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This paper deals with the question of selecting an appropriate measure of compatibility
(also called Scoring Rule) between probabilistic models and empirical data. It is
natural to require that if the model predicts the occurrence of an observed event with
probability p < 1, then the compatibility measure should reflect the actual economical
damage caused to the userswho acts as though the event (which is about to happen)
has only a p < 1 chance of occurring.

The paper establishes relations between the compatibility measure and the user’s
distribution of future pay-offs and shows that each of the commonly used measures (€.8.
logarithmic, spherical, quadratic) represents a natural payoff emanating from an eco-
nomic environment of a specific character. Using these relations the problem of
selecting an appropriate measure of compatibility reduces to that of characterizing the
economic impact of the forecast at hand.

1. Introduction: natural vs. universal scoring rules

The task of modeling requires a choice of an appropriate measure of compatibility to
evaluate the degree at which each candidate model represents a faithful summary of the
empirical data. For deterministic models the mean-square-error criterion is often em-
ployed to evaluate the models compatibility with the data. For stochastic (or probabil-
istic) models a new criterion should be employed since a probabilistic model determines
not a specific outcome but jan elastic constraint (distribution) over possible outcomes.
More precisely, if a model predicts that an event g will occur with probability p(e) and
event ¢ is in fact observed, we wish to define an appropriate measure on the pair
(P(g),e), that would represent the quality of the model’s prediction.

An identical problem also surfaces in decision analysis where the need arises to
evaluate the quality of human predictors. For example, the effectiveness of probabilistic
weather forcasters (e.g. “80% chance of rain”) is clearly a function of the probabilistic
report and the eventuality which actually takes place. In this context the compatibility
measure became known as “scoring-rule’ since it could be used to “score’” and remunerate
the human expert in accordance with the success of his forecast.

Following McCarthy (1956) we consider a situation in which a client pays a forecaster
for predictions of a future event according to the following rules. 3

(i) The forecaster gives the client probabilities p;, . . . . p, for the events wherep;, = L.

(ii) The client takes action on the basis of these probabilities and one of the possible

events occurs.
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(i) If the ith eventf occurs, the client pays the forecaster Ri(pys. ..., p,), which is
abbreviated R(p).

(iv) Neither the forecaster nor the client can influence the predicted event, although
the forecaster can make experiments to help predict it, and the client gets an
amount which depends on both the action he takes and on the events which
occur.

(v) Ttis assumed that the forecaster and the client both wish to maximize the expected
value of their incomes.

The pay-off R,(p) has become known in the literature (Brown, 1970; Winkler, 1971 ;
Shuford, Albert & Massengill, 1966) as a Probability Scoring Rule to be selected in a
way that would induce the forecaster to follow a certain mode of behaviour. A scoring
rule is said to be admissible (other names are proper or reproducing) if it tends to “keep the
forecaster honest™. That is, assuming that the forecaster perceives the probabilities of the
possible events to be © = (m,, .. . ., m,) then, regardless of the value of =, the forecaster
expectation R(r,p) = Xm,R,(p) is maximized if he reports p = m. A scoring rule will be
called strictly admissible if the report p = = is the only one which achieves the maximal
expectation of R(n,n) = Zn; R,(n).

There are several ways of generating admissible scoring rules. For example (McCarthy,
1956), every differentiable strictly convex function S(p), which is homogeneous of the
first degree can generate a strictly admissible scoring rule via Ri(p) = (9/6p,)S(p). The
expectation of an honest forecaster is then R(m,n) & S(n).

As an alternative, a scoring rule can be chosen which passes on to the forecaster some
of the economical consequences of his report, as viewed by the client. For example, suppose
that on the basis of the forecaster’s prediction the client chooses the jth of the actions
open to him and that his pay-off if the ith event occurs is a,,. His expectation will be
g(p) = magx X, a;; p; if j is chosen optimally. If, eventually, event i occurs, the client’s
pay-off would be a;;.(,, where j'(p) is the optimal action taken on the basis of the forecast
(p). Tt is natural that the client would wish the forecaster to share his risks and so institute
a scoring rule Ry(p) = aa;;.,) where a is some scaling factor. This type of score was
called naturally imputed scoring rule by Raiffa (1964) who also showed that every such
scoring rule is admissible.

