 system, we also know the distribution of the number of jobs in the
system, P, to be

! !l:
P, = '\kS’ e=*s

In all cases in which it can be assumed that P = o0 and z is constant, the precedence
relationships given in G are of no consequence except to ascertain the number of levels. For the
constant service time cases, for every r units of service time, one level of the process graph will
be completed regardiess of whether a node on the previous level has precedence over this node.
The assignment problem is also simplified by assigning all processors required to all tasks on the
same level of the process graph for z units of process time. Because we have enough processors

to keep any number of jobs active concurrently, the number of jobs is irrelevant. Any job,

either k jobs at time ¢ = 0 or those arriving from a Poisson source, will spent r z units of time
in the system before departing. Therefore, we need to study just one job in order to find all the

system parameters,

In Chapter 4 we study the cases i) &, G, 2, P= oo, i) £ G,z P< 0o, i)
k, G z°, P < oo and iv) M\, G,z P=o0. In Chapter 5 we concentrate on random process
graphs for cases i) k, G* 2, P=co, ii) k&, G* z* P=co, and iii) £, G*, 2, P<oo. In Chapter 6 we
study the communication overhead with the case &, G, z*, P<oo.

In the taxonomy tree of Figure 3.6, the section associated with a particular case js
shown on the bottom. The other cases are left for future research.

34

CHAPTER 4
Fixed Process Graphs

4.1 Introduction

In this chapter, we explore cases where the process graph is fixed (i.e., given). The ser-
vice time for each task is random in Section 4.2, 4.3 and 4.4 while in Section 4.5 we assume it is
constant. The number of processors is assumed to be infinite; so the results obtained are
independent of the number of jobs. In Section 4.2.1 we first obtain the average system time for
the case of exponentially distributed service time for each task. The process graph is first con-
verted into a Markov chain: the equilibrium state probabilities of each state in the chajn are
then obtained. From the average system time we find the concurrency measure for a specific
process graph. We use bounds on the average system time to get ap apptoximation of the con-
currency measure in those cas;s where the exact concurrency measure becomes difficult. Section
4.2.2 describes how the bounds are obtained. [n Section 4.3 we consider the arrivals of jobs to
the system instead of a fixed number of jobs. In Section 4.4 we consider a finite number of pro-
cessors, and using Stochastic Petri Net theory and the notion of power, we find the optimum
number of processors that should be assigned to each job. Section 4.5 deals with the assignment
of tasks to processors. We look at the ratio of the average system time when the best schedyl-

ing algorithm is used versus that when the worst scheduling algorithm is used.
With either the exact concurrency measure or bounds on the concurrency measure, we

have characterized a process graph. The average execution time, the average width and the

speed-up that is possible for this process graph can all be derived from the CONCUrrency measure,

4.2 Fixed Number of Joba (£. G 2 P= o0)

4.2.1 The Exact Average System Time

35

In order to find the average system time of a process graph, we must be able to compute
the average concurrency of the tasks. Towsley [TOWS78} introduced a model of parallel pro-
cessing for CPU and [/O overiapping. In this model, after a CPU task terminates (say task
CPU,), it initiates another CPU task along with an I/O task (i.e., CPU, and 1/O) - see Figure

4.1a.

Figure 4.1a CPU and I/O Overlap

If we now represent this system behavior by a Markov state transition dizgram (Figure 4.1b}, a
Job may be in any of four states:

1} CPU, the CPU is executing task CPU,.

2) CPU, the CPU is executing task CPU, alone.

3)1/0 the 1/0 task is executing.

4) CPU,1/O the CPU is executing task CPU, in parallel with the execution of the 1/O
task.

The time spent in each state is selected from an exponential distribution with the mean service

time for CPU,, CPU,, and 1/0O equal to —I-, L, and -:—, respectively.
By Hy

36

Ko

M2

F‘igure.ilb Markovian State Transition Diagram

In this section, we use Towsley's approach in our concurrency problem by converting
Process graphs into Markovian state transition diagrams. Two methods of obtaining the average

system time are then discussed.

4.2.1.1 Converting the Process Graph Into a Markovian State Transitlon Diagram

A Markovian state transition diagram, M(G), is generated for process graph G where
each state in the Markov chain represents a specific set of tasks in @ that can be executed in
parallel. Let C, represent a state in the Markov state transition diagram where a is the set of

tasks that are executed concurrently. Also, let |af represent the number of tasks in the set a.

The chain starts with state C; where fis the initial task in G. For each state C, in the
chain, it will go to |a] other states, each branch corresponding to the termination of one of the

tasks in a. The state Ca' at the end of one of these branches has the set of active tasks {a' }

where o’ includes the tasks in a minns the completed task plus the activation of several other

tasks il any, due to the termination of this task. The exact algorithm is given in Algorithm

37

CPM (ie., Convert Process graph to Markov chain) in Figure 4.2, where the procedure for
obtaining the Markov Chain from a process graph is described. Figures 4.3a and 4.3b are exam-

ples of this algorithm.

ALGORITHM CPM

1. For the initial task i, we create an initia! state with one active task i.
Mark this state 'unlabeled.’

2. Select one of the unlabeled states C,, and matk it "labeled.’
Suppose there are 7 active tasks, ¢;, ¢, - - - , ¢,, in this state C,.
For each ¢, create a branch with the branch label of ¢,
this label corresponds to the termination of task ¢,.
If we traverse back from state C, to the initial tasks,
the tasks on the branches of this path form the set of completed tasks.
By adding ¢, to this set, we can check the process graph for new tasks, if any,
which become active; call this set 3,.
The branch with label ¢, goes into state C where

w' =w—¢‘+{ﬂt},

It Cw: does not exist, we create this state and mark it 'unlabeled.’

3. If any state is not marked 'labeled,’ go to step 2.
4, Create a branch from the terminating state to the initial state;
stop.

Figure 4.2 Algorithm CPM

We find that there are as many levels in M({G) as there are tasks in the process graph G. This
also equals the number of states visited in M{G) before a job cycles back to the first state C/in

the Markovian state transition diagram.

Figure 4.3a Process Graph

4.2.1.2 The Average System Time

. . . 1 .
For a state C,, the rate of leaving this state is BitHa+ - +up,, where = is the mean

of the exponential service time of task fca. Therefore, the mean time spent in this state is
I

S

1=l

Let us now assume that u, = g for all tasks i. Therefore, the mean time 2 job stays in state C,
1
Jalu

39

Figure 4.3b narkovian State Transition Diagram

40

Due to the memoryless property of the exponential service time distribution, each task
in C, has the same mean service time regardless of whether a specific task had been processed in

another state C .. Hence,

Prob[task i completes first | :'ca] = ﬁ

for all iea.

Starting from the initial state, there are many paths a job can traverse before reaching
the terminating state in a Markovian state transition diagram. Since we know the probability
of traversing each branch, the probability that a specific path has been taken can be calculated.
Suppose the path taken proceeds through the following states:

Cay Coy ** 1 Coy
o

The probability of taking this path is] Tl
==} a,

Suppose there are r different paths from the initial state to the terminating state in the
Markov state transition diagram. If it takes an average of T, units of time to complete path i

with probability p, this path is chosen, then

S(P)=X T, (1.1)

=]

The total number of paths from the initial state to the terminating state is enumerable.
By summing the product of the total average time spent in each state in a path and the proba-
bility of taking this path, we are then able to find the average system time of the process graph

represented by this Markovian transition state diagram.

Take the example shown in Figure 4.3b, the average time for path
€Ca, Cac, Coec, Coe, Cpr, Cr, C

including return to C, (i.e.. a cycle) is

1 1 1 1. 1 129
— |1+ttt 4141 = — =2
U [23 2 2 a6
: ‘ 1111 1 :
and the probability of taking this path is 3535 = TR Summing ever the product of aver-

age path time and the probability of taking this path over all possible paths, we obtair an aver-

age system time of i\'5.05.56.
7

11

From a simulation of this system, we obtain a value of 1 5.09 for the average system
U

time, a result which is in very close agreement with the predicted value.

From the above calculation, we see that the average system time is greater than 4
i

which is the number of levels in the process graph (Figure 4.3a) multiplied by the average ser-
vice time of a task. The reason for this difference is that task G must wait for the completion
of its 3 predecessor tasks {tasks D, E, and F) before it may start. Thus the time to process
nodes D, E, and F in parallel (even assuming that they begin to be processed at the same point

. . 1 . .
in time) is greater than " since we must wiat for the slowest of the three to complete {and this

will exceed the average task time for each -- see Equation 4.4 below). We are seeing the cost (in
increased system time) due to the dependencies among the paths ftom initial node to terminat-

ing node.

4.2.1.3 The Concurrency Measure

The concurrency measure can be calculated from the average system time as

S(P

0= ——m

51
Substituting Equation {4.1) into the concurrency expression, we get,

T

T,

We can find ¢ by another method. We have transforined the process graph into a Mar-
kov state transition diagram. If, in addition, we have a branch going from the terminating state
back up to the initial state, we then have a discrete state comtinuous time ergodic Markov
chain. The equilibrium state probabilities can be solved by the balance equations, which equate

the rate into a state to the rate out of the same state. In addition, we need N7, =1 where 7,

1
is the equilibrium probability at state i. Even though there might be a large number of states in
the Markov chain, due to the characteristics of process graphs, the balance equations will form a
lower triangular matrix, and it is easy to express all the state equilibrium probabilities in terms

of m;. Then, by using the E 7, = 1 equation, we find 7, which, in turn, gives us all the equili-

brium state probabilities. Figure 4.4 gives an example of the balance equations in matrix form

42

for the process graph given in Figure 4.3b, assuming u, = u for all {,

N Wy
(1100000000000000 ﬁﬂ o
040000000000000] In,| |54
0£0000000000000 |rg| |24
004000000000000f |r,| Joy
00x000000000000 mg 24 m,
004400000000000] [r,] |37
0004500000000000([, 2
000040400000000] fr,[= [o 2,
000004400000000 I, | |2,

0000000000000 1o K omy
0000000000000 ™ 2wy,
OOOOOOOOpOOpOOO Tis T
0000000014#;40000 Tia uomy,
OOOOOOOOOuOuOOO T T

\()00000000000;1##) \”15J \pij

Figure 4.4 Balance Equation

Let us denote the matrix multiplication in Figure 4.4 by

ANl=BIT
AsaK-1x K-1 Square matrix (where K is the number of states), ITis a column vector of
ms(i=1,2 - - K_ 1). Bis a row vector of the rate out of states 2,3, - .. j _ 1, and
I ois a column vector of Ts(i=2,3 ... K)o Ay in the i row and ;** column in matrix

A represents an edge with a label 4 from state j into state {7 + 1} in Figure 4.3b. Therefore the
matrix product of the i row of A by IT results in the rate going into the state {t+ 1) The #
entry in B represents the number of edges leaving state (i + 1} multiplied by 4. Thus, multiply-
ing the i entry in B by the i” entry in IT results in the rate out of state (i +1). Hence,
All=BIT equates the rate in and rate out of state ¢, for 2 < i < 16. For example, the 6%
row of A IT contains 4 7s + 1 7wy which is the rate into state 7. and the 6™ row of BT contains
3 i n; which is the rate out of state 7.

Once we have found the 7., we can proceed as follows to obtain the concurrency meas-
ure.

43

N1
s Z;,Otﬂt i
T8y N

u

T

where o, is the number of active tasks in state k and Zokfr, is the average number of tasks
k

being executed over the entire execution period. Hence,

g = (4.2)

3
Zotﬂt
£
This is the main result of this section.

From renewal theory, we also know that S({P) is the mean recutrence time. Thus,
S{P)= " where 7, is the equilibrium probability of either the initial or the terminating
J
state. Hence,

A simple example is given next. Figure 4.5 is a process graph with its Markov chain

shown in Figure 4.6. The set of balance equations are

Mg == um

um o= 2um,

=
3
3
il
®
~
-
Il
=
N
Y

The solution is

~ 2

ﬂ!=ﬂ5=

and

144

Figure 4.5 Process Graph

1
Mg = My = ﬂ" = ?
Hence,
6 8
Eok”t =
=1 ‘
or g = —

There are two paths from state 1 to state 5, each with equal probability of being

chosen. The average path time for both paths is [I+-;—+l+l} l Hence,
‘ H

which agrees with the ¢ calculated above.

45

Figure 4.6 Markov Chain

The small speedup (:}_- = -g-) is due to the serial nature of the process graph in this

example. Only two of the four tasks may be processed in parallel and only for the duration of
t = min| {; ,t, | where f,, i = 1, 2, is the random processing time of one of the tasks that can be

executed in parallel.

16

4.2.2 Bounds on the Average System Tlme

In Section 4.2.1, we found the exact concurrency measure (Equation 4.2) for a fixed pro-
cess graph with random task times. Although the algorithm used in obtaining 7 is not difficult
to carry out, it is cumbersome to either calculate S (P) by going through all the paths in the
Markovian state transition diagram or to solve for the equilibrium state probabilitjes from a set
of balance equations derived from the Markov chain. If the exact concurrency measure is not
required, we may use upper and lower bounds as substitute measurements for the concurrency;
they are usually much more easily obtained than the exact solution.

In order to find an upper bound, we "synchronize” the execution at each level by forcing
all the tasks in the next level to wait for the slowest task in the current level to complete before
they all start executing. We call the time between the synchronization of two neighboring levels
the "forced synchronization time” (FST). If we sum up the FST at each level of a process
graph, an upper bound for § (P} is obtained. For a lower bound, we just find the average time
required to execute the tasks in the longest path from the initia] node to the terminating node.
Since this is the minimum time required for any job with this process graph, we have a lower
bound. In the following sections, we describe the exact procedures for finding these bounds.

4.2.2.1 Blocking Time of Predecessor Tasks

In this section, we find the average time contributed by the "blocking nodes.” Blocking
nodes of a specific node i in the process graph are the nodes that have precedence relationships
into node i. Since a task canmot start execution until all of jts predecessors have been com-
pleted, we would like to find the average time required for the completion of all its predecessors
in the previous level (assuming they all started at the same time).

Each node, 4, in G has several precedences entering it and several precedences exiting it.
During the Processing of a task, out-degrees do not influence the completion time of this task,
but in-degrees do. Suppose there are n precedences entering this node; the task can't start exe-
cution until all n tasks are done. In other words, assuming that all these n tasks are begun at
the same time, the eflective execution time of these n tasks with respect to node i is equivalent
to the max(t), ¢, ... , t,), where I, j=1,2, - - - n is the random service time of task ;. We find
the probability distribution function of this max as follows:

Faaxlt} = Prob [completion time of n tasks <

47

= Prob [t} < l|*Prob |t <]*- - - #Prob [i, < ¢

= [AY

where F(!) is the probability distribution function for the service time of one task. The equality
is due to the independence of service times of the tasks. From probability theory, we derive the

expected time for finishing n tasks from

E | completion time of n tasks |
0
=] [-FT,, (:)] at

= f:o [1-m)"] dt (4.3)

Since F(U)" < F1), E [completion time of n tasks| > E [completion time of one task|. If the ser-
vice time is exponentially distributed with an average service time of 1/, then Equation (4.3)
becomes

completion time of n lasks with
exponentially distributed service times

== fow [l—(l—c'"')"] dt

)

n
el (4.4)
p’ jum} J

lnn+ @

Note that for n >> 1, Equation (4.4) is approximately {where & is Euler’s constant

= .57721...) Equation (4.4) can also be obtained from the following equivalent queueing system:

A service center with n servers, each server having an exponential service time distribu-
tion with mean of 1/u;

No waiting room allowed in the system and servers starting execution when there are n

12

customers in the system:

Once the servers start execution, no new arrivals allowed to replace the departed cysto-

mers,

The time, S, to complete all n customers measured from the start of execution is

ng (n-1)u B
_ I &1

The equivalence can be shown as follows:
The n customers in the queueing system are equivalent to the n blocking nodes;

One server becomes inactive after each customer departs from the queveing system and
this is the same as the completion of gne blocking task;

The service time of eich customer is exponentially distributed with a mean service time

of 711—' and the time required to complete a blocking task js also exponentially distri-

. . . 1
buted with the same mean service time of —.

From equation (4.4), we note that without the blocking effect, each task of a process

graph requires an average service time of -1— However, with the blocking effect, the average
i

time to complete a task becomes approximately Io n where n is the aumber of tasks blocking
this task. Thus o = M = In n giving a speedup of E’L; this falls short of the maximum
n n n

possible speedup which is equal to n. The reason for this poor speedup is clearly the blocking

Since we know the in-degrees of each node ip the process graph, the average time
required to wait for the completion of all the precedence tasks for a specific task, {, can be cal-

culated from Equation (1.4).