In contrast to the natural rules, probabilistic forecasts are often evaluated by general
standards, independent on the details of the client’s decision problem. The three most
popular scoring rules which seems to dominate both the practice of probabilistic fore-
casting (e.g. weather predictions, mte]hgenlmformatlon) and experimental research on
human information processing are the following.

1. Logarithmic—R,(p) = log(p,)

2. Quadratic — Ry(p) = 1 + 2p, — X p?
i==1

n 1/2
3. Spherical — R,(p) = p,/ ( Z—};Piz)
i=1

We call these rules universal to stress their apparent independence on any particular
decision set-up or pay-off matrix a; ;.

The popularity of these universal rules stem primarily from their simplicity and
secondary mathematical properties. For instance, the logarithmic scoring rule is the
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only one (for n>2) where the pay-off depends only on the probability assigned to the
event which actually occurred (Shuford et al., 1956). The quadratic score, on the other
hand, is the only one with the property that the loss for reporting p when n applies is the
same as that for reporting ® when p applies (Savage, 1971).

An important consideration in the selection of a scoring rule is the way it influences the
forecaster’s allocation of resources in his effort to get information. Every scoring rule
imposes its own preferential order on the inquiries or experiments which the forecasters
might employ in his effort to sharpen his predictions. The logarithmic scoring rule, for
example, would cause the forecaster to rank inquiries in order of Shannon’s measure of
channels Mutual Information (Pearl, 1974). While it is natural to require that the fore-
caster’s ranking of inquiries matches that of his client it can be shown that such matching
is only possible under a natural scoring rule or a rule which differs from the latter by at
most a fixed amount (independent on p). Thus, no universal scoring rule exists which
matches the forecaster’s worth of information with that of all conceivable clients.

Although natural scoring rules provide the most appropriate measure of what it is
worth to be given the probabilities p, and the most direct method of conveying to the

forecaster the economical impact of his predictions, they are subject to several short-

comings which limit their application in both practical and laboratory environments.
The most severe limitation is that probabilistic assessments are often needed long before
the clients pay-off matrix a,; becomes known. In many cases the clients perception of the
problem structure becomes clear only after he obtains an assessment of the likelihood
of future events. In some cases it is even desirable to conceal the pay-off matrix from the
forecaster in order not to “‘contaminate” his likelihood assessment process with ulterior
interest he might have in his client’s actions.

A second limitation to using natural scores lies in the fact that unless the pay-off
matrix @;; contains an infinite set of actions, the resulting scores are not strictly admissible.
Any finite pay-off matrix would partition the probability space p into equivalence
regions since all forecast reports p which result in the same optimal action j'(p) would

yield the same score to the forecaster. Thus, the forecaster finds no incentive to make :

his report p match 7 as accurately as possible as long as the two belong to the same
equivalence region. Of course, in the particular economic set up described by g, ; the

added accuracy is indeed superfluous, however, the forecast p could no longer be trusted ‘

as soon as g;; undergoes a change.

Universal scoring rules are free from these weaknesses by virtue of their being strictly
admissible. Thus, a forecast report obtained under a universal score can be used with:
trust by many clients confronted with widety different decision situations. From a
conceptual viewpoint too, it is desirable to make R(m,n), which measures the value of the
information contained in =, a strictly convex function of n. Only a strictly convex
measure of information has the property that its value increases whenever results of a
relevantt experiment become known, thus matching our intuitive notion that it is alwaysa
good idea to look at the outcome of an'‘experiment if it is free.