49

4.2.2.2 Bounds for Structured Process Graphs

We will first study "structured process graphs,” which are defined as having the follow-

ing properties:

1. All sons of a node, ¢, must merge back into one single node, j, before reaching the ter.
minating node, and

2, only node ¢ can have a direct precedence relationship into each son of node # no other

nodes may have direct precedence relationships into sons of node i,

With the above properties, eack son may be replaced with a set of tasks with the same proper-
ties. A structured program is a good analogy of this process graph. In a program, which must
be entered at one specific point and exited at another, several parallel blocks of code may be
executed simultaneously, but each block must be entered and exited from the specific points.
Property 2 above states that no 'GOTOQ' statements may direct the execution out of or into a
block of code. Figure 4.7a) shows a structured process graph, while the edge ¢ in Figure 4.7b)

violates the property of a structured process graph.

Within each structured process graph, we can divide the tasks (other than the starting
and terminating nodes) into several mutually exclusive sets, where each set of nodes, together
with the starting and terminating sodes, forms a structured sub-process graph. Property 2
prevents the precedences from a node in one set of tasks leading into a node in another set. We
call each set of the tasks a 'group-path,’” and we let m denote the sumber of group-paths in a
structured process graph. Algorithm GP below describes a method for finding all group-paths

for a given structured process graph.

This algorithm begins at the starting node of G and, by keeping track of the nodes
diverging out of each task, looks for nodes that atre in a single group-path. If tasks eventually
merge back after diverging out of a single node, they are considered as one group-path. If tasks

do not merge back before the terminating node, they will be considered as separate group-paths.

By substituting other tasks for the starting and terminating nodes in Algorithm GP, we
can find the sub-group-paths within the process graph.

Nodes within the same group-path have the same PATHNUMBER in the algorithm

below:

Algorithm GP:

a) b)
Figure 4.7 a) A structured process graph b) A non-structyred process graph
STEPO Mark all nodes 'NEW
PATHNUMBER « 1
PATH(+) «— 0 for all nodes v
STACK ~ ‘empty’

STORAGE ‘empty’

51

v «— the starting node of G.

STEP1 Mark v'OLD.’

Store the sons of von the STACK.

STEP2 Select a task from the top of STACK.
Call this task v

If STACK is empty, STOP.

STEP3 If vis 'NEW".
Put vin STORAGE.
Mark it 'OLD”’
Put all sons of v on STACK.

GO TO STEPS.

STEP4 If vis 'OLD.’
PATH{u} «— PATH(r) for all nodes w in STORAGE
STORAGE «~ ‘empty’

GO TO STEP2.

STEPS If v is the terminating node,

mark it '"NEW' again (since the terminating node
is not considered to be in any one

particular group-path)
PATH{u) — PATHNUMBER for all nodes win STORAGE
STORAGE +~ 'empty’

PATHNUMBER « PATHNUMBER + 1.

STEP6 GO TO STEP2.

52

For m==1, we know that there does not exist any individual path that is Dot coupled
with some other part of the G, Instead, many precedence relationships exist between two neigh-
boring levels. Because of this, the line of active tasks in G is roughly the same as the Jevels of
G since blocking prevents any tasks from becoming active if they are several levels ahead of the

active tasks.

From this analysis, we can immediately find an upper bound to the average system time
of G. If we force the execution to complete one level of G at a time, no tasks jn the foilowing
level are allowed to start, even if there are pa tasks on the current level to block this task. The
average service time for each level js the average time required to process the slowest task, ie.,
the task with the largest number of blocking nodes from the previous level. We introduce g new
parameter d,q,,, which gives the largest in-degree per task for all tasks on level j of G, From

our definition of the process graph, we have 4, =0 and Brax=1 for all G,

Theorem 4.4
Given a process graph. G, which has ope group path (m=1), ¢ levels and
{dmu | 1=123 - - r}. Sig. an upper bound for the average system time of G. is equal to the

sum of the average times required to process the node with the largest in-degree at each level.

Sip =

(4

| average time required to process
a node with in-degree 0f &pian

=]

d

B

>

I []

1
;

® |-

1 1

It 4y = 0, the average processing time is defined to be the average service time of one tack.

(The sum on j can be approximated by In 4, ., when 4 ax >> 1)

Proof:

@imax IS the largest in-degree for level i of G. It we sum the average times required to process
tasks ¢, for i=1,2, - - - r and the in-degree of ¢, is 4, raxs the tesulting average time equals that
of a process graph with a path, p, from the starting to the terminating nodes, where each node
on this path at i* level has ap in-degree equal to dmax- Il any one of the {d.ax } is not on the

same path, we must show that the resulting average system time is no greater than Sus

Suppose the maximum in-degree node on level Jof G is on path ? rather than path p
(see Figure 4.8). Let i, denote the node in the ;™ level for path p, 1, the node in the j+1% Jeve]
for path p and iy the node in the 7 level for path p . Since the number of blocking nodes for
node i {that is d,l). is less than or equal to the number of blocking nodes for node 73 (that is d.).

the average time required to complete node i, is smaller than or equal to the average time

PATH P pe

" LEVEL o @

(+1)% LEVEL o

Figure 4.8 Maximum In-degree Nodes

required to complete node iy:

.

d
'3
1
g: R for d, < d = d, s

d'-
D M
oy ! o

Therefore, the average time to complete path p with node i, in the j™* level instead of node iy is

smaller than or equal to Spg Similarly, if the nodes l'j], ijz,--- vand §, on levels
a
JuJao ", and j, of path p are not the maximum in-degree nodes, then
dr
Lg SictgE
—_ —-< = -
o iyl rem | r H {==) ram] r

because a',” < d mfori=12 - a

Hence, S5 is an upper bound for the average system time of G.

A simple lower bound on the average system time is just the average time required by a

task multiplied by the number of levels.

Theorem 4.2
A lower bound of the average system time of a process graph G, given r levels, is the average

service time of one task multiphed by r.

b4

1
Sp=r—
LB ﬂ

Proof:
Since each level is defined as having at least one task in it, the mizimum time required to pro-
cess one level is the service time of one task. For r [evels, the minimum average system time

cannot be lower than the average service time of one task multiplied by r,

The upper and lower bounds obtained in the above two theorems are for different pro-
cess graphs with specific sets of {dmaid'7i}; however, each set of {doax{¥i} can represent a
number of different process graphs. Indeed, if we do not limit the number of tasks per process
graph, there could be an infinite number of process graphs generated from each {d,ml‘r/i}. In
the proofs of both theorems, the number of tasks and the structure of the task graphs were not
used. In other words, provided the same sets of {d..,[\i} in both theorems, we have a class of
process graphs with the same upper and lower bounds,

For a structured process graph with m=1 group-path, the actuail progress of active
tasks sometimes closely follows the physical levels of the process graph. This is caused by the
precedence relationships between adjacent levels (which forced the synchronization at each
level). Hence, the average system time is often close to the upper bound. This fact has also
been verified by simulation. For m>1 group-paths, since there are no precedence relationships
between the group-paths, the line of active tasks progresses at a different rate for each group-
path, depending on the random service time requirement of each task.

If a process graph has more than one group-path, the method described above for
obtaining bounds for m=1 must be improved to show the influence of the number of group-
paths. To classify a general structured process graph, we require the maximum in-degrees for
each level of all group-paths: { {du]w), {dv1), ..., {471} }. The order of maximum ip-
degrees per level in {dmaxl 74} for m=1 does not influence the bounds since any permutation will
produce a process graph with a similar bound. By the same argument, the order of the sets of
the maximum in-degrees for each group-path does not influence the bounds.

As has been discussed in the case of m=1, the average system time is usually close to
the upper bound; therefore, we will use the forced synchronization per level to approzimate the
average process time required for egch group-patk. For a group-path ; and level ;5 with max-

imum in-degree node having a value of d,, the probability distribution function for the service

time of this level is [F{s)] d”, and the probability density function is

55

-1 dF(t)

fx)(t) - dl} [F‘t” i (45}

To obtain the approximate average system time for the multi-path process graph, we can reduce
each group-path into one 'super-node.’ Th. probability density and probability distribution

functions of the service time for each of the super-nodes j are

H)=1{0@ L) - & flt (1.6)

where ® represents the convolution operator, and

F(t)y= fotf](r) dr {4.7)

respectively, where each f,{!} is a probability density function represented by Equation {4.5).

Looking at the terminating node, it has m 'super-nodes’ "blocking” it. This is the exact
analogy of Equation (4.3) with F{¢) replaced by the F(t) of Equation (4.7):

the average time required (o process a
nede with in-degrees of m group—paths

(4.8)

= fom [1 - ﬁﬂ{:) dt

=l

The convolution in Equation (4.4) is a tedious task. However, according to the central
limit theorem [PAPOG65]. as we add up a large number of independent random variables, the
probability density function of the resulting sum is close to a normal density function, with the
average of the sum equal to the sum of each level's mean process time and the variance of the
sum equal to the sum of the variances of each level. We assume that the service time of the
tasks between the levels are independent of each other. For each group path, ¢, we approximate
the probability density function of its processing time by the normal density function with mean
a, and variance b, where g, is the sum of the average times needed if the forced synchronization
at each level in the group path is used and b, is the sum of the corresponding variances of the

average processing times at each level.

Using this approximation, Equations (4.6) and (4.7) become

I (s o
Al 1)*7,-; e

(4.9)
and:
f . _ (z—:]}zl
F,(t)zfqmc ' d.'l (410)

respectively. Substituting F(!) into Equation (4.8), we may then calculate the upper bound,

St of the average system time (Equation (4.8)) required to complete a process graph with m
group-paths as

Q0 m t l - (z_b"’z 2
™ 1] - df | d
=0 e ’

4.2.2.3 Bounds for Non-structured Process Graphs

For a non-structured process graph, it is harder to obtain an improved expression for
the average system time. Although the lower bound expression on the average system time is
still the same as that of the structured process graph, we have been unable to find an upper

bound; this is due to the complicated coupling of the tasks, which makes it almost impossible to
find group paths.

4.2.2.4 Tightness of the Bounds (m=1)

The upper bound is obtained by summing the FST at each level in the process graph,
For a given number of tasks, NV, and number of levels, r, we know the lower bound to be 1 r.
By obtaining the upper bound on the worst arrangement with N and r, we know approximately
bow tight the bounds are. Since we distribute one node each for the initial and terminating
tasks and N - 2 nodes among the remaining r - 2 levels and assume that precedence relation-

ships exist between all nodes of the adjacent levels (this being a process graph with any two
adjacent levels forming a complete bipartite graph), we are looking for:

57

a
Suus = max Syp

-2 "
= max % [2+ il]

J==] ==l
r-2
subject to }, n, = N-2,
Jum]
This maximum occurs when n, = % forall j =234, --- r-2. It —A-LTQ is not an
- r—
) -
integer, then n = [T;l for j=2,3, -+ ,z where r=x remainder of N2 and
' r—
N-2 . . .
m={-= for j= z+1, z+2, - -+, r-2. The ratio of the maximum upper bound Sy;5 to

the lower bound gives us a measure of the tightness of the bounds.

For example, for N= 6, r = 4,

1]

SMUB = 1 [2 + (!'-Q)i %]

5

1
I

SLB = i"‘ 4
SMUB

LB
other, but for a larger process graph such as N = 10

Thus, = 1.25, which indicates that the upper and lower bounds are very close to each

Y =)

- T = oo,

s
2+20V% L
SMUB =] L
= == 217,
Sia gol
u

the bounds are further apart.

Of course, we are comparing the maximum upper bound possible, but as N becomes
large, the ratio of the upper to lower bounds also gets larger. The exact upper bound depends

on the number of levels and the number of precedence relationships in a given process graph.

4.3 Arrivals of Jobs (MG P=oo)

In the previous section (Sections 4.2), we obtained the average system time and bounds
on the average system time of a job. Since we bave assumed that there is an infinjte number of
processors, all jobs start execution at time zero. In this section, we assume that the jobs arrive
from a Poisson source. As 500D as a job arrives at the system, it starts execution {2gain this s
due to P = x). Thus, the results obtained in Section 4.2 can also be applied to this case. In

addition, from Little's result, we have, on the average, £ =) S(P) jobs in the system, where
5(P) is the average system time obtained in Section 4.2.1.2, and we have the bounds on the

average system time as

kug = X Sy

and

kg =\ Sie

where Syp and S, are the bounds obtained in Section 4.2.2

4.4 Stochastic Petri Nets {k£. G z2* P < o0)

In this section, we limit the pumber of Processors to P < oo, and the Stochastic Petri
Net (SPN) [MOLLS81) model is used to find the average utilization of these P processors given &
jobs, a fixed process graph and task service times which are expoaentially distributed, A process
graph can easily be transformed into a Petri Net, as was shown in Section 2.3.1. To the resylt-
ing Petri Net we add a "place” called "Processor Available,” with P tokens in it, and another
"place” called "Unexecuted Jobs,” with k tokens in it. Initially, all other places have no tokens
in them. We add an edge from the "Processor Available™ place to each transition requiring a
processor and another edge from each transition finished using the processor to the "Processor
Available' place. Figure 4.10 gives an example of how we transform a Process graph into such a
Petri Net.

59

Figure 2.10a Process Graph

61

_UNEXECUTED JOBS PROCESSCRS

AVAILABLE
k tokens P lokens i
{x jobs} (P processors) \ .-+

|
TASK A
INITIALIZATION
TASK A
EXECUTION
TASK A i
COMPLETION
TASK B TASK C §
READY READY
TASK B TASK C F Y
INITIALIZATION INITIALIZATION
TASK B TASK C 4
EXECUTION EXECUTICN
TASK B TASK C i
COMPLETION COMPLETION
TASK D
READY
TASK D
INITIALIZATION
TASK O | -
EXECUTION ,
TASK D
COMPLETION

Figure 4.10b Petri Net

When all tokens in the "Unexecuted Jobs” place have been used up, and no other
tokens remain in any place except the 'Processor Available’ place, the Petri Net said to have
reached thé' recurrent state. From the analysis provided by the Stochastic Petri Net, we can
find the average number of tokens, [in the "Processor Available” place, which also indicates
the average number of idling processors, Hence, the average utilization of the P processors js

Since P is limited, we do have a scheduling problem; however, a SPN does not allow the
assignment of a specific task to a processor. The assignment depends on which transition requir-
ing a processor fires next. Thus, the performance obtained with a SPN analysis lies between the

best and worst assignment results,

jobs. Power is defined to be the utilization of the processors divided by the normalized average
system time. A SPN provides the values of both of these variables for a specific value of P. We
can therefore plot power versus the number of processors to find that number P a¢ which the

power will be maximized.

4.5 Task Assignment (k G z, Pc o0)

In this section. we find bounds on the average system time by developing algorithms
that will give the best and worst scheduling in terms of the average system time.

the processors could then be allowed. Random assignment has the advantage of no overhead
being needed to schedule tasks. Whenever a processor is available, it will just grab any task
that is ready to be executed. We know the performance of the system must fall between the

two bounds.

First, we assume the shape of the process graph to be bounded by a diamond as in Fig-
ure 4.11. -

|
0
f

Figure 4.11 Diamond-shaped Process Graph

This type of process graph can be characterized by two parameters: L and m, where L is the
number of levels in the process graph and m is the slope of the diamond enveloping the boun-
dary tasks. We assume a continuum of tasks within the diamond.

Since the service time of tasks are constant, we normalize the service time of each task

to one unit of time.

From [COFF76|, we know that the assignment which minimizes the average system
time is the shortest expected remaining processing time first assignment. This is the Depth-first
Assignment Algorithm, where all available processors will be assigned to the tasks in a job that

is closest to being completed. In other words, we are trying to complete jobs as fast as possible.

64

On the other hand, if we want to maximize the utilization of the processors, then the
longest expected remaining time first assignment is used. This is the Breadth-first Assignment
Algorithm, where all available processors are assigned to the jobs that have the least amount of
processing to be done. In this assignment, we are trying to process all jobs at the same time, so
that all the jobs complete at times very close to each other. We are interested in finding the
ratio of the average system time obtained from these two assignments,

¢r=£b.