The purpose of this paper is to demonstrate that strictly admissible universal scoring
rules are not completely void of economical rationale and that the latter is not less
“natural” than the natural scoring rules of the foregoing discussion. We shall show that
each of the commonly used scoring rules (e.g. logarithmic, spherical, quadratic) represents

tA relevant experiment is one whose outcomes are not entirely independent on the events to be pre-
dicted.
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a natural pay-off emanating from a simple decision situation with a unigue economical

character
aracicr.

il

2. Analysis

The basic gambling model we construed consists of the same forecaster-client relations as
in the introduction with one added feature: the client payoffs (a,,) are not known at the
time the prediction is given. Rather than dealing with fixed pay-offs a;; we now have
random variables x,; whose distribution represents the likelthood that a pay-off level
x;; will eventually be realized from each event-action combination. We assume that at the
time the forecast is given only the distribution of future pay-offs is known to the client;
at a later time, when the actual values of the pay-off matrix become known, the client
may utilize the forecast given to him earlier, and choose an action which maximizes his
expected return.

Uncertainties concerning future payoffs were introduced by Murphy (1966) in the
context of meteorological forecasting. There, the ratio between the cost of protecting
against an adverse weather condition and the loss anticipated from such a condition
(without protection) was regarded as a random variable. The aspect of uncertain pay-
offs, however, seems to. prevail almost all situations involving probabilistic coding of
partial knowledge. The weather predictor, for example, has only an aggregate knowledge
of the stakes which his clients, the radio listeners, have in future weather conditions. A
college student, gathering knowledge in preparation for his professional career, has only
a vague notion of the nature of the circumstances where his knowledge will stand a
critical trial. Yet both he and the weather forecaster are required to generate probabilistic
estimates; the forecaster in the phrasing of his statements and the student in the way he
structures his knowledge.

To facilitate an analytic treatment we limit the model to a simple situation with only
two events and two actions. Let the-client pay-off matrix be represented by the following
table:

Actions
Probability | Events a a,
Pr=p : E1 0 y
p:=1-p Ey e, x 0

The random variables x and y represent the pay-offs connected with acting @, when E,
occurs and acting g, when F; occurs, respectively. x and y can both assume positive and
negative values but are unknown when the forecast is obtained. Upon receiving the
forecast p = (p, 1-p) the client commits to a linear decision rule d,(x,y) concerning
future pay-offs which maximizes his expected return:

acta, ifx(1-p) = yp,
d(x.y) = ey
acta, ifx(1-p) < yp.

Note that for certain combinations of (x,y) (e.g. x > 0, y < 0) the choice of best action
could be determined without reference to p. The forecast p draws its worth from those
occasions only where it serves to-detesmsing action resclarms._

S Vs
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For a fixed pay-off pair (x,y), the decision rule dy(x,y) results in the following returns
to the client. If E; occurs he receives:

0 dp(x:y) = Oy,
rild,(x,y)] = { )
Y dy(x,y) = ay
while if £, occurs he receives: ‘

(x d,(x) = a,
roldp(x,9)] = i 3)
0 dp(xsy) = d,.

The expected returns, R,(p) and Ro(p), depends on the joint distribution of x and y.
Choosing the simplest model that leads to nontrivial results we assume that the economical
environment underlying the emergence of the gambles (x,y) is symmetric with respect to
£, and E,, and that x and y are independent, identically distributed, continuous random
variables with joint density f(x,y) = J(x) f(y). In the case of weather forecasting, for
example, f(x,y) would represent that fraction of the population whose weather-dependent
pay-offs lie in the neighborhood of (x,).

The client’s expected return of acting in accordance with the forecast p, assuming

" E; occurs, is given by:

R(p) = f f T f0) nlde)ldxdy

0 yp/1—p e
[ o [SEETE [~ 10 ropnnay @

=00 — 00 — 0
where F(-) stands for the cumulative distribution associated with density f. Likewise, the
expected return in case E, occurs is:

&)= 7 F (S 0= R | )

In line with the philosophy of natural scoring rules the client ought to pass on to the
forecaster the economical worth of acting in accordance with the forecast. Hence, (4)
and (5) represent a natural scoring rule reflecting (in a condensed way) an underlying
economic environment characterized by f(*).