S

where S, is the average system time using Breadth-first Assignment and Sqis the average system

time using Depth-first Assignment,

If we assume all jobs depart at the same instant as the last job whea calculating S,

then
Li r2 .
Jm2 _m
Sp=2r, + 2
L] -l . P
FPm L TP .
where r| = ET and P< -—r;k. Simplifying the above expression, we get
Pm kL?
S = 2k + 2Pm

If we provide a maximum number of Processors, P = L k, then
m

=1
—_— m
_ m kLz

+
2k Qliqm
m

L L
= = — = [
2+2

that is, it takes L units of service time to complete all k jobs. This is what we expect, since

each job has L processors, which is equivalent to P = oo, Thus, each job takes L units of
m

time to complete and all £ jobs ruan in parallel,

65

If welet P=1, then

o

Lu

2m

m
= - 4 k
S, 2k+

2
tasks in each job, it takes k

. L? S . .
Since there are " l] + 1 units of time to complete the i

job. Thus, the average system time for these k jobs is

k L2
'glk 2m—ll+:
§= k
F[L ll+k(k+1)
2
o k
Lk
_k'.’m—5+l

The difference between S and S, is due to the assumption in calculating S, that all jobs depart
at the same instant as the last job; this assumption is pessimistic, as we see, and so it may be
made in obtaining our bound. Thus,fork > 2 5, > §.

For example, if welet P=1 m=1, k = 10, and L = 5, then

m kL* 1
5, = — = 125 —
=2 Et T T
and
2
S=kL—-£+l=121
m 2

As predicted, § < 5;. By changing the value of P to 50 while keeping all other parameters in

the above example the same, we get

50 (10){25)

=107 Tz 0

S

which is exactly the average system time, S, using the Breadth-first Assignment.

As for Sy, the least average system time can be obtained by considering the process

graph as a rectangular shape since, for this shape of process graph, the utilization of the proces-
2

sors is at the maximum. The total number of tasks in a process graph is ;l-'-u-; 50, the width

m

{average number of tasks per level) of the rectangular process graph is %ﬂ- Thus, the largest

number of jobs that can be processed at the same time by P processors is

P P
T <k
°m 2m
k=
P
—_—
k _I_.__"k
2m
Thus,)
lf: - i tviedd .
L+ (7= Lie(Ljl+1)L
S . =t
[} Jk‘
where ;= £ =

In the aumerator
Minlk, —£_

every L units of time, £ jobs are completed

; the secon
time required, (| 7] + 1) L, by the last (G-L4)) £’ jobs

. Hence,
]]+ 1 T ,
LRSI |
Sd= = -
J
P . E kL .. .
If we assume om < & then j= P = 3Pnm If jis an Integer, thep
Li2m
S$;= Fad L, and
2
kL2 Pm
= S, 2Pm 2k
TS, J+1
=5 L
kL Pm
2Pm 2kL
L
iPm 2
Otherwise,

67

kL2 Pm

e TmtE
© WU e
;

P .
If we assume ifom 2 kE, thenj=1,and S5,= L, or

b | Pm
2Pm 2k

v = I

kL Pm
= 2Pm T L

For example, Figure 4.12 shows ¢ versus P for L = 10, k= 5 and m = 1, and Figure
4.13 shows ¢ versus Pfor L = 10, k=5 and m = 2. We observed, in both Figures 4.12 and
4.13, that the value of ¥, alter falling initially, will rise slightly before monotonically decreasing
again. The cause of this rise is from the assumption of a rectangular process graph in calculat-
ing 5;. Since the rectangular process graphs have a constant width of L/2m, when the value of
P reaches a multiple of L{2m, an additional job can depart at every L time step. This fact

decreases the value of 5, faster than the value of S, is decreasing whenever the value of P is

close to a multiple of L/2m. After P > L/%‘- S§;= L, then this effect disappears.

The next theorem gives the asymptotic behavior of ¥ as P and k become large.

Theorem 4.8
As k and P become large, ¥ < 2.

Proof:
P
Case | 17-2-;'— < k
S,
V=

§,
VJ-—.E
Sp

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

Le 10, k=5 m= 1

after this point Sg= L= 10

Figure 4.12 ¢ versus P for £ — 10, k=5and m=1

69

40

45

50

1.8 T T T
189

1.7

Lew 10.k=e 5 me 2

168}

18

14}

13

1.1

10}

Figure .13y versus P for L =10, k= 5and m = 2

70

25

Pm

Zr L
kL2 L
Pm T T

Since we have the assumption of 17’;—; < kor %:1-— < —L— < L; therefore, %—? ~-L <o

4
Thus, ¥ < 2,
P
Case [I —Lm 2 k
o]
For this case, we know S¢= L. Therefore, ¢ = % + ‘Q_k}%; If we let z = —"ﬁ"—l then
1 1
YP= ?I + —; Hll)

Plotting v versus z, we obtain Figure 4.14.

The minimum occurs at z=12. Thus, since z =2 g an integer, we have also found the

[y]
minimum of ¥ as the integer. As long as z = -"—Z%n- < & then y < 2, or P < —4&- = 4k£.
m m

In other words, as long as the number of processors is fewer than four times the bumber of jobs

multiplied by the widest part of the process graph (LL-), then ¢ < 2, Usually, we use only, at
m
k—L—Qm

L . L 2Pm m
— . So, d k=t =
most, Icl m] processors. So, if we let P < — hen TF < P

= 2. Also, since

71

*
2r) ‘1252"5
12 28
v <o 'a
L. o us
= — . —
4 _
1 1y7 4
=
| 1 1] 1 { I I3 1 l_’_
T 2 3 4 & 7 B8 9 10

Figure 4.14 v versus z

LI
wehaveassumedP)-f-{'— I_QPm) Zm > 1. Again, we see from Figure 4.14 that
= m T T ok Im - Agaln, we m Figure 4. al
1

between z==land r =2, ¢ < 1=,

ke

From Case Il of the proof in Theorem 4.3, we know that, for L_/’;_ >k
2m
Y= ﬂ+ kL . Therefore, in Figures 4.12 and 4.13, the values of ¢ for P zi’:— are defined
kL 2Pm Im

by the same expression as Equation 4.11. [f we extend this curve backward for smaller values of
P until ¥ = 2, we obtain an easier bound on /. This is shown in Figure 4.15. The values of
P’ at which y = 2 intercept this curve can be calculated from the following expression:

P'm kL

T AT

or

P’ %m v kL
—_— P —_—
2kl + 2m 0

72

2.0

1.9+

1.7

1.6~

1.5

1.4

1.3}

12—

1.0~

L= 10 k=5 mm= 1

Figure 4.15 ¢ versus P

Solving for P* we get

P’ —=o.268fL
m
kL .
Therefore, for 15P$0.268—m—, the upper bound or ¥ is 2, and for

0.268—%- < FP<L kL the upper bound or ¥ is the polynomial Pm + kL

m 2L © 2Pm
in the next Coroliary.

. This fact is given

Corollary 4.4 The upper bound of the ratio ¢ is

2 1< P<o26stl
m

VSV Pm kL kL kL
2685 <« pc E
‘2kL+2Pm 0268m_P_ m

Figure 4.16 shows a plot of ¢ versus P.

Thus, we see that the ratio of the average system time for the worst assignment to the
best assignment is given by Corollary 4.4. This ratio is quite small. Hence, if we do allow rap-
dom scheduling of the tasks to the processors, the resulting average system time will be bounded

relatively tightly by $;and S,

4.8 Discussion

In this chapter, we discussed two methods for obtaining the average system time and
the concurrency measure of a fixed process graph with randomly distributed service time of
tasks. These results apply to both a fixed number of jobs at time zero and an arrival of jobs
from a random source because the aumber of processors is assumed to be ipfinite. Ip the process
of finding the average system time, however, either an enumeration algorithm must be used or a
system of a large number of equations must be solved. Both methods are time consuming when

the number of tasks in the process graph becomes large.
We can, however, use the upper and lower bounds on the average system time as a rule

of thumb in approximating the concurrency measure. A relatively easy way to calculate both

bounds has been presented.

74

DS
[

2.0

10 =

0 0.268 L

Figure 4.16 The Upper Bound for the Ratio y

75

»
b~

A Stochastic Petri Net model was used to find the average utilization of processors for
the case of a fixed number of jobs, fixed process graph, random task service time and limited

pumber of processors,

Two scheduling algorithms were analyzed to find the ratio of the worst algorithm to the
best algorithm in terms of the average system time. We found this ratio to be less than two for

diamond-shaped process graphs.

76

CHAPTER §
Random Process Graphs

5.1 Introduction

still defined as the average system time using P processors divided by the average system time
using only one processor. In Sections 5.5 and 5.6 we will assume that the number of processors

trary; in our second model, this parameter is fixed to a constant, In the former case, only the
arrangement of the tasks in the Process graph is studied.

In this chapter {except in Section 5.4.2), we assume that the N tasks do not include the
initial and the terminating tasks, and the number of precedence relationships, Af, (if given) does

of the results, does allow 2 clearer explanation without worrying about the two additional tasks
at the boundary.

77

In Section 5.2.1 we show that the number of arrangements of the tasks for a process

graph with a fixed number of tasks, N, is 2(¥D and that the number of arrangemests for a par-

N-1
ticular level, r, is {r—l] From the construction algorithm described in Section 5.2.2, we show

that the number of arrangements for an N-task, r-level process graph forms a Pascal tree. Since
the number of arrangements is Gaussian distributed with respect to the number of levels in a
process graph as N becomes large (this is proved in Section 5.2.3), most of the arrangements

will have 2 number of levels which {percentage-wise) is close to the average level, namely
‘—!%i‘t The Chernoff bound, introduced in Section 5.2.4, will be used for the probabilistic

argument in Sections 5.3 and 5.4.1, in which we obtain upper and lower bounds on the average
system time for a randomly selected process graph.

With the number of precedence relationships {edges) and the number of levels added as
additional parameters, we find tighter bounds in Section 5.4.2. The two upper bounds obtained
are compared in the Section 5.14.3.

In Section 5.5, the issue of trading off between the utilization of processors and the aver-
age system time is discussed. Finally, in Section 5.6, we briefly look at the bounds when the

number of the processors is limited to a finite number.

5.2 Some Properties of Random Process Graphs

5.2.1 Total Number of Arrangements with N Tasks

Process graphs with N tasks can have r=1,23, - - - N levels. The only constraint on
the arrangement of the tasks is that each of the r levels must contain at least one task. There-
fore, we can replace the question, 'How many ways can we distribute N tasks in r levels with
each of the level containing at least one task’ by the following simpler question, 'How many

ways can we distribute (N-r} tasks in r levels.’

This is a combinatorics problem. We know that the number of combinations of z dis-

tinct objects taken y at a time with repetition allowed is

1 1
z—;-yl—) - [z+:-)

In terms of the number of tasks and levels, we wish to find the number of combinations of r lev-

els taken (N-r} at a time. An intuitive way of looking at this is to observe that we are selecting

78

a particular level for each of the (N-r) tasks. Therefore, letting z = r and ¥ = N-r, we have
[r+(N-—r]—l] _ [r+(N-r)-I] _ [N-l]
Ner - r-1 Tl
as the number of arrangements.

When summing the number of arrangements over ali levels, we get the tota) number of
atrangements for the M-task process graphs:

£ = 0 < s

ra=]

a recursive algorithm, we then Prove that this algorithm generates all arrangements for the pro-
cess graphs of N tasks. From {this construction method, we will see that the number of arrange-
ments for an N-task and r-level process graph forms a Pascal tree {from which we can also

obtain the number of arrangements for a process graph with N tasks).

The construction method is shown in Algorithm C-

Algorithm C

1. For A=1, there is just one arrangement

(&

For N>2 tasks and r levels, we add to all the arrangements (possibly none) with {A-1)
tasks and (r-1) levels, one task at a new level, the r” level: we also add one task to the
r level of all the arrangements (possibly none) with (N-1) tasks and r levels.

3. Repeat Step 2 for each level r = 23, - - - N to obtain al} the arrangements for the N
task process graph.

Note that, in order to construct the arrangements for the N-task process graphs, we must also
construct all the i-task process graphs where i< V.

79

Figure 5.1 shows examples of constructing
a. all 2 arrangements of the 2-task process graphs from the one 1-task process graph, and

b. all 10 arrangements of the 6-task, 3-level process graphs from the 4 arrangements of 5-

task, 2-level process graphs and 6 arrangements of the 5-task, 3-level process graphs.

From Figure 5.1, we observe an interesting property of the arrangements for process graphs.

That it, for any arrangement R, there exists another arrangement R which is symmetric to R

such that il in arrangement R, we let n, representing the number of tasks in level i, then in
: P th r,

arrangement /£ the number of tasks in i level, n, , is

?

o= Ap_ 41 fori=12 --- L

where L is the total numbet of levels in R and R .
N e 1 O

Ne2 O O

Figure 5.1a Arrangements of Process Graphs with 2 Tasks

From Section 5.2.1 above, we know that, with N tasks there are [Zy__lll arrangements
with r levels, The above algorithm constructs
(N-1)-1 (N-1)-1 _ (N-1
Ciryt) +(Y) =(0)
arrangements. Hence, if we can show that all of the [‘X__ll] arrangements are unique, then we

shall have obtained all the arrangements with /N tasks and r levels.

N=5 O0O00 000 00 O

-2 O 00 000 0000 -

000 00 00 o o 0
Nes O 00 0 00 o 000
=3 0O 0 0o 00 000 0

0000 000 00 o
N-8 O 00 000 0000
re3 O _ O O O

000 00 0O o o o)

o 00 o 00 o 000

oo OO0 000 000 0000 00

Figure 5.1b Arrangements of Process Graphs with 6 Tasks and 3 Levels

Lemma 5.1

All arrangements created for process graphs with N tasks and L levels using the Algorithm C

are unique.

Prool

Assume all unique arrangements with (/N-1) tasks and r=1,2, - - - (N-1) levels. To construct
the arrangements with N tasks and L levels, where 1< L< N, we add a task to the new L™ level
for all arrangements with (N-1) tasks and (L-1) levels, and we add a task to the bottom level of
all arrangements with (N-1) tasks and L levels. The arrangements for the former case will have
only one task at the L level, while the arrangements from the latter case will have more than

one task in the L™ level. Hence, between these two cases, no two arrangements can be identical.

81

We know from the assumption that all the arrangements with (NV-1) tasks are unique:
therefore, the resulting arrangements after adding a new level, the L* level, with one task in it,
should still be unique in the former case; the resulting arrangements after adding a new task to

the L™ level should also be unique within the latter case. Thus, all [jy_—lll arrangemeunts
obtained by our algorithm are unique.

Theorem 5.2
All arrangements created by Algorithm C for N-task process graphs are unique.

Proof.
From Lemma 5.1 we know that the arrangements are unique within each level r. Since arrange-
ments in different levels cannot be similar to each other (this is due to the constraint that each
level must have at least one task), no two arrangements in the 2%V arrangements created by
Algorithm C are similar to each other.

From this construction method, we see that the number of arrangements for N tasks
and r levels actually forms a Pascal tree. In the next section, we show that, as NV becomes large,

the distribution of the number of arrangements with respect to the number of levels is Gaussian.

5.2.3 Distribution of the Number of Arrangements

The number of arrangements for an N-task process graph with respect to each level is a
binomial number. If we analyze the distribution of the tasks as a random variable, ¥, such that
il Y, =1, a new task is added to a new level; if Y, =0, it is added to an existing level. In a
Pascal tree, this is equivalent to going either to the left (i.e. the number of levels remains the
same] or to the right (i.e. the number of levels increases by one) of the current location in the

next level of the Pascal tree.

N
We define a random variable, Y = ¥ Y, where

==

1 with probability ¢
Yo=\0 with prodasitity p = 1-¢

We let p=q=%. When we sum N such random variables, we obtain the Bernoulli distribution

82

Pylk)= [f] p"*¢%, which has the mean of N ¢ = N/2 and a variance of Np g = N/4 when

p == -;— In terms of our parameters, when Y, = 1, we add the new node i to a new level of the

arrangement; when Y, = 0, we add the pew node i to one of the existing levels. Summing N of
the random variables Y,, we have ap arrangement with Y levels, This distribution is the same
as the distribution for the pumber of arrangements with respect to the number of levels in a
process graph with N tasks. If we normalize this distribution so that the mean is zerc and the
variance is one, then the characteristic function' is given by [MISES4]

N

¢(u)=[p;ﬁ+ qeﬁl

['") [N
I I 17.-5]
—[28 +23
where { = /_ 1.

2
Since ' = 1+ia*—62—+ Tt

"Let X be a random variable with probability distribution function Fl2). The characteristic
function of F{z) is the function ¢ defined for real w by

(w) = }o ¥ dF(z) = u(w)+ivw)
where i = /T, B

uw) = Ofo coswz d(z)
and B

w) = }" sinwzrdFlz)

-]

where O (z) denotes any function which goes to zero faster than z, that is, lim [..O_(i)] = 0.
z

t—=0

Take the limit as N approaches infinity to obtain

w®

fimet =< *

W

But ¢ ? is the characteristic function of a normalized (i.e., mean = O and variance = 1)
Gaussian distribution. Thus, we have shown that the number of arrangements with respect to

the number of levels is Gaussian distributed.