We now show how simple density functions give rise to several familiar scoring rules.
Example 1. A uniform density

1
7 —asy=aq,
Sy =4 (6
0 Iyl > a, |
yields:

al-p i
-7 < _
6 p ? 2’

R(p) = 2 )
a 3_~(1~p)} pzl.
12 p? 2
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Example 2. An exponential density

e~V y 20,
1) = ¥
0 y <0,
yields the quadratic scoring rule:
1
Ry(p) ==[1 = (1-p)%. )
A
A quadratic scoring rule also results from a double sided exponential density
K A
= —e M
) =3e
Example 3. A normal density
1
V) = e @™ Y202 10
S NIz (10}
yields the spherical scoring rule: ’
o? P
Ry(p) = an

V2P (T =pp
As can be expected, the greater the variance o?, the higher the value of the forecast D,
and the higher the score R,(p).

Example 4. A Cauchy density

-2
f 1 L y <0,
Sy =117 (12)
0 y >0,
yields the lcigarithmic scoring rule:
2
' Ri(p) = ~log p. (13)

The logarithmic divergence of R ( p)atp — 0 can now be given an economic vindication,
the mean assets the client anticipates losing if he follows the advice p = 0 and E, occurs
indeed approaches infinity due to the slow decay of the Cauchy density.

We now examine how the salient features of the underlying density f influences the
shape of the resultant scoring rule.

ADMISS ) 8807 Ty

STRICT
Every pay-off distribution J(x,p) gives rise to an admissible scoring rule. This is evident
from the fact that [see equation (4)] Ry(p) is simply a linear superposition of the scores
ri{d,(x.y)] which constitute a natural (and therefore admissible) scoring rule for any
fixed (x,y).

Strict admissibility can be demonstrated by showing that

dar—1.

S
dp L
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has a unique solution at p = n. From (4) we write{

d d u-7)
3 Rp) = I R(P) + LeIRi(p)]
T (1-m)
e (») 7 G(1-p) (14)
here: _
! N ()
G(p) = f ¥ (y) pemp) dy (15)
— 0 A

A change of variables y = [(1-p)/p]% in (15) yields the relation:
1-p3
G(p) = 7 G(1-p). (16)

and so, the stationary points of R(r,p) must satisfy

7 | )/
——G(p) = —=G(p). 17y
e e (
This equation has a unique solution p = n whenever G(p) is non-zero. An inspection of
equation (15) shows that for 0 < p < 1 the integrand is positive on some finite interval
whenever f(y) is non-zero on a finite interval containing y = 0. F urthermore, taking the
derivative of (14} gives
dz G(n)
— R(n,p) = — —= < (, 18
o (m,p) T (18)
showing that the stationary point p = mis a rﬁaximum of R(m,p).
We conclude that every f(y) which is non-zero on an interval around y = 0 gives
rise to a strictly admissible scoring rule. -

STRICT MONOTONICITY
Taking the derivative of (4) with respect;to p, gives:

, . 1
Ri(p) = WG(P)- (19)

Hence, under the previous condition guaranteeing a positive G(p), R'y(p) is strictly
positive for all p < 1.

END-POINTS CHARACTERISTICS

The behavior of Ry(p) near p = 0 can be related to f by examinin gequation (4). Successive
differentiations of (4) yield:

Ry(0) = F(0) E(y), (20)
Ri(0) = f(0) E(»?), @1
Ri(0) = 2E(»®) + 1'(0) E(»). @2

Clearly, R”,(p) can be either positive or negative.

<

L
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Near p = 1, equation (4) gives:

Ri(1) = Efmax(0,y)], (23)
Ri(1) =0 if E(»?) exists, (24)
Ri'(1) = — f(0) E(y»). (25).

Relations (20) to (25) are only valid when J possesses the appropriate order moments.
For example, the logarithmic score seems to violate equation (24) as the Cauchy density
does not possess a second moment.