5.2.4 Chernoff Bound on the Tall Probability

Suppose we want to know the probability that a randomly selected arrangement has
more than y levels. The Chernoff bound [KLEI75] gives us a very good bound on this tail pro-
bability.

First, from [KLEI73] we find the moment generating function for the sum of N Bernoull;
trials. For N =1,

1.1,
MU) = E+EC

which indicates that, with probability -;—, we add a new level { ¢'”), and with probability % we
don't add a new level { ¢°'). We now define the semi-invariant generating function
+{1) =InM(y) = ln[%-f—é—e"]
The Chernoff bound for the tail of our density function is given by [KLEI75| as
PIY2 4 < ev*h1e

Since this inequality is good for any value of v > 0, we should choose v, as in [KLEI7S], to
create the tightest possible bound. This is done by differentiating the exponent and setting it to

zero. We then find the optimum relationship between v and y as

84

y= Nq(‘) (v}
Hence, we have
N —yy(yy
ProblY2 i <e [1(") i)]

We let y = %+ Ne, and 0<£<%. In order to find the optimum relationship between v and y,

we [et

y = Ny{Yv)

1
2° v

1 u_ 1+e"
2 T3

Solving for v, we get

Thus,

Prob| Y2y = Prod| Y>> Ny v)]

L]
~{m|l+_‘.,-l_.,=_
e 22 14¢

Figure 5.2a shows several curves of P versus ¢ with various values of N where P is the

upper bound on the tail probabilities such that Prob [Y> [-1:— + Nc]] < P. We note that,

r

A'*’} and the bound on the tail

as N increases, the probability is concentrated closer to y-_-{

probability falls faster. Figure 5.2b shows the probability of a randomly selected process graph

having more than y levels.

85

1.0

LELLBER]

1

| llllT"ll

01

Xelol

LABIL lrllll

I

001

.0005

T llllll]

T

L0001

00005

[| IIIIIII

L. L

] i ¥] T

N= 100

N = 500

N= 1000

N« 5000

N = 10000

1 111

1

1

lllllll - |

l llllll! 1

| l_llil

1

1 _lllll!

1

00001 1
Q

Figure 5.2a Chernoff Bound

PIY.2 v] .

L

N increasing

—- y

Figure 5.2b Prob [Y > 4

5.2.5 Generatlon of Random Process Graphs

Random process graphs can be produced by at least the following four methods. In the
first method, we are given the total number of levels for all graphs and a probability distribu-
tion of the width of each level, After selecting a random number of tasks for each level, pre-
cedence relationships are created by randomly connecting the nodes of the adjacent levels with

the direction of all edges pointing toward the terminal node.

For the second method, we initially produce a connected undirected random graph with
a given number of tasks and edges. We next select a given node as the initial task and assign
edge directions to the nodes one hop away. This is followed by assigning edge directions from
nodes that are one hop away to nodes that are two hops away. This procedure is repeated untjl
the edge of the node farthest away from the initial node has been assigned a direction. Any
remaining undirected edges can have either direction. Then, in order to conform with a normal
process graph, we add an additional terminal node. An edge will be added to this terminal node

from all nodes with an out-degree of zero.

87

It the number of precedence relationships are large, the resulting process graph will gen-
erally have a large number of levels. This is due to the constraint that no precedence relation-

ships are allowed between any two tasks on the same level. If this edge does exist, one of the
nodes is pushed down to the following level. In fact, if the number of edges equals ﬂ!;f—_l)

only one process graph can be generated -- a linear chain of N tasks.

Drawing from the theory of branching process [HARRS3], the third method uses the
Galton-Watson branching process to create a random graph. In this process, level one has one
task. Then, for each task at level i, it has the probability P, to create k new tasks at the {(i+1)
level, where #=0,1,2, - - - . An edge connects each of the new tasks with the creating task. If a
task creates no new task, it is extinguished, and it has a precedence relationship to any task on
the next level. A difficulty with this method is that there is a possibility that the process graph
will have an infinite number of levels. If a finite-level process graph is found, it is, by our

definition, a structured process graph.

Finally, Dodin [DODI81| proposed another method of creating random process graphs
with N nodes and M edges. It his method, the adjacency matrix that represents the precedence

relationships is created in the following two ways:

1. Deletion Method
Create an adjacency matrix with the upper triangle full of 1's. Randomly delete
i&%@ﬂ - M edges on the condition that there exist at least one edge into and one edge

-

out of any node.

2. Addition Method
Distribute one edge to nodes {1,2) and one edge to nodes (N-1, N), and randomly distri-
bute the remaining M - 2 edges to the upper triangle of the adjacency matrix on the

condition that there exist at least one edge into and one edge out of any node.

From this adjacency matrix, a process graph is generated by mapping all the edges in
the matrix onto 2 set of N nodes enumerated from 1 to N. Because only the upper triangle of

the adjacency matrix can have 1's, the resulting directed graph is also guaranteed to be acyclic.

5.3 Fixed Task Service TIme (k, G*, z, P= oo and), G, z, P = o)

We have shown in the last section that, as N becomes large, the probability that a ran-
dom process graph (i.e., given only N, not M or L, where M is the number of precedence rela-

tionships and L is the number of levels in the process graph} will have y levels, where
N(-;— -8 <y< N(% + 6) for small é, approaches 1. Since we are assuming an infipite number
of processors and constant task service times, the actual shape of the process graph will not
affect the system time as long as the number of levels is given (i.e., close to i:- percentage-wise).

All tasks in a given level will be executed concurrently when the tasks in their previous level
have been completed. Hence, the system time of a random process graph with N tasks and con-
stant task service time requirements depends solely on the number of levels in the process graph.

Assuming the constant service time is normalized to one unit of time, we have

lim Prab[N[-—l- . al <s< N[L,gl] -1
Nex 3 = a
for arbitrary small &,

If jobs arrive from a Poisson source with 2 mean arrival rate of :, we have an M{IGfx

[KLEI75] system. As in the constant number of jobs case above, the system time § approaches
N

— 3s /V becomes large. Hence, from M/D/co results, we have the equilibtium probability that

-

k jobs are in the system as

k
Pk'—' (}‘S) e~)$
k'

The concurrency measure in both cases (£ or }) is the measurement of the average

width, @, of random process graphs. Since
— N
w= —
L
where [is the average number of levels in random process graphs and we know

lim Prob N(—é-—E)SESN{%+6) =1

N—oo

. . 1
for smali §, we have lim W= 2or lim ¢ = —.
N—oo N—x 2

89

Hence, as the number of tasks per job becomes large, the concurrency measure takes on

the value of one half.

5.4 Random Task Service Times (, G’, 2*, P = oc}

5.4.1 Bounds on the Average System Time without the Number of Precedence Rela-
tionships

In this section, an upper bound and a lower bound on the average system time are
found for the random process graph with N tasks and task service times that is exponentially
distributed.

5.4.1.1 Upper Bound .

We wish to find an upper bound on the average system time of an N-task process graph.
From the Chernoff bound we know the probability of a randomly chosen process graph having
more than y levels in its arrangement. Thus, for a specific y, if we can find an upper bound,
then this bound should be correct for any process graph with probability of I-Prob{Y>y]. In
this section we obtain an upper bound for process graphs with the number of levels equal to or
less than y. As N—oo we can let y be arbitrarily close to (but greater than) the mean number
of levels, m, and the probability that the average system time of any randomly selected process

graph will be smaller than this upper bound will approach one.

The following two lemmas provide an upper bound on the average system time for

arrangements with less than or equal to y levels where m<{y<N.

Lemma 5.8
Given N tasks, and y levels for a process graph, if we assign % tasks to each level, then the

resulting forced synchronization time (FST) is the maximum average system time with respect to

the other arrangements of the tasks with y levels,

Forced synchronization time is defined to be the time required to process a process graph such
that each task in a given level is being blocked by all the tasks in the previous level. In other

words, we are forcing the tasks to be executed one level at a time (with ali tasks in a given level

waiting for the slowest task in the previous level to complete before they all start execution).

Proof of Lemma 5.3
Since the tasks have been assumed to have exponential service times with a mean of -l—, the
blocking time of a task with d tasks blocking it is (see Section 4.3.1)
X0
1 &1
1-{1-et ‘1 dt=— Y=
flru-erfa= g]

With n, tasks in each level ¢, i = 1,2, - - - |y, we have the upper bound on the total average sys-
tem time S as

1

+L
7

] [V}_

1 1 13
s LI NN &
vs = uE

subject to the conditions:

.]
and
>0 Yy
N . ..
We must show that n, = —, for each level j, maximizes Syp.
¥
) N . .
Assuming n, = —, for all j, gives the maximum S,

Qi |
Sp=L3 1L

BT
Suppose there exists another arrangement such that its FST $*is larger than Sym. Let
AL M2, L RG AG, LR mgg, 0
be the arrangements, where

n,'>-—3]- for 1<i<s

9

n' = N for s+1<i<t
: y
n,'<% for i+1<i<y
" then
1 & 1 QA |
5'= Sygt— Y, -—3
u] iv__{_,w' o -] Lv__w'

$
where w>1 Vi, s = ¥ ny - s% is the total number of additional nodes added to levels 1 to s,
k=i

¥
and b = (g,p—t)E - Y niis the total number of nodes taken out of levels {t+1} fo y. Since the
=4

total number of tasks remain constant, each additional task over -11 for a level ¢ where i is
Y

between 1 and s, one task must be taken out of another level j where j is between i+1! and y.
Therefore, a==5. Now,

.

1 1
> w, 21
ﬁ+l iV—+uu,
¥)
and
1 1 N
< 1< w, < =
ﬂ_l ﬁ—w, v
¥]
Thus,
1 1 1 1
5'< 5 — = —
AR R 5| N
241 BANE |
y)
= .!‘.)'(,;B'i'tll "Vl —N;
Pl S 24
¥ v
Since Nl <7Vl_' we have 5°< S;p which contradicts the assumption. Hence, we have
—+1 —-1
v ¥
shown that the arrangement
N .
n =]r 7

gives us the maximum FST.

92

In the cases when n, is not an integer in the above lemma, the arrangement that gives
the maximum FST is constructed as follows. Let u = Remainder of %, w = Inleger part of iv—,
¥

then ny= wt+lfor j=1,2,, --- , u and n,=wfor j=u+l, -+ -,y From the proof of

the above lemma, we know

N
1w LA |
Ll L sl ¢t
“ =1 J 1 FglJ H ey J

N . .
Therefore, the arrangement n, = v 77 still gives us the maximum FST for any process graph

having y levels even if there is a possibility that no process graph can have fractional nodes in a

level.

Lemma 5.4
Given the FST calculated in Lemma 5.3 for an N-task and glevel process graph, it is also the
maximum FST for any process graph with less than y levels.

Proof

This lemma can be formulated as the following nonlinear optimization problem

N
1 &
Maz § =y IE -

Y1

subject to y, <y

We know that the harmonic series [KNUT73a|, E% can be approximated by
]

1
e lnn+'l>+—-——
.‘?:_.“, i 2n 12n?

where & is the Euler’s constant (== 0.57721 - - - }. Therefore,

s=dylpNiee L 1
H L 2ﬁ N
12[N

1)1 ¥

93

Now, we assume y, is continuous,

N
8 _1 | # 1w
dw s | N 2N ﬁN“I
n
+—{In ——+<I>]
[2N 1242
l{ N n]
= —{¢-1+lp—+-—-—
[n N 4qn?
a8 . . .
For 1<y <N, we find that W>O' or the slope of S versus y, is positive in the region
1
1€y, <N Sinceaty, =1, |
N
1 31 1 H&1
S = _ —_——= _—
Vil T ks

we have 50 as an increasing function with respect to y;. The condition <y implies that the
maximum S occurs at y = y. Therefore, the maximum FST obtained for an M-task process
graph with y levels is also the maximum FST for all N-task process graphs with less than y lev-

els,

il

The next theorem follows as the result of the two above lemmas.

Theorem 5.5

An upper bound for the average system time of an N-task process graph with y levels or less and

exponential task times with mean -:;- is

,LM*Iz

1 1
SUB(y) = I T

94

This upper bound is good only for process graphs with less than or equal to y levels.
But since the number of arrangements in a process graph is Gaussian distributed, we expect that

for y > J—;r- as N—oo0, the probability that a randomly chosen process graph has a higher aver-
age system time than Syg(y) gets smaller. In fact, we show in the next theorem that as N—oo,
and y = %+N& for any small positive 5, the tail probability Prod{ Y22 4, or the probability that

a process graph has more than y levels, approaches zero,

Theorem 5.6

For y = g+N§, where & is a real positive number, and Y is the number of levels in a randomly

selected process graph, we have

lim Prob|Y>y|—0
N—oo

Proof:
The Chernoff bound gives us °

1,) ¢
“{“’ls"z'] ewry

Prob[Y2>y<e
In order for grim Prob[Y2 1] —0 we must show
— 00

1 1 e¥
In —+—e‘1 < Yy—
[2 2 1+

~1—+e

Since v =In

and since 0<£<—;- {from Section 5.2.4), we have v>0.

=€

Let z == ¢', or v=Inz, where z>>1. The inequality we must show becomes

1 1 vz

Inf =4~
"l 2"'2’} < 1+z

1 1
(l+:)|n|?+-2—4 < dnz

Taking the exponential of both sides, we get

95

L 10
l?*? <7

11 (142)
For z>1, z* is always greater than [—2-+Eli .

Hence we have shown f!,im Prod[Y2y] — 0 for any 6>0.
— 00

With N a large number, we can then state that the upper bound on the average system

time is
N N
1 &y 1 Yy
lim Prob|Ny— 52 < S,p < N, 1
am, Prob\ Vs 37 S Sen < Mo B =1

where N, = N(% -6), Ny= N(-;— + ¢) and & is any arbitrarily small pumber. That is,

3N
4 u

iR

Sus

5.4.1.2 Lower Bound

For an N-task process graph, il we are given the number of levels y, then we know that
the minimum amount of average processing time is y-l— where — is the average processing time
b I

of a task. With respect to all arrangements of the process graph with N tasks, this average pro-

cessing time will be a lower bound with probability 1-Prob|Y<y]. Since the number of arrange-

ments with respect to the number of levels is Gayssian distributed with mean =, from the sym-

-

.
metry, we have Prod| YS%—y] = Prab[}’zgﬁ-y]. Hence, all the properties of the Chernoff

bound discussed in the last section can be applied here also. Specifically, we can let N—oo, for

arbitrary small & and é>0. then

. lim Prob N|l-a] L 55L55N|l+5|i -1
N—sex 2 4] 2 3
This is true since the tail probability approaches zero as N becomes very large. Thus,
N
Sip = —=—.
LB 3 5

5.4.1.3 Discussion

In last two sections, we see that for N>> 1, the average system time for the case
k, G' z', P = o0 is bounded by

AN <3 N
2 up - =y "
with high probability. In terms of speedup, it is bounded by

1
1 =<
3 =

Q|

<2.

So, on the average, the best speedup we cap achieve is two and the least speedup is

1
1 —,
3

5.4.2 Upper Bound with a Fixed Number of Precedence Relationships

We have studied random process graphs without considering the number of precedence
relationships in the previous section. We have obtained some general properties of the arrange-
ments of the tasks for process graphs and bounds on the average system time. The upper bound
and the lower bound obtained are probabilistic such that as the number of tasks becomes large,
the more certain we are regarding these bounds. However, if we now include the number of pre-

cedence relationships, we can improve these bounds

In this section. the number of precedence relationships are introduced into the model.
We will obtain a tighter bound using the number of precedence relationships, the number of lev-
els and the number of tasks in a random process graph as parameters. We first develop the idea
of minimally connected process graphs. The number of edges required for the minimally con-
nected process graph are studied as well as how additional edges can be added to it Next, an
algorithm is presented which gives a constryction method for a process gtaph G’ with v nodes,
M edges and L levels. We will prove that the forced synchronization time (FST) obtained from
process graph G'is indeed an upper bound on the average system time of all random process

graphs with NV nodes, Af edges and £ levels.

97

5.4.2.1 Minimally Connected Procesa Graph

Given any arrangement, the M edges can connect only a limited set of tasks. No edges,
for example, are allowed to connect any tasks within the same level of a process graph. In Fig-
ure 5.3, we see the 26 legal places where the precedence relationships can be placed in a particu-
lar 3 level, 9 task graph: six positions between the first and the second level, eight between the

second level and the third level, and twelve between the first level and the third level.

Figure 5.3 Legal Places for Precedence Relationships

If we allow the M edges to be randomly distributed among all these legal places. we often find
that the process graph is not even connected. Even with a large enough number of edges. sueh
as M > NlogV, there is no guarantee the resulting process graph is connected {although it is
highly likely).

For purposes of calculating bounds on the average system time, the underlving arrange-
ment must be connected such that each node is maintained at its proper level in the process
graph. A node, j, is said to be in 5" level if there exists a shortest path from the initial node to
node j such that the number of nodes in this path equals i. We define A, to be the minimum
number of edges required to fix all the nodes of a particular process graph in this proper level.
All edges are between nodes of the adjacent levels instead of between nodes of non-adjacent lev-

els because of our definition of level and because of the following Lemma.

98

Lemma 5.7
The blocking time of an edge between two neighboring levels is greater than the blocking time

of the same edge between two levels not neighboring each other.
Proof.
Suppose node i at level r is being blocked by node j which is at level r - 2. If there exist two

other edges (jk) and (k,i) for any node k at level r— 1, then edge (i.i) presents no blocking to
node i (See Figure 5.4} for the following reasons.

LEVELr-2 }

.

LEVEL r-1t k

LEVEL »

-

Figure 5.4 Reduced Blocking Effect

As soon as node j is completed, node £ starts execution. Since node k is still blocking node 1, the
release of the blocking from node j to node i does not allow node i to start execution. [f no such
indirect blocking edges exist, we notice the fact that the blocking effect of the edge (j.i) is
reduced partially by the average task time of other tasks in level r - 1 which do block node i.
Hence, the blocking due to the edge (j,i) is not worse than any edge (k,i) if node & belongs to
level r - 1.

Since we will be looking for an upper bound on the average system time with a limited number
of precedence relationships and since the edges between adjacent levels result in greater block-

ing, we assume all edges are between two adjacent levels.
Figure 5.5 shows some examples of minimally connected process graphs. Each edge in
Figure 5.5 is necessary in order to fix the nodes in their proper levels within the process graph.

By deleting any one edge, the resulting process graph will be either disconnected or at least one

node is no longer in a path from the initial node to the terminating node.

Figure 5.5 Minimally Connected Process Graph

100

From Lemma 5.7, we can calcuiate the exact value of M, for a process graph. Since we
are looking for an upper bound of the average system time, we place all the edges between

nodes in adjacent levels. Define n, to be the number of tasks in level § for { = L2 - L

For any two adjacent levels, say levels i and i + L if n, 2> n, . then there must be at
least n, edges between i level and (i + 1)* level, Otherwise, at least one of the nodes, say node
J, in the i level will have no edge leaving it and the path from the initial node toward the ter-
minating aode stops at pode J. This contradicts the definition of a task in a Process graph,

Therefore, there must be at least n, edges between levels iand § + 1.

If, on the other hand, n, < n, ., then there must be at least n, | edges between i
level and (i + 1}™ level. If there are less than n, ., edges, then at least one of the nodes, say
node j, in (i + 1)* level has no edges entering it. It cannot be in any path from the initial node
to the terminating node. This contradicts the definition of a task ip a process graph, therefore,
there must be at least " 4+ 1 edges between levels § and HE S

By selecting the larger, of n, and M 41 to be the minimum number of edges between lev-
els i and [+ 1, we have enough edges to keep all nodes in the " and (i + 1)* levels properly

defined. Summing over all levels, we have
M. = max (n;,n] + max [n,nd 4+ - + max (remg)

The rules for making the mirimally connected process graph are;

Let levels i and i+1 be adjacent in the process graph,

1, n, < T
For each node in level ; we assign an integer 1, 2, 3, .. » A, and for each node in level
i+ 1 we also assign an integer 1, 2, 3, .. » M1 Let jrepresent a node in level i+1 and

¢ equal to the remainder of -:— Make a connection between node 3 of levet i and node ;

of level i + 1.
2. n = ny

For each node in level i, connect it to any node in level i+¥ with indegree of zero.
3. n> ng

For each node in level i and i+1, we assign an integer 1, 2, ... mand1l, 23 . n

101

respectively. Let j represent a node in level ¢, and s equal to the remainder of
R n|+l

Make a connection between node Jof level i and node # of level i+1.

In all the cases above, each node in the i level has at least one edge going to some
eode in the (i + 1)* level and each node in the (¥ + 1) tevel has at least one edge entering it
from some node in the i level. By extending this method to al] levels, all nodes, except the inj-
tial and terminating nodes, have at least one edge entering and one edge leaving it. Hence each
node is on a path between the initial and terminating node and each node is held in its proper
level in the process graph. Thus, we have a method for creating minimally connected process
graphs.

After we place the M, edges into the arrangement of a process graph, there are stjll
many pairs of nodes between the adjacent levels where an edge can be placed. We call each of
these pairs as the empty edge slot (EES). Al M - M, edges are placed randomly into the EESs.

Two lemmas relating the values of M, with the other parameters of a process graph are:

Lemma 5.8

For any process graph with A nodes and L levels, the maximum number M, occurs in process
grapks which have node arrangements such that the levels with more than ore node are
separated with at least one level which has only one node. In these cases,

MazM, =2N-L-1 (5.1)
Proof.
We are maximizing

L1
M =Y Maz (n, n,,)
==]
with respect to the numbers { n,}

L
Subject to Y n, = N

==l

Consider 4 adjacent levels 71, j, j+1, and j+2, such that Pty Ty, Mgy, Ryp are respectively the
number of nodes in each level. We assume ™ > nyy, then there are four cases relating the
values of n,_, and n, and the values of n, ., and R, 42 (The arguments for the case n<n s

102

similar to the following discussion). We must show that the arrangement with

n; =n,+n4,-1and n;+, == | with other levels having the same number of nodes gives us
a higher M..

Casel. n, 2n _,and n o, 2>n, .,
In calculating Max M, for these four levels, we have Z edges between these three pairs
of levels, where
Z=n+n+n,,

But if we change the arrangement to fonwm+ -1 1, n ., then the number of edges
becomes
Z' =n1+ ﬂ]+]—1+ﬂ}+ nj+1—l+ﬂ,+2

But Z' is larger than Z since

Z'-Z=m+2(n - 1)+ npg- (20,4 nyy)

=";+1‘2+";+220
Thus, the arrangements of n:. =n+n,,-1and n;+l = I, while fixing the values of other
n's, will give a higher or equal value of M..

Casell.n,_ ;> n,>n 4 > myo 21

For this case, we have
Z= J_1+n,+ﬂj+l

and by shifting (n, ., - 1) nodes from (j + 1)* level to j* level, we have

Z' {n,_,+nj+(n‘,+,—l)+n,+2 ifn,_|>n,+ ﬂ;+l—l
- 2(":"' ﬂ1+1— l)+ nj+2]f "}"1 S ﬂj+ n!_'_l—l
and
, {nH_z—l?_O ifn_y>n+n,,-1
Z -Z= nj+nj+1—2+nj+2—ﬂ]_120 irnj_lsnj'i'n}_'.l—l

Hence, Z' >Z or the new arrangement will give a possibly higher value of M..
[

Caselll. 1 < n_, <nyp ;< n,<npyy

103

The argument for this case is similar to Case II above.
Case V. R,y > n, > n 4 > 1 and B 42 > LUES]

In this case,
Z=n_1+n+n,,

and by shifting (n, 41 — 1) nodes from (5 + 1)* level to j* level, we obtain

, Byt -14n ., ifn, > nm+n,,-1
¢ = I+ 20, -2+ 1 ,, ifn, <+, ;-1
Therefore,
, ln}+1—l>0 In_y>m+n,,-1
z -Z= n}+2n1+1—2—n‘._|>0 if"}-[SnJ"'”J.'-l”'l

or the new arrangement gives a higher value of M,.

So for all four cases, we can always obtain a larger Maz M, by shifting nodes from the

(n, 4. 1)" level to the nJ,"‘ level such that n; =n+n,,-1and n;.,.l = 1.

To see that Max A, occurs when the levels with more than one node are separated by
at least one level which has only one node, we consider four adjacent levels again. Suppose the
four adjacent levels - 1,7, 7+ 1, and j + 2 have 1, n, 1, n, 4 2 nodes respectively where n, > 1|

and n, 45 2 1. In calculating Max M, for these four levels, we have a sum of
Z=n,+n+n .,
By shifting one node from ;* level to (j + 1)" level, this summation becomes

Z' =(n,-1)+(n-1)+ Maz(2, n 4z

=2n-24 Maz(2, n,.)
and
Z-2 =2+ n,,-Maz(2,n4,)>0

The value of M, is smaller when we shift one (or more) node from the j* level to the {; + 1)"
level. Hence, Max M, occurs when the levels with more than one node are separated by at least

one level which has only one node.

104

The simplest arrangement of the N-node and L-level process graph with this property
has N - (L - 1} nodes in one level between the second and the (L — 1) level and one node in
each of the remaining (L - 1) levels. With this arrangement, we see that

MazM, =({L-3)+2(N-L+1}
or
MozM,=2N-L-1

Lemma 5.9
The minimum M, occurs when the nodes are distributed evenly among all levels. Let

z = Remainder of%—
e | 2]
L-2
= 2
il
Then
Min M, = |(z+ 1)z+ (L - z-2)_t,£|
Proof.

We are minimizing

-1
Min M. = Y max(n,n,)
=]
with respect to the numbers{ n,}

L
Subject to 3 n,= N

s=u]

Suppose the Min M, occurred in an arrangement where four adjacent levels

J-1,4, 7+ 1, and j + 2 have an equal number of nodes,

105

n

(R B e R 2 T T T

Now we show that by moving a node from the j* level to the {j + 1) level, the value of M, for
the resulting arrangement will be larger.
In calculating Max A, for these four levels, we have a sum of
Z=n_i1+n+n,,=3n
By moving one node from ;* level to (7 + 1) level, we have a different sum of
2 =n_,+(n,+1)+(n,+1)=3n+2>2

The same is true in cases

1. n_y=n=mn_,=zadn o=y
2. noy=mn=zandn =n,,=y
3. n_y=zandnm=mn_,=n_,=y

Hence, we see that il we try to assign an 'equal’ number of nodes to each level for all levels, we
obtain the minimum M. Thus, besides one node in the initial level and one node in the ter-
minating level, each of the first z successive levels will have z nodes and each of the other

(L - z - 2} levels will have y nodes. Finally, we have
Min M, = [(z+1)z + (L—z—2)y]

i

5.4.2.2 An Upper Bound

In Section 5.4.1.1, an upper bound for the average system time was obtained from the
arrangement with an equal number of nodes per level. Indeed, this is also true in the case of
process graphs with a fixed number of edges. We show this in the next theorem after giving an

algorithm {Algorithm A) which constructs an N-node process graph with A edges in L levels.

ALGORITHM A

STEP 1: Distribute one node for the initial task and one node for the terminating

task.

106

STEP 2: Let

z = Remainder of f'::
;= N-2
L2
=2
V=112
For each of the levels 2, 3, ..., z+1, place z nodes in them, and for each of the levels

242, 243, ..., L-1, place y nodes in them.

STEP 3. Use M: = (:+1)z + (L-2-2)y edges to minimally connect this arrangement
of tasks.

STEP 4: Randomly distribute the remaining edges, M - M,, uniformly among the
EES’s. ‘

Theorem 5.10
If we construct a process graph with N nodes, M edges, and L levels according to ALGORITHM

A, and assuming each task has an exponential service time distribution with mean l then an
i
upper bound on the average system time is
1& &l
SUB = - E i -
H =l =] t

where

t, = the mazimum number of blocking edges into a node in level j

| EES,
= m|n= b+{M-A) FES ,n,,l}
T

b = max [bq|q i# a node in lcvel;]
7

b, = indegree of node g from the minimally connected process graph

107

EES, = number of empty edge slots between levels 71 and j
EESr = total number of empty edge slots
" = number of nodes in level j-1

ﬂ1=l

Prool.
Case 1) For M > max M,

In this case, there are enough edges such that b, equals the number of nodes in the pre-
vious level, .y, for all levels J 2 2. Therefore L, = n,, for all J 22, The proof that the
arrangement generated by ALGORITHM A gives the largest FST js similar to the proof of
Lemma 5.3 of the last section. Therefore, we oly need to show that with M > max M, we
have enough edges for each level to force the maximum indegree of a node in that level to be
equal to the number of nodes in the previous leve] (Le b, = 11). The number of extra edges
is

M- M,

> Maz M, - Min Af,

= (2N-L-1) - [(:+l ;[%} + urz-s)l%‘g.”

[
N=

where z js the remainder of 7

to

. Since for z not equal to zero, the valye of Min M. becomes

te

smaller, we shall leg » —

The inequality we wish to prove is then

ON-L-1) - (L-1)%

>
1+ 73 2

N-2

iy

The left hand side fepresents the number of additional edges remaining after gz M. - Min A1,
have been distributed equally between the [-2 levels plus one edge representing the minimal
connection of the node. The right hand side represents the number of podes per level. Myltj-
Plying both sides by (L-3), we get

108

N-2 N-2
2N—L—1“(L—1)T*2- > =2 (L38) - (L-3)

N-2
el 4
2N_>_[| (2L-1) + 4

Which clearly is true. In other words, we have enough edges to force the maximym blocking for
each level. Hence the FST obtained from ALGORITHM A does give an upper bound for the

average system time.
Case 2) Min M, < M < Maz M,

Let

I
J .

(2~

k) =

ﬁ
—

f0)=1

L L
We are maximizing N A4,) subject to V4, < constant, where d, is the maximum indegree at
=1 =l

level q. From the proof of Lemma 5.3, we find that the arrangement of d, that gives the max-
imum sum of fd,) is

constant
d, = I =34, - - - [-]
and d, =0 and &, = 1. This arrangement is exactly what ALGORITH\ A generated. Sa for
Min M. < M < Maz M.. Si5 obtained from the FST of the arrangement generated by ALGO-
RITHM A is also an upper bound.

Figure 5.6 gives the minimally connected process graphs for some of the arrangements
with N = 10 and L = 6. Table 5.1 shows simulation results and the predicted upper bound for

109

Case | Simulated Average Calculated
System Time Upper Bound
I not feasible 378.7
I 364.24 378.7
I 362.98 378.7
v 367.53 378.7
Table 5.1

5.4.3 Comparison of The Two Upper Bounds

Two upper bounds have been obtained with different patameters. [n Section 5.4.1.1, an
upper bound was obtained through the probabilistic method on the likelihood of a process graph
having a certain number of levels or less. In Section 5.4.2.2, another upper bound was obtained
with a fixed number of nodes, edges, and levels. Since the latter method uses more information,
its bound should be tighter than the bound obtained by the former method.

Let Si:5 represent the upper bound obtained ip Section 5.4.1.1 and Susum represent the

upper bound obtained in Section 5.4.2.2

Theorem 5.1

Stem < Sypit L < [—2\"]

Proof,

Case 1) L < [-12!

From the calculation of Sus, we know that Sua is the largest FST for any process graph

having [—QN-] levels.

110

T 9

M, = 13

M= 12
EES=0 EES = 4

i v
Mg = 11 M, = 10
EES~ 6 EES = 8

Figure 5.6 Minimally Connected Process Graph with N= 10and L = 6

111

Since the number of levels is smaller than [-12!], we have proved in Lemma 5.4 that Sy

is also the maximum FST for all levels less than [%l Hence, Sygy < Syp.

Case 2} L = [—2!\-{]

In this case, the arrangements used to obtain both bounds are the same. If the number
of edges, M, is greater thar or equal to max M., Sy is obtained with max FST of this arrange-

ment or
Susw = Sup
It M < max M,, there will not be enough edges at every level for the maximum FST, Thus,

Susm < Sy

From the above two cases, we conclude Sygy < Sepif L < [-121 .

1

When L > [-g], it is likely that Sypy > Syz. The upper bound Suam Uses more

inoformation but it is a worse bound. This implies we did not use the information optimally in

calculating Sygy. The inequality (Sygy > Syp) is not always true because with different param-

eters of N, M, and L, it is possible to construct counter examples. Also note that since [= N

due to the law of large numbers, the case (L >> [—g—]) is not likely to occur.

5.5 Trade Off between Average System Time and Utllization of Processors for a
Diamond-shaped Process Graph (£, G*, z, P < 00)

Given a process graph, if we have enough processors such that the number of processors,

P, assigned to one job is greater than Maz{n,}, then the average system time is just the time
1

required to process L levels of nodes. The utilization of the P processors is, however, very low.
[n order to utilize each processor more, on the other hand, the average system time will

112

increase. In this section, we will study this trade off by using the notion of "power™ defined in
Chapter 4. The average task time is assumed to be constant. So we define

Power = R = —* _

S/ X
where p is the efliciency of the P processors, S is the average system time, and X is the constant

task service time (i.e., -;-_- is the normalized average system time).