We are not sure at the present whether equation (4) can be inverted to give a density f
for any given R. That is, it is not clear whether every admissible scoring rule can be
modeled as a natural byproduct of some economic environment f. The fact, however,
that the common scoring rules can be generated by simple densities indicate that the
model is not too restrictive,

3. Discussion

This paper demonstrates that an économic interpretation to standard information
measures can be cast in a relatively simple betting context. Using the element of uncer-
}ﬂ"ghty concerning the magnitudes of the stakes in future confrontations it is possible to
generate strictly convex information measures in a decision setup with only a finite
number of actions. This construct reduces the problem of selecting an appropriate
scoring rule (or information measure) to that of characterizing the anticipated economic
impact of the forecast at hand. ‘

Consider, for example, the classical parameter estimation problem of finding the
“best”” estimate p of a probabilistic parameter 7, given a set of observations. Most
teachers of statistics (the author among them) find it rather awkward to convince
students that the square error criterion (m-p)?, has, aside from its mathematical con-
venience, an authentic significance to justify its textbook popularity. Even demon-
strating that (n—p)? is, under a quadratic scoring rule, the forecaster’s loss of reporting p
while 7 applies, offers but a minor comfort. The choice of the quadratic scoring rule in
itself seems artificial. Based on equation (9), however, one can state: “The minimum
square error estimator is optimal for decision situations with exponentially distributed
future pay-offs.” In a given es,thimation problem it is easier to assess whether such distri-
bution is a reasonable one thag it is to speculate on whether the square error criterion is
an appropriate loss function.

The value of the information contained in probabilistic -assertions has been the
subject of many discussions. Attempts to give the Shannon’s entropy H(p) = — Zp,logp;
a unique economical interpretation outside the field of communication have remained
all but convincing (Marschak, 1972; White, 1975). In fact, McCarthy (1956) and others
(DeGroot, 1962) have shown that any convex function S(p) could represent the worth of
probabilistic knowledge under specially configuref circumstances. Equation (15) can be
used to give Shannon’s entropy a more natural interpretation. H(p) is simply the expected
reward ﬁ(p,p) of an honest forecaster employed under a logarithm scoring rule and, if the
client accepts the forecaster’s report p, itis also the economical worth of the knowledge
contained in p to a client with a Cauchy-like distribution of future payoffs. Similarly, the
use of H(p) as a measure of approximation for identification of probabilistic automata
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(Gaines, 1977) would be justified in situations where the modeller perceives Cauchy-like
pay-off distributions in future decisions.

The construct of uncertain pay-off distribution allows the empirical psychologist to
relate peculiar behavior observed under a certain scoring rule to assertions concerning
human behavior in a corresponding economic environment. Likewise, mental pro-
cedures found optimal under a certain scoring rule may explain behavior in the corre-
sponding environment.

For example, assume a system with only a limited memory is allowed to inspect a long
list of N independent truth statements. At a later time the list is removed and the system
is asked to provide a probabilistic estimate of the truth of each statement on the original
list. An information theoretic study shows (Pearl, 1977) that under a logarithmic scoring
rule the optimal mnemonic strategy would be to devote the entire available memory to an
exact record of a portion N’ of the propositions, ignore the remaining N-~N ' propositions,
answer with certainty (p = 0,1) questions regarding the former and with p=4 those
regarding the latter. The optimality of this behavior is unique to logarithmic scoring
rules; a quadratic rule, in contrast, could encourage the distribution of memory re-
sources over the entire list and the use of intermediate values of probability beside 1, §, 0.

Such theoretical findings could not be related to human information-processing
behavior unless one finds models of natural environments which tend to create in
humans the perceptions of operating under a logarithmic or a quadratic rule. Equations
(9) and (13) imply that such perceptions and their associated mnemonic strategies are
natural in decision situations where the anticipation of action-dependent pay-offs is of a
certain character.
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