If we can assume that the shape of process graphs is bounded by a parallelgram {as in
Figure 5.7) which can be characterized by two parameters, L and m {where L is the number of
levels in the process graph and m is the slope of the diamond enclosing the boundary tasks in

th
this process graph). If the number of levels, L, is even, then we assume the [—;—-] level and the

th
l% + I] level have the same number of tasks.

Let n ({) denote the number of tasks on the { " level, and let n (1) = 1. Then, we know

, ISIS?andLiaeuen
n(l)-n(l-l)=2; 1€ L;IandLiaodd
| %<!SL and L is even
n(!)—n(1+1)=2; L;l<lgl, wod Lis odd
Hence, for an even number of levels L,
1+%(u1) 15:5%
n{i{)= l+-% l=-gi+l
R R L

and for an odd number of levels £,

113

1+ 2 (i-1) 1<icltl
(1) " o
n =
1+ 2 L+1_l]__2_[,_[.+1] L+‘<15L
m 2 m 2

For example, let L = 9 and m = 2, then

n(l)=l+%(l—l)=l

for1 < (< L;“
and

R R Ty

2

—=10-1{ L+1

{ <
or 2 <i<L

+

Therefore, giver m and L, the total pumber of tasks Vin a process graph is

A
2121 l+;(s—l) L even
N=}) 2
2
2'§x[1+%(.‘-1)]+[1+%["'2‘“1-1”

i REE R

[L-l][l-%]+%[l.-l][£‘;1]+l

L even

L odd

Next, we define

B = the width of the process graph al the widest level

l+i——2- L even
m m

p4 L+l 2 L odd
m m

114

H == the number of levels in a process graph before all P processors

become busy

P_1 (P-1)m+ 2]
’twml‘”“{ T

Figure 5.7 shows a typical diamond-shaped process graph.

) d f
H
{
L I B |
y I_, -

Figure 5.7 Diamond-shaped Process Graph

We find

v
2Hp1+|’—ﬁ‘l
= v

where

115

lle-

P 2 efficiency averaged over all the time when not afl P processors are busy

and

t==1l

H 2]
VenN-23 [1+G-1) 2
=N—2H[l——,2;]—%H(H+I)

Note that when P == 1, then 4 == 1 and we expect p == 1; this can be verified from the
above expressions. Furthermore, it P = B, we have for even number of levels L,

P A1

L
1 2 7 t1
= 2 L 1——5+ m
1- =+ 2
m m
2m+ L -2

T 2m+2L-4

and for L odd, we have

v

2H _—
n+ P]

pP= »
2H+ F

where

116

1 1 L+1
V_(L—l)(l-m)+—ﬂ—;-(L~1)l 3]+l
L+1 2 2 L+1fL+1
L [l-m]_Tn- 2 [2 “]
——-—l—[l—L—m]
m
and
P=1+£IL+I-1]
m 2
m+ L-1
m
Thus,
2Hﬂ|"i .
P="1
L+1
+1
2L+I 1 1_1_" 2 -1
2 -1l m m
1 +
m
= L
2m-t-1’_.—2+L
- L
2m+ L -2

For both cases of p, we see that

lim p— l—
L+ 2

This can be observed from the fact that the area occupied by the diamond is exactly hall the
area of a rectangle with L levels long and P = B processors wide. The reason that p is not
exactly one half for small L is due to the fact that a full task might not be able to exist on the

boundary of the diamond.

117

As an approximation, we assume each level has a continuum of tasks. We now find the
number of processors that maximizes power R,

Let i be the index of the levels in G and let n, be the number of tasks in level ¢, then

2¢
n = —
m
p=L
m
Pm
H=——
2
We find
Sum of the fraction of P processors
kept busy during the procesging fime
r= total time required ta process this Job
L
H B H
Y 2 _PH ¥,
1 p— 2 2 =]
= oL Pt i+
o 2 _PH
2 2 |
H+ P ~+H

1] P
Bé‘- - PH
2H + 7
2H{H+1) FA _
. Pm + 2mpP H
= 77
+ 2mP
L2
_ H-QmF'
T Pm L7
=2 tomp

118

and

Pm L?
$=3 *%mp
Thus,
L2
5

<
Pm + L?
2 2mP
To find the number of processors that gives the maximum power, we take the partial derivative
of R with respect to P,

OR
o =0
_ 1 Pm L22m
pm 2] |2 * 5o (2mP)*J
= T omp

L* Pm L* {[m , -L%m
- [” ZmP]z[t 2mPH? * (2mpj2]

1]”sz_l_ L2 [-L%)

Pm L2 2Pmil2Pml
2 ' mp

L2](L2
- - 5.2
ll+2Pm ™ mP? (52)
and we also need to show R <0
a P2)
PR _ 1
3 P Pm |
AT

119

3 .5 2 s 1 2,2 3 LY 12 1°
-2 AR L G S A N A
{ g™ - " e PRI =

3L s 2 s L‘“}
1 m*p 8 2P 30 mt P (5.3)

Forl1<P< -:—‘—. Equation (5.3) is less than zero.

Simplifying Equation (3.2), we have

-L*m Lt L® Pm? I’m Lt L°
- TR - + Tt T =
8 4mPt 8m*p 2 4 2P m 4mipr
m2 3mlL* Lt L L®
——ps_ 2T e L —_ s =
2P‘ 3 4ch+2m2P+ e 0

.

For any value of m and L, we can numeically solve this equation for P and this is the

optimal number of processors required per job to achieve the maximum power.

If we are simply given an S versus p curve, we can find the optimal number of proces-

sors, First, we solve for P from the expression for p for a specific value of p' ,

Pm . L2 U L2
olihid —— -1- =
SR -14 2P 0
mp L? .,
—pPpy = -1)=10
5 +t5le -1)

mp) L%,
P= 7

mp

_1+Vi+I%(1-))
mp'

We now substitute this P back into the expression for S,

120

s m l+\/l+L2p'(l—p') L?
=3 4]+ - :
2 mp 2m{l+\/l+L2p(l—p)]
mp' J
_ V14 L5 (1-5) + I’

2p

[—?—](wal +L% (t-5)
P

Interestingly, Sis not a function of m when optimal number of processors are used. For
a specific utilization ¢ we obtain the same regardless of the value of the slope m.

As we know [KLEI79] the maximum power is achieved at the point where the S versus P

curve intersects a straight line from the origin approaching from the right (see Figure 5.8).

P

o p
Figure 5.8 S versus p

From this method we can find the p® at the intersection and substitute back into the expression
for P to obtain the optimal number of processors

14+v1 + L1 - 2)

mp’

P’ =

The S versus p curve does not start from g = 0 because the minimum p occurs when
P=PBor

121

1 1
=it7

In addition, because no jobs can be finished in less than L normalized units of time, we have
S2>L.

Figures 5.9-5.13 show some examples of the average system time versus utilization
curves for several values of L. Table 5.2 compares the optimal value of P’ solved from the
equation with the value calcalated by using the p* obtained from the Figures 5.9-5.13.

L ! P’ P’ (exact solution with m = 1|
%=-_2-.==l=___._____~1\L

10082 6.06 % 6.284

20 | 078 | 11.08 -’1; 12.047
{30 | 076 | 18.23 T:{ 17.824

46 | 076 | 23.83 % 23.594

50 | 075 | 30,230 L 29.369

m
Table 5.2

The P"s obtained from Figures 5.9-5.13 theoretically should be the same as P"s calcy-
lated from the equation and they are very close to each other. But more interestingly is the fact

that P’ is spprozimately equal to O.GL. In other words, we should provide a pumber of proces-
m

sors for each job equal to six tenths of the number of levels L divided by the slope of the process
graph.

122

40

‘20

10

L =10

2’ =082

Figure 5.9 S versus p with L = 10

123

40

0~
L=20
=078
204 -
10 -
(4] 1 1 1 1 1 1 L
] 3 4 5 -] 7 a8 8 10

Figure 5.10 S versus p with L = 20

124

70

60

50

40

30

Figure 5.11 S versus p with L = 30

125

70 T T

€60~

S0

40

30 L

=
-

Figure 5.12 S versus p with L = 40

126

80

1o

80

50

40
0

Figure 5.13 S versus p with [== 50

127

Substituting the value of P*jnto the expression for the average system time,

P'm L2

§'= + '
2 2mpP’

we have an approximate average system time

06 L L?
5 =
7 T 20671
= 11331

Note that if we do not care about the low utilization of processors, then, by using maximum
number of processors, the average system time is $= . The slightly larger S*is the trade off
between the utilization of Processors and the average system time of jobs. Furthermore, we
note that the approximate CONcurrency measure is

S(P*)

o =

5.6 Bounds on the Average System Time with a Limited Number of Processora
(k. G*, z, P < 0}

In this section, we limit the rumber of processors to a copstant P. With a finite number
of processors, we bave the problem of scheduling tasks. When more than one task demands a
processor and only one processor is available, we are forced to pick one task to be processed,
The method of selecting which task to be processed next in general effects the average system
time of the job.

Assuming unit task processing times, a lower bound on the average system time can be
easily calcylated as

Nk
SLB == ma.x[L,TJ

128

where L is the number of levels, N is the number of tasks per process graph, k is the number of

jobs, and P is the number of processors.

A very loose upper bound can be obtained by using the Longest Expected Processing
Time First assignment algorithm [COFF76]. Assume P < k, and that we assign only one pro-
cessor to a job. Whenever a job is completed, the processor looks for another unstarted job to
process. ldled processors are not allowed to assist other jobs. Since only one processor works on
a single job, the structure of the random process graph does not influence the execution time.

Each job will take the same amount of processing time of N z units.

Let s = t%“ and { = remainder of %, then an upper bound is

If we allow random tasks time, with the distribution F(t) and mean of X, and if we
require synchronization of P jobs (i.e. all P jobs must all finish before starting another P jobs),
then we have the Longest Expected Remaining Processing Time First assignment algorithm
{COFF76} which gives

Syp = [M1P+[M1+M;,]P+

+ M+ M+ - +MJP
+ (M + M+ - +M,+M“i%
where
vy
AR B

and all M, have the seme distribution

129

X, == random task time for task j of job i

From the Law of Large Numbers,

N
2 X,
}&im Prod ’-IN - < ¢l =1 >0

Q0

Hence,

=1

tim Prob| s = MEPL2NTP 5 - +NXP + (z+l)NXy]
—on

or

L3 — —
[N INXP + (2 + 1)NXy

=z}

£

lim Prob| Spp =
N-l-l:l';) I'O.w

HAztllp, (z+1),}Nfl

2
== lim Prob| 5,5 =
NE{:O o vee k

=1
J

The bounds obtained in this section are very loose. The minimum average system time
is known to be achieved by the Shortest Expected Remaining Processing Time First (SERPT)
[COFF76] scheduling algorithm. But with random process graphs, we don't know the exact
structure of each process graph in order to apply the SERPT.

5.7 Discussion

In this chapter, we have attempted to observe some properties of the arrangements of
random process graphs. We found a method to construct all the arrangements of the tasks for a
process graph with N tasks, The distribution of the number of arrangements with respect to the
number of levels was shown to be Gaussian. The tail probability of this distribution was
bounded by the Chernoff bound. Next, an upper bound and a lower bound for the average sys-
tem time were obtained for a specific number of levels in a process graph. As N becomes large,
the probability that the average system time of a randomly chosen process graph is between the

upper bound and the lower bound calculated near the mean number of levels approaches one.

130

The number of precedence relationships and the number of levels were added to the

model next. The bounds for this case were found and compared to the previous bounds.
We used the notion of power to study the trade off between the utilization of the pro-

cessors and the average system time. A very loose upper bound was presented for the case

where the number of processors is finite.

131

CHAPTER 8

Process-communication Graphs

In the previous two chapters, we have assumed that the cost of sending data between
processors is free and that the communication between them can be achieved instantaneously.

In reality, there is always some delay occurred when commuunicating between the processors.

Gentleman [GENT78| found that in a multiprocessor environment, even though data
paths are provided to move data between Processors, data from one processor is only immedi-
ately available to a small number of other Processors, and in general, moving data from one pro-
cessor to another requires several submoves. Gentleman uses the matrix multiplication on

ILLIAC IV, where processors are connected in a two dimensional rectangular grid, as an exam-
ple. For the multiplication of two N by N matrices, at least [%—-:— - % data movements are

required. Hence, we cannot ignore the communication cost in general.

To minimize the communication cost, we will try to assign as many tasks as possible on
a processor. Of course, there will be no commuaication cost if all the tasks are assigned to a
single processor. On the other hand, we are looking for maximum concurrency which will tend
to use as many processors as possible to execute the tasks. A compromise must then be made to
balance between these two opposing cbjectives, Consequently, we can no longer assume that
there are an infinite number of processors. With a limited number of processors, the need for

task assignment comes back.

In this chapter, we still use the process graph discussed in Chapter 3. Except, we will
add in the communication tasks that represent the communications required between the proces-
sors. We will look at how the number of processors will affect the average system time and how
we can obtain the average system time by converting the process-communication graph into a
Markov Chain (similar to Algorithm CPM in Chapter 4, but with some differences due to the
limited number of processors). We do not address the task assignment problem specifically.
Instead a simple rule of thumb is used in deciding which processor a task should reside in and

where the communication tasks are added in the process graph.

132

6.1 Communlication Tasks (£, G, z°, P < o0)

We have assumed in Chapters 3, 4 and 5 that the tasks in a process graph may be
assigned to any processors and that there is no commaunication cost of passing data between
tasks due to the contention on the communication bus or the physical distance between any pair
of processors. In this section, we explore a way to represent this communication cost in the

model discussed in Chapter 4.

We assume that the process graph is fixed and that the task service time is exponen-
tially disteibuted with a mean of 1 sec. If each task is residing on a different processor, then
u

there exists a communication delay between any two tasks if there is a precedence relationship

between them. We will treat this communication cost as another task whose service time is

exponentially distributed {with a mean of ”L sec.). For example, Figure 6.1b is the process
1

graph obtained when we add communrication tasks to the process graph of Figure 6.1a.

Figure 6.1a Process Graph

A communication task S, represents the communication between a processor where task i is
residing and a processor where task j is residing. We will call the process graph with the com-

munication tasks added the "process-commurication graph”.

Of course, if a task ! has several subtasks ¢, & - , f,, where a > 2, we can assign
one of the subtasks on the same processor where task ¢ was executing. We assume for now that
the subtask selected to reside on the same processor with task ! is picked at random, and when

two tasks reside on the same processor, the communication cost between these two tasks is zero.

133

Figure 6.1b Process-communication Graph

In the example showd in Figure 6.1b, we can let tasks 1 and 2 reside on one processor
and let tasks 3 and 4 reside on another processor. The resulting process-communication graph is

shown in Figure 6.2.

Since the communication task is treated just like a regular task, we see that there could
be concurrent execution of regular tasks and a commuaication task. If we assume multiple com-
munication busses, then more then one communication task could execute in parallel also. In
Section 6.3, we will examine the case when only one communrication task is allowed to execyte

at any given time.

The exact commuaication time requirement depends upon the access protocols, the com-
munication bandwidth, the volume of data to be transmitted and the physical locations of the
processors requiring the communication. Lee [LEE77), discussed in Section 2.3.6, approximated
the communication cost by multiplying the volume of data to be transmitted by the distance of
the two processors. His method assumed that the volume of data transmitted between two pro-
cessors is fixed and the distance between two processors is a constaat multiplied by the number

of hops or a linear function of the physical distance.
In this chapter, we let u. = au where 4 is a real number greater than zero. If a > 1,

the communication task takes less time on the average than the regular task. In particular,

when 4 = co, communication cost is then zero.

134

Figure 6.2 Process-commuunication Graph

Using Algorithm CPM (Section 4.2.2), we can convert a process-communication graph
into a Markov Chain to solve for the average system time. Figure 6.3 is the Markov chain for
the process-commurication graph of Figure 6.2. Recall that C, is a state where all the tasks in

a are executing concurrently.

We wish to solve for the s such that the resulting average system time equals to
S{P = 1). We denote such a as a,, Note that with a = a,, the concurrency measure ¢ equals
one. This will allow us to separate out those systems which yield a net improvement when

parallel processing is introduced.

Using the balance equations and the fact that the sem of ail equilibrium state probabili-

ties equals to one, we obtain the expression for a, for the example shown in Figure 6.3 as

349a,+7a%

sl Sa) 2a428] p
P = 1) WL
B

Solving for a,, we get a, = 2.3027. ln other words, il g, > 2.3027u, for the job represented by
Figure 6.1a, multiprocessing is still faster than the single processor {even with the communica-
tion delay). But if . < 2.3027p, then it is better to process this job on a single processor.

135

Figure 6.3 Markov Chain of Figure 6.2

136

6.2 Limited Number of Processors Per Job (£, G, z', P <)

If there are limited number of processors and the number of processors, P, assigned to a
job G is smaller than the width of G, then the scheduling of tasks to processors is required.
Whenever there is more than one task waiting for an available processor, we must consider the
communication costs when deciding which task should be processed on this processor. If the
available processor does not have the data necessary for executing a task, the data must be
transmitted from another processor. Thus, we have a difficult optimization problem of assigning
tasks to the processors. In this section, we discuss some simple rules of thumb in assigning
tasks. These rules most likely will not produce the best assignment in terms of minimizing the
average system time, but it provides a basis for analyzing the effect of having different number

of processors for a specific process graph.

The rules of thumb for assigning tasks to processors are

1. For a task {, if there is only one task j such that there is a precedence relationship (i.j),

then assign task j to the same processor where task i is processed.

*

2. For a task 1, if there is a set of tasks a such that there is a precedence relationship {i,5)
where j ¢ a, and there is only one available processor, assign all the tasks o to the same

processor where task i is processed.

3. For a task i, if there is a set of tasks « such that there is a precedence relationship (4,5}
where j ¢ o, and there is more than one processor available, supposing there are P’ pro-

cessors and z tasks in the set a, then

i forz< P’
assign one task f ¢ o to the processor where task iis processed, create one com-
munication task for each of the z-1 tasks and assign each of them to a separate

processor.

ii. torz> P’
assign (z-F +1) tasks to the processor where task i is processed, create (P’ -1)
communication tasks and assign the rest of the tasks to each of the (P’ -1) pro-

Cess0rs.

4, For a task f, il it has unly one edge (f, j) leaving it and task j has been assigned to

another processor p, then create a commuaication task to transfer the data to processor

p.

Figutes 6.4-6.6 show a simple example of the task assignment.

137

Figure 6.4 Process Graph

V.

7
F-S
w

Figure 6.5 Process-communication Graph with P = 2

138

Figure 6.6 Process-communication Graph with P =3

Figure 6.4 is the original process graph. Figure 6.5 shows the assignment for the P = 2 case,
and Figure 6.6 shows the assignment for the P = 3 case. In Figure 6.5, tasks 1, 2 and 4 reside
on one processor while tasks 3 and 5 reside on the other processor. In Figure 6.6, tasks 1 and 2
reside on the first processor; tasks 3 and 5 reside on the second processor; task 4 resides on the
third processor. If we draw circles around the task assignments in the original process graph of
Figure 6.4, any precedence relationship that connects tasks across these circles indicates that a

communication task is required.

When the communication cost is assumed to be zero (8 = o0), we expect the uS versus
P figure to look like Figure 6.7. When P=1, uS= N where N is the number of tasks in the

&
is the average

process graph, and as P increases, the value of uS will approach N’ where

system time S{P = co) obtained in Chapter 4.

139

1 P

Figure 6.7 S versus P

.

In general as the cost of the communication increases (smaller o}, the average system
time will increase also. Figure 6.8 is a typical example of a family of curves for u$ versus P.
For a specific value of P, let us say P', there will be a specific 6 = a, such that the value of 15

at these values of 4, and P ! equals to V. In other words, the advantage of multiprocessing on

P’ processors is erased by the communication cost (with mean time of) between proces-

sors. As a becomes smaller than a specific 4°, the communication cost becomes too large for any

multiprocessing at all, and the normalized average system time is greater than N.

Figures 6.9-15 show an example of the process graph (Figure 6.9), the process-
commuuication graphs with various values of P, P = 2,3,4,5,6, (Figures 6.10-14), and the result-
ing family of uS curves versus P (Figure 6.15). Of course these process-communication graphs
are for a specific assignment of tasks to processors. But the behavior of the curves is likely to

be similar for all other assignments.

For some of the curves, a horizontal line intersects the ﬁS curve at two points as in Fig-
ure 6.16. This implies that the average system time is the same whether we use P, processors or
P, processors. We are interested, them, in the issue of efficiency of the processors. Since
P; > Py, and in both cases the same amount of work is completed in the same average system
time, the P, processors must be idling more (waiting for the communication tasks to complete).

140

)

\

A I a iocreasing

Figure 6.8 uS versus P with a Family of a

141

Figure 6.9 A Process Graph

142

Figure 8.10 Process-communication Graph with P = 2

143

Figure 6.11 Process-communication Graph with P = 3

144

Figure 6.12 Process-communication Graph with P = 4

145

Figure 8.13 Process-communication Graph with P a= §

146

Figure 6.14 Process-communication Graph with P =6

147

20

19

18

17

16

15

14

13

12

Figure 6.15 u5 versus P

148

o — = —= — —
i + 1 T

Figure 6.16 u5 versus P with a specific value of u5*

149

Let us denote the average system time when P =1 to be S; and the average system
time with P processors and with u. = su to be Sp(a). The total work to be done is constant

and equals N % second which is also S,. Let n denotes the efficiency of the processors where 7

5
is defined to be ?ﬁ which is the total useful work done divided by the time necessary for
P
the P processors to process this amount of useful work multiplied by P. If we define
S
——— == ({a), where ((a) is a constant for a specific o, then
Sp (a)

= A9
-

Therefore, we can see the trend that the efliciency of the multiprocessors decreases as

the number of processors increases,

6.3 One Communieation Bus (k. Gz, P<)

In the last two sections, we have assumed that there is more than one communication
bus such that whenever a processor needs to send data to another processor, it will be transmit-
ted without having to wait for a communication channel. In this section, we assume that there
is only one communication bus such that only one processor may be transmitting at any given
time. We also assume that communication tasks are perfectly scheduled such that if there is
more than one communication task required to be transmitted, then each of them will be

transmitted in turn and each of them knows who is to be transmitted next (no collisions).

To obtain the average system time, we again convert the process-communication graph
into a Markov chain. The states of the Markov chain are represented as C, D; where the set o
contains tasks to be executed in parallel, and the set § contains all the communication tasks
waiting to be transmitted. If the set 7 is not empty, then one of the tasks in a must be a com-
munication task. After the communication task in o finishes, we can activate one of the tasks
in 8. The conversion algorithm is same as Algorithm CPM of Section 4.2.1, with the

modification that each time a task i completes the execution, we add the following two tasks:

1. as the result of the completion of task {, if there is a set of commusication tasks becom-

ing act;ive, concatenate them into the set 3

2. if task ¢ was a communication task, and if the set 2 is not empty, bring one of the task

in set 4 into the set a.

150

After the Markov chain is constructed, we can solve for the equilibrium state probabili-
ties and the average system time using the same method studied in Chapter 4. We expect that
the average system time with one communication bus is greater than the multi-communication
busses because of the delay caused by the non parallel processing of the communication tasks.

For example, Figure 6.18 is one of the Markov chains that can be converted from the
process commuaication graph of Figure 6.17 where tasks 3, 4, 5, and 8 are the communication
tasks. After the task 2 in the state Cyy D, completes, the communication task 5 is concatenated
to the set §, communication task 4 cannot be moved to the set a because task 3 is a communi-
cation task and there is only one communication bus available; after the communication task 3
in the state Cpy D, completes, one of the communication tasks in the set A can be activated, and
task 6 can also start execution (since it has received the information from the communication
task 3.)

Figure 6.17 A Process Communication Graph

151

8.4 Discussion

In this chapter, we added the communication overhead to the process graphs. This
overhead is represented as new nodes in a process graph. The resulting graph is called the
process-communication graph and it may be converted into a Markov Chain to obtain the aver-

age system time.

When the number of processors is limited to P, we presented some rules of thumb or
how tasks should be assigned to processors and where communication tasks must be added.
This assignment was by no means the 'optimal' assignment. It was used so that we could
analyze the processor communication gtaph and study a few facts regarding it. For example, we
found the behavior of the uS curve when plotted against P and how it behaves when the param-

eter a increases. We also found the efficiency of the P processors which worked on a job.

Finally, we studied the communication problem when only one communication bus is
allowed. The difference between this case and the two previous cases was when converting a
process-graph into a Markov Chain, we capnot let more than two communication tasks to be
executed at the same time. The additional communication tasks were kept in a first come first

served queue.

153

CHAFTER 7
Extensions of This Work

Multi-processing is an attractive idea to speedup the processing of computer jobs. How-
ever, not all the jobs are suitable to be processed by multi-processors. For some jobs, because of
the sequential nature of processing within them, multi-processing provides very litt;le or no
speedup. When the tasks within a job are assigned to more than one processor, the communica-
tion overhead between processors also reduces the maximum concurrency. Hence, we must

study each case before concluding the feasibility of using multi-processors.

In this dissertation, we utilize the Graph Models of Behavior, described in Chapter 2, to
model a computer job. This model defines the relationships among the tasks within a job.
However, Graph Models of Behavior has the deficiencies of not able to model loops or recursions

in a computer job.

Four parameters, discusses in Chapter 3, are used to characterize the cofcurrency prob-
lem into 16 cases. We have, in Chapters 4, 5 and 6, looked into 9 of these cases. For some
cases, we are able to find the solutions; for other cases, we are able to use approximations to

study the behavior of the system.

Several extensions, besides the 7 cases not studied in this dissertation, are:

- Instead of either having a bulk arrival at time zero and no arrivals after time z€ero, or
having continuous arrival from a Poisson source, we can have another system in which

there is a bulk arrival at time zero plus job arrivals after time zero.

- Instead of homogeneous processors, we can have heterogeneous processors. In the latter
case, then, the assignment algorithms must also utilize each processor optimally.

- In Chapter 6, we assumed that the communication time among the processors has the
same distribution. This is usually not true in real multi-processor environments. Pro-
cessors further apart generally take longer time to communpicate than processors close to
each other. A more detailed model must be developed to take this communication

delay characteristics into consideration.

154

References

[ABDET8| Abdel-Wahab, HM., ad T. Kameda, 'Scheduling to Minimize Maximum Cumulative
Cost Subject to Series-Parallel Precedence Constraints,” Operations Research, Vol.
26, No. 1, pp. 141-158, January-February 1978.

[AMDA67| Amdahl, G.M., "Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities,’” AFIPS Conference Proceedings, Vol. 30, pp. 483-487,
1967.

\

|AVIZ81] Avizienis, A., 'Fault Tolerance by Means of External Monitoring of Computer Sys-
tems,” AFIPS Conference Proceedings, Vol. 50, pp.27-40, 1981.

[BAER68] Baer, J.L., and D.P. Bovet, 'Compilation of Arithmetic Expressions for Parallel Com-
putations,’” Proceedings of IFIP Congress, pp. 340-346, 1968.

[BAER69] Baer, JE. and G. Estrin, 'Bounds for Maximum Parallelism ir a Bilogic Graph Model
of Computations,’ IEEE Transactions on Computers, Vol. C-18, No. 11, pp. 1012-
1014, November 1969.

[BAER70] Baer, J.L., D.P. Bovet, and G. Estrin, Journal of the Association for Computing
Machinery, Vol. 17, No. 3, pp. 543-554, July 1970.

[BAKE78| Baker, Kenneth R., and Linus E. Schrage, 'Finding an Optimal Sequence by Dynamic
Programming: An Extension to Precedence-Related Tasks,’ Operationa Research,
Vol. 26, No. 1, pp. 111-120, January-February 1978.

[BARNG8B| Barnes, G., R. Brown, M. Kato, D. Kuck, P. Slotnick, and R. Stoker, IEEE Transac-
tions on Computers, Vol. C-17, No. 8, pp. 746-757, August 1968.

[BEATT2] Beatty, J.C., 'An Axiomatic Approach to Code Optimization for Expressions,’ Journal
of the Association for Computing Machinery, Vol. 19, No. 4, pp. 613-640, October
72.

155

[BOVEGS] Bovet, D.P., ‘Memory Allocation in Computer Systems,’

Ph.D. dissertation, Dep.
Eng., University of California, Los Angeles, 1968,

|BRUN74] Bruno, J., E.G. Coffman, Jr.,, and R. Sethi, 'Scheduling Independent Tasks to Reduce
Mear Finishing Time,' Communications of the ACM, Vol. 17, No. 7, pp. 382-387,
July 1974,

[BRUNE81| Bruno, J., P. Downey, and G.N. Frederickson, Flow Time or Makespan,’

Journal of
the Association for Computing Machinery, Vol. 28, No. 1, pp. 100-113, January
1981.

[BUXBI] Bux, W, et al, 'A Reliable Token Ring System for Local Area Communication,’

National Telecommunication Conference, pp. A2.2, 1981,

[CAPE?Q] Capetanakis, J.1., "The Multi-Access Tree Protocol,’ IEEE Transactions en Communi

cations, Vol. COM-27, Pp.1476-1484, October 1979.

[COFFTG] Coffman, E.G., Computer and Job-shop Scheduting Theory, John Wiley and Sons,
1976.)

[COFF79| Coffman, E.G., Jr., and Kimming So, 'On the Comparison Between Single and Multi-

ple Processor Systems,’ Department of Computer Science, University of California,
Santa Barbara, August 1979,

[COHNT7S8] Cohn, Harry, and Anthony Pakes, 'A Representation for the Limiting Random Vari-

able of a Branching Process with Infinite Mean and Some Related Problems,’ J
Appl. Prob., Vol. 15, pPp. 225-234, 1978.

[DEMP381] Dempster, M.AH., et al, 'Analytical Evaluation of Hierarchical Placning Systems,’

Operations Research, Vol. 29, No. 4, pp. 707-716, July-August 1981,
[DHAL78] Dhall, Sudarshan K_, and C.L. Liu, 'On a Real-Time Scheduling Problem,’ Operations
Research, Vol. 26, No. 1, PP.127-140, January-February 1978,

[DODIBI] Dodin, Bajes, and Naman, 'Random Network Generation,’ University of N. Carolina,
OR Report No. 179, June 1981.

{ELDESO] El-Dessouki, Ossama 1., and Wing H. Huen, 'Distribyted Enumeration on Between

Computers,' /EEE Transactions on Computers, Vol. C-29, No. 9, pp- 818-825, Sep-
tember 1980.

156

|[ENSL77] Enslow, Philip, Jr., 'Multiprocessor Organization - A Survey,’ Computing Surveys,
Vol. 9, No. 1, pp. 122-126, March 1977.

|ESTR63] Estrin, G., and R. Turn, 'Automatic Assignment of Computations in a Bariable Strue-
ture Computer System,” IEEE Transactions, Vol. EC-12, pp. 756-773, December
1963. [FELL67] Feller, William, An Introduction to Probabilisty Theory and Appli-
cations, Wiley, 1967,

[FERN?Q] Fernandez, E., 'Activity Transformations on Graph Models of Parallel Computa-
tions," Ph.D. Dissertation, Computer Science Depastment, University of California,
Los Angeles, October 1972,

[FORD62] Ford, L.R., and D.R. Fulkerson, Flows in Networks, Princeton University Press, 1962.

[FOSC81] Foschini, G.J., B. Gopinath, and J.F. Hayes, 'Optimum Allocation of Servers to Two
Types of Competing Customers,’ JEEE Transactions on Communications, Vol.
COM-29, No. 7, pp. 1051-1055, July 1981.

[GALL6S] Gallager, R., Information Theory and Reliable Communication, John Wiley & Sons,
New York, 1968.

[GENT78| Gentleman, W. Morven, 'Some Complexity Results for Matrix Computations on
Parallel Processors,” JACM, Vol. 25, No. 1, pp. 112-115, January 1978.

[GITTT7] Gittins, J.C., and K.D. Glazebrook, 'On Bayesian Models in Stochastic Scheduling,' J.
Appl. Prob., Vol. 14, pp. 556-565, 1977.

[GITT79] Gittins, J.C., 'Bandit Processes and Dynamic Allocation Indices,’ J. R. Statist. Soc.
Ser. B, Vol. 41, No. 2, pp. 148-177, 1979. [GLAZ76] Glazebrook, P. Nash, 'On
Multi-server Stochastic Scheduling,” J. R. Statist. Soc. Ser. B, Vol. 38, No. 1, pp.
67-72, 1976.

[GLAZ80| Glazebrook, K.D., 'On Stochastic Scheduling with Precedence Relations and Switch-
ing Costs,” J. Appl. Prob., Vol. 17, pp. 1016-1024, 1980,

[GLAZ81] Glazebrook, K.D., and J.C. Gittins, 'On Single-Machine Scheduling with Precedence
Relations and Linear or Discounted Costs,” Operalions Researck, Vol. 29, No. I,
pp. 161-173, January-February 1981.

[GONZ72] Gonzalez, Mario ., and C.V. Ramamoorthy, 'Parallel Task Execution in a Decentral-
ized System,' IEEE Transaclions on Computers, Vol. 21, No. 12, pp. 1310-1322,

December 1972,

157

[GOTT82] Gottlieb, Allan, and J.T. Schwartz, 'Networks and Algorithms for Very-Large-Scale
Parallel Computation,” Computer, Vol. 15, No. 1, pp.27-36, January 1982,

[HARR63| Harris, Theodore E., The Theory of Branching Processes, Prentice-Hall, 1963.

|[HASE75] Hasen, P. Brian, 'The Programming Language Concurrent Pascal,’ [EEE Transactions
on Software Engineering, Vol. SE-1, No. 2, pp. 199-207, June 1975,

[HASE?7] Hansen, P. Brian, The Architecture of Concurrent Programs, Prentice-Hall, Engle-
wood Cliffs, N.J,, 1977,

[HAYNS82| Haynes, Leonard S., 'Highly Parallel Computing,’ Computer, Vol. 15, No. 1, pp. 7-8,
January 1982

[HOFR78| Hofri, M. and C.J. Jenny, 'On the Allocation of Processes in Distributed Computing
Systems,” [BM Research Report RZ905, April 1978.

[HOLT78] Holt, Graham, Lazowska, and Scott, Structured Concurrent Programming with
Operating System Applicstions, Addison Wesley, Reading, Massachusetts, 1978.

[HORO76] Horowitz, Ellis, and Sartaj Sahni, 'Exact and Approximate Algorithms for Scheduling
Nonidentical Processors,’ Journal of the ACM, Vol. 23, No. 2, pp. 317-327, April
1976.

[[BAR77| Ibarra, Oscar H., and Chui E. Kim, 'Heuristic Algorithms for Acheduling Independent
Tasks on Nonidentical Processors,! Journal of the ACM, Vol. 24, No. 2, pp. 280-
289, April 1977

[JAFF80| Jafle, Jeffrey, 'Bounds on the Scheduling of Typed Task Systems,’ SIAM J. Comput.,
Vol. 8, No. 3, pp. 541-551, August 1980.

[JENNT77] Jenny, C.J., 'Process Partitioning in Distributed Systems,” Proceedings of National

Telecommunicalions Conference, pp. 31:1, 1977.

IKELL73a} Keller, Robert M., 'Parallel Program Schemata and Maximal Parallelism 1: Funda-
mental Results,” JACM, Vol. 20, No. 3, pp. 514-537, July 1973.

[KELL’TSb] Keller, Robert M., 'Parallel Program Schemata and Maximal Parallelism II: Con-
struction of Closures,” JACM, Vol. 20, No. 4, pp. 696-710Q, October 1973.

158

[KIESBI] Kiesel, W., and P.J. Kuehn, 'CSMA-CD-DR: A New Multi-Acess Protoco} for Distri-
buted Systems,’ National Telecommunicalion Conference, pp. A2.4, 1951

[KLEI'!S] Kleinrock, L., Queueing Systems, Vol. I: Theory, John Wiley & Soans, New York, 1975.

{KLEI79} Kleinrock, L., 'Power and Deterministic Rules of Thumb for Probabilistic Problems in
Computer Communications,’ Conference Record, International Conference on
Communications, pp. 43.1.1-43.1.10, June 1979,

[KNUT73b} Kouth, Donald, The Art of C;:mputer Programming -- Sorting ond Searching,
Addison-Wesley, Reading, Massachusetts, 1973.

[KOZD80| Kozdrowicki, Edward W., and Douglas J. ‘Thies, 'Second Generation of Vector Super-
computers,” Computer, Vol. 13, No. 11, pp. 71-83, November 1980.

[KUCK72] Kuck, David, et al, 'On the Number of Operations Simultaneously Executable in
Fortran-Like Programs and Their Resulting Speedup,’ IEEE Transactions on
Computers, Vol C-21, No. 12, pp. 1293-1310, December 1972.

[KUCKT74] Kuck, D., et al, 'Measurements of Parallelism in Ordinary FORTRAN Programs,’
Computer, pp. 37-46, January 1974.

[KUCK?7] Kuck, David J., A Survey of Parallel Machine Organization and Programming,’
ACM Coemputing Surveys, Vol. 9, No. 1, pp. 29-59, March 1977,

[KUNG82] Kung, H.T., "Why Systolic Architecture,’ Computer, Vol. 15, No. 1, pp. 37-46, Janu-
ary 1982.

[LAM74] Lam, Simon S., 'Packet Switching in a Multi-Access Broadcast Channel with Applica-
tion to Satellite Communication in a Computer Network,’” Ph.D. dissertation,

Computer Science Department, University of California, Los Angeles, April 1974.

{[LANS78| Lenstra, JK., and A.H.G. Rinnooy Kan, 'Complexity of Scheduling under Precedence
Constraints,” Operations Researck, Vol. 26, No. 1, pp. 22-35, January-February
1978.

[LEE77] Lee, Robert P., 'Optimal Task and File Assignment in a Distributed Computing Net-
work,” PhD dissertation, Computer Science Department, University of California,
Los Angeles, 1977.

159

|LELA77] Le Lann, Gerald, 'Distributed Systems - Towards a Formal Approach,’ IFIP Congress
Proceddings, pp. 155-160, 1977.

[LELAS2| Leland, Will E., and Marvin H. Solomon, 'Dense Trivalent Graphs for Processor Inter-
connection,” JEEE Transactions on Compulers, Vol. C-31, No. 3, pPp. 219-222,
March 1982,

[LITT61] Little, J., 'A Proof of the Queueing Formula L = AW, Operations Research, Vol. 9,
No. 2, pp. 383-387, March 1961.

[LIU73] Liu, C.L., and James W. Layland, 'Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Enviroement," Journal of the ACM, Vol. 20, No. 1, pp. 46-61,
Jamuary 1973.

[MAKAS81] Makam, S., ‘Design Study of a Fault-Tolerant Computer System to Execute N-
Version Software,” Ph.D. Dissertation, UCLA Computer Science Department, June
1981,

[MART66] Martin. David F., 'The Automatic Assignment and Sequencing of Computations on
Parallel Processor Systems,’ Ph.D. dissertation in Engineering, University of Cali-
fornia, Los Angeles, 1966.

[MARTBTa] Martin, David, F., and G, Estrin, 'Experiments on Models of Computations and
Systems,” JEFE Transactions, Vol. EC-16, pp. 59-69, February 1967.

[MARTG?b] Martin, David F., and G. Estrin, 'Models of Computational Systems - Cyclic to
Acyclic Graph Transformations,” IEEE Trasnactions on Electronic Compulers,
Vol. EC-16, No. 1, pp. 70-79, February 1967,

[MARTﬁTc] Martin, David F., and G. Estrin, 'Models of Computations and Systems - Evalua-
tion of Vertex Probabilities in Graph Models of Computations,’ J. ACM, Vol. 14,
pp. 281-299, April 1967,

[MARTS69] Martin, David F., and G. Estrin, 'Path Length Computations on Graph Models of
Computations,” IEEE Transactions on Computers, Vol. C-18, No. 6, pp. 530-536,
June 1969.

[METCTG] Metcalfe, R M., and D. R. Boggs, 'Ethernet: Distributed Packet Switching for Local
Computer Networks,” Communication of the ACM, Vol. 19, No. 7, July 19786.

160

[MILL73| Miller, Raymond E., A Comparison of Some Theoretical Models of Parallel Computa-
tion," IEEE Transactions on Computers, Vol. C-22, No. 8, pp. T10-717, August
1973.

[MOLLS81| Molloy, Michael K., 'On the Integration of Delay and Throughput Measures in Distri-
buted Processing Models,” Ph.D. dissertation, Computer Science Department,

University of California, Los Angeles, 1981.

[MORRS61] Morrison, P., and E. Morrison, Charles Babbage and his Calculating Engines, Dovers,
Inc., N.Y., 1961.

[MUNT69] Muntz, Richard R., and E.G. Coffman, Jr., 'Optimal Preemptive Scheduling on
Two-Processor Systems,' JEEE Transaclions on Compulers, Vol. C-18, No. 11,
pp.1014-1020, November 1969.

[MURA71| Muraoka, Y., 'Parallelism Exposure and Exploitation in Programs,’ Ph.D. disserta-
tion, University of lllinois at Urbana-Champaign, Department of Computer Sci-
ence, Report 71-424, February 1971

[NG80] Ng, Y.W., and A. Avizienis, 'A Unified Reliability Model for Fault Tolerant Computers,’
IEEE Transactions on Computers, Vol. C-29, No. 11, pp. 1002-1011, November
1980.

[OUST80] Ousterhout, John K., Donald A. Scelza, and Pradeep S. Sindhu, Communications of
the ACM, Vol. 23, No. 2, pp. 92-105, February 1980.

|PAKE?6] Pakes, A.G., 'Some Limit Theorems for a Supercritical Branching Process Allowing
Immigration,’ J. Appl. Prob., Vol. 13, pp. 17-26, 1976,

[PAPO65] Papoulis, Anthanasios, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, 1965.

[PARRS3] Parrella, Michael, 'All Nodes Are "Equal” in Distributed Data Processing,’ System &
Software, p. 83, June 1983.

[PETEB81] Peterson, James L., Petri Net Theory and the Modeling of Systems, Prentice-Hall,
1981.

[POPES1]| Popek, G., B. Walker, J. Chow, D. Dewards, C Kline, G. Rudisin, and G. Thiel,
"Locus: A Network Transparent, High Reliability Distributed System,” Proceedings
of the Eighth Sysmposium on Operating Systems and Principles, pp. 169-177,
December 1981.

161

[POTTS3] Potter, J. L., 'Image Processing on the Massively Parallel Processors,’ Computer, Vol.
16, No. 1, pp. 62-67, January 1983.

[PREP81] Preparata, Franco P. and Jean Vuillemin, 'The Cube-Connected Cycles: A Versatile
Netwrok for Parallel Computation,” CACM, Vol. 24, No. §, pp. 300-309, May
1981.

[PRIC81] Price, Camille C., 'The Assignment of Computational Tasks Among Processors in a
Distributed System,’ NCC, pp. 291-296, 1981.

[PRIC83] Price, Camille C., 'Task Assignment Using A VLSI Shortest Path Algorithm.’-Depart-
ment of Computer Science, Austin State University, Nacogdoches, Texas, April
1983.

[RAMAG69] Ramamoorthy, and M.J. Gonzalez, A Sutvey of Techniaues for Recognizing Parallel
Processable Streams in Computer Programs,” AFIPS, FICC, pp. 1-5, 1969.

[RAMA72] Ramamoorthy, C. V., K. M. Chaudy, and Mario J. Gonzalez, Jr., 'Optimal Schedul-
ing Strategies in a Multiprocessor System,” JEEE Transactione on Compulers, Vol.
C-21, No. 2, pp. 137-146, February 1972,

[RAMAS0] Ramamoorthy, C. V. and Gray S. Ho, 'Performance Evaluation of Asynchronous
Concurrent Systems Using Petri Nets,” I[EEE Transactions on Software Engineer-
ing, Vol. SE-6, No. 5, pp. 440-449, September 1980,

[RAMI79] Ramirez, R.J.,, and N. Santoro, 'Distributed Control of Updates in Muitiple-Copy
Databases: A Time Optimal Algorithm,” Proceedinge of the Fourth Berkeley
Conference on Distributed Data Mansgement and Computer Netwrok, pp. 191-234,
1979.

[RAO79| Rao, Gururaj, Harold Stone, and T.C. Hu, 'Assignment of Tasks in a Distributed Pro-
cessor System with Limited Memory,' [EEE Transacting on Compulers, Vol. C-28,
No. 4, pp. 201-299, April 1979.

|ROBI79] Robison, J.T., 'Some Analysis Technique for Asynchronous Multiprocessor Algo-
rithms,' [EEE Trans. Software Eng., Vol. SE-5, pp.24-31, January 1979.

[ROSE83] Rosenfeld, Azriel, 'Parallel Image Processing Using Cellular Arrays,” Computer, Vol.
16, No. 1, pp. 14-20, January 1983.

162

|RUSH83| Rushby, John, and Brian Randell, 'A Distributed Secure System,’ Computer, Vol. 16,
No. 7, pp. 55-67, July 1983.

[RUSS69] Russell, E.C., 'Automatic Program Analysis,’ Ph.D. dissertation, Dep. Eng., University
of California, Los Angeles, 1969,

[SAHNT76a] Sakni, Sartaj K., 'Algorithms for Scheduling Independent Tasks,’ JACM, Vol. 23,
No. 1, pp. 116-127, January 1976.

[SAHN76b| Sahni, Sartaj, amd Teofilo Gonzalez, 'P-Complete Approximation Problems,’ JACM,
Vol. 23, No. 3, pp. 555-563, July 1976.

[SCHES83| Schell, Roger R., 'A Security Kernel for 3 Multiprocessor Microcomputer,” Compuler,
Vol. 16, No.7, pp- 47-53, July 1983,

[SCHUS81| Schuman, Stephen A., and Edmund M. Clarke, Jr., '‘Programming Distributed Appli-
cations in ADA: A First Approach,’ Proceedings of the 1951 Internalional Confer-
ence on Parallel Processing, pp. 38-49, 1981.

[SEDG78) Sedgewick, R., 'Implementing Quicksort Programs,' CACM, Vol. 21, No. 10, pp. 847-
857, October 1978.

[SENE73] Seneta, E., 'The Simple Branching Process with Infinite Mean,” J. Appl. Prob., Vol.
10, pp. 206-212, 1973.

[SENE74] Seneta, E., 'Regulaly Varying Functions in the Theory of Simple Branching
Processes,” Adv. Appl. Prob,, Vol. 8, pp. 408-420, 1974.

[SEVCT74| Seveik, Kenneth C., 'Scheduling for Minimum Total Loss Using Service Time Distri-
butions,” JACM, Vol. 21, No. I, pp. 65-75, January 1974.

[SIDNT75] Sidney, Jeflrey B., 'Decomposition Algotithms for Single-Machine Sequencing with
Precedence Relations and Deferral Costs,’ Operationa Research, Vol. 23, No. 2, pp.
283-208, March-April 1975.

[SIEWT8a| Siewiorek, D.P., et al, "A Case Study of Cmmmp, Cm®, C.vinp, Part I: Experience
with Fault-Tolerance in Microprocessors Systems,’ Proceedings of IEEE, Vol. 66,
No. 10, pp. 1178-1199, October 1978.

[SIEW78b| Siewiorek, D.P., et al, 'A Case Study of Cmmmp, Cm’, C.vmp, Part II: Predicting
and Calibrating Reliability of Multiprocessors Systems,” Proceedings of IEEE, Vol
66, No. 10, pp. 1200-1220, October 1978.

163

[SIMOT71] Simon, Richard, and Richard Lee, 'On the Optimal Solutions to AND/OR Series-
Parallel Graphs,” JACM, Vol. 18, No. 3, pp. 354-372, July 1971.

[STONT77] Stone, Harold S., 'Multiprocessor Scheduling with the Aid of Network Flow Algo-
rithms,’ JEEE Transactions on Software Engineering, Vol. SE-3, No. 1, pp. 85-93,
January 1977.

[THANS1| Thanawastien, S., and V.P. Nelson, 'Interference Analysis of Shuffle/Exchange Net-
works,” IEEE Transactions en Computers, Vol. C-30, No. 8, pp. 545-556, August
1981.

[UPFA82] Upfal, Eli, 'Efficient Schemes for Parallel Communications,’ Symposium on Principles
of Distributed Compuling, pp. 55-59, August 1982.

[VANTS1] Van Tilborg, Andre, and Larry D. Wittie, 'Distributed Task Force Scheduling in
Multi-microcomputer Networks,” National Compuler Conference, pp. 283-289,
1981.

[WEBE78a] Weber, Richard R., 'On Optimal Assigment of Customers to Parallel Servers,” J.
Appl. Prob., Vol. 15, pp. 406-413, 1978

[WEBE78b| Weber, Richard R., and Peter Nash, 'An Optimal Strategy in Multi-server Stochas-
tic Scheduling,” J. R. Stalist. Sec. Ser. B, Vol. 40, No. 3, pp. 322-327, 1978.

|WEIS‘2] Wei, Martin, and Howard A. Scholl, 'An Expression Model for Extraction and Evalua-
tion of Parallelism in Control Structures,” [EEE Trensactions on Compulers, Vol.
C-31, No. 9, pp. 851-863, September 1982.

[WITT80] Wittle, P., 'Multi-armed Bandits and the Gittins Index,' J. R. Statist. Soc. Ser. B,
Vol. 42, No. 2, pp. 143-149, 1980.

[WINS77] Winston, Wayne, 'Optimality of the Shortest Line Discipline,’ J. Appl. Prob., Vol. 14,
pp. 181-189, 1977.

[WULFSO] Wulf, W.A., R. Levin, and S.P. Harbison, Hydra: An Ezperimental Operating System,
McGraw-Hill, New York, 1980.

164

