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We present an efficient algorithm for decomposing an n-ary relation into a tree of binary 
relations and provide a simple test for checking whether or not the tree formed by the 
algorithm represents the relation precisely. If a tree decomposition exists, the algorithm is 
guaranteed to find one. Otherwise, the tree generated by the algorithm can be used as an 
approximation of the relation. The method can be extended to decomposing a relation into 
an acyclic database of bounded relation arity. The unique feature of the algorithm presented 
in this paper is that it does not a priori assume any dependencies in the initial relation, but 
rather derives such dependencies from the bare relation instance. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

The primary use of functional dependencies and multivalued dependencies in 
relational databases is to guide the decomposition of a relation scheme into a 
database scheme consisting of smaller relations that satisfy the join-dependency 
property, i.e., the reconstruction of the whole relation from its components by the 
natural join operation is lossless [ 111. The purpose of such decomposition is to 
attenuate data redundancy and enhance data reliability. Query processing, on the 
other hand, which may sometimes require the reconstruction of the whole relation, 
becomes more expensive. 

Some of the shortcomings of decomposition are avoided if the relation is decom- 
posed into a tree of binary relations. Being a special case of acyclic database 
schemes, such trees inherit the latter’s desirable property [2], e.g., efficient query 
processing, and, at the same time, require minimum storage space. 

In this paper we present a greedy algorithm which is guaranteed to produce a 
lossless decomposition of a relation into a tree of binary relations when such 
decomposition exists, along with a simple test for determining whether the tree 
produced by the algorithm is indeed a lossless decomposition. If the relation is not 
tree-decomposable, then we can use the tree decomposition of the relation, together 
with that of its complement, as an approximate representation. Alternatively, the 

* This work was supported in part by the National Science Foundation, Grant IRI-8815522 and by 
Air Force Oilice of Scientific Research, Grant AFOSR 88 0177. 

+ Current affiliation, Computer Science Department, Technion, Haifa, Israel. 

0022-0000/90 $3.00 
Copyright 0 1990 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

TECHNICAL REPORT 
R-76-II



DECOMPOSING A RELATION INTO A TREE 3 

decomposition scheme can be extended to form acyclic database instances where 
the arity of each subrelation is greater than two. 

Since the method operates on a single database instance, and since the decom- 
posability of a relation may change as a result of add and delete operations, the 
practicality of the method we propose is limited to databases requiring infrequent 
updates. This is the case, for example, when databases are used for describing 
natural phenomena such as relations between diseases and their characteristic 
manifestations or for describing complex physical systems and their possible modes 
of failure. 

Another potential use of the algorithm is to assist a database designer by 
suggesting candidate multivalued dependencies [6] (MVDs) that fit an initial 
relation instance. This set of MVDs can be inspected by the designer to select those 
he may wish to impose on all instances. 

The method was motivated by an algorithm developed by Chow and Liu [3] for 
approximating discrete probability distributions with dependence tree. Related work 
is presented in [13-151. 

2. DEFINITIONS AND PRELIMINARIES 

A data base instance can be associated with a hypergraph where the nodes repre- 
sent the attributes and the hyperarcs are subsets of attributes appearing in the same 
relation. When all relations in the instance are binary, i.e., containing only two 
attributes, the hypergraph reduces to an ordinary graph, called a constraint graph. 
In the special case where the constraint graph is a tree, a useful result states that 
the database can be processed very efficiently [2], for instance, one tuple in the 
relation instance can be generated in O(nk’), where n is the number of attributes 
and k is their domain size [4]. 

Consider, for example, the relation on FLIGHT, DAY-OF-WEEK, and 
PLANE-TYPE presented in Fig. 1 (from [ 11 I). This relation can be decomposed 
losslessly into relations on the pairs (FLIGHT, DAY-OF-WEEK) and (FLIGHT, 
PLANE-TYPE). The associated graph is given in Fig. 2. 

Let p denote an n-ary relation over the set of attributes U = (Xi, . . . . X,}, i.e., a 
subset of the Cartesian product Dom(X,) x , . . . . x Dom(X,), where Dom(X,) is the 

I I I 
FLIGHT DAY-OF-WEEK PLANE-TYPE 

I I 
IM I Mondav I 147 1 / 

Thursday ;4; 1 

FIG. 1. The relation (FLIGHT, DAY-OF-WEEK, PLANE-TYPE). 
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FLIGHT 

DAY-OF-WEEK PLANE-TYPE 

FIG. 2. The graph associated with (FLIGHT, DAY-OF-WEEK), (FLIGHT, PLANE-TYPE). 

set of values of attribute Xi. Let ps denote the projection of p on a subset S of 
attributes, namely, ps is obtained from p by striking out columns corresponding to 
attributes U - S and removing duplicate tuples in the columns that remain. Given 
an attribute A and an element a of its domain, the restriction of p to A = a, denoted 
by P 

r(A = a) is the n-ary relation containing all n-tuples in p having value a for A. 
Similarly, ;he restriction of p to a subtuple t = (Xi, = xii, . . . . X,, = xir), denoted by 
P ‘(!), consists of all the n-tuples of p that match t for the corresponding attributes. 

The property of a relation that enables its lossless decomposition into two 
smaller relations is what we call conditional independence. 

DEFINITION. Let Si , S2, S3 be subsets of U. S, and Sz are conditionally inde- 
pendent given S3, denoted by (Si 1 S3 1 S,), if for every combination of values for 
attributes in S3, denoted by S3 = s3, we have 

L’(S3=sl)= (L 
SI s3 

)r(S3=s3)W (L, s )G3=s3) 
2 3 3 

where 
L = PS,S*S3. 

If (S, 
losslessl! 
Fig. 1, t 

1 S3 1 S, ) holds in a relation p, and U = S, S,S,, then p can be decomposed 
v into the database scheme Si S3 and S2 S3. For instance, in the relation of 
he attribute DAY-OF-WEEK is conditionally independent of PLANE- 

TYPE given FLIGHT. Conditional independence parallels the notion of embedded- 
multi-valued-dependencies (EMVDs) [6]. That is, (S, I S3 1 S,) iff S3 --H S, in the 
projection of p on Si S2S3. We will use the terms conditional independence and 
EMVDs interchangeably. 

A constraint graph, representing. a relation, explicates some of its conditional 
independencies. In a graph, S2 is said to separate S, from S3 if by removing the 
nodes in S2, nodes in S, are disconnected from nodes in S,. Every separation in the 
constraint graph corresponds to a conditional independence, i.e., if a subset S, 
separates (in the constraint graph) subset S, from S, then (S, I S, 1 S,). However, 
there may be conditional independencies in the relation which are not manifested 
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in the constraint graph. For a detailed discussion of conditional independencies and 
their graphical representation see [17, 181. 

The following notations will be used throughout: 

n,(Xi = xi) G number of n-tuples in p for which Xi = xi 
n,(Xi = xi, Xi = x,) g number of n-tuples in p for which Xi = xi and Xj = xj. 

In general, 
n,(X, = xi,, . ..) Xi, = x,,) 6 number of n-tuple in p for which X, = xi,, . . . . 

Xi< = Xi!. 

Let S be any subset of U. We define, n,(X,=x;) 2 number of 1 Sl-tuples in the 
projection ps for which Xi= xi, namely, n,( .) is used as a shorthand for nps( .). 
In general, n,(X,, = xi,, . . . . Xi, = xi,) 2 number of 1 Sl-tuple in ps for which 
xi, = Xi,) . ..) Xii = xit. 

When the referenced relation is the global relation, p, we may simplify n,( .) to 
n( .), and, when there is no confusion regarding the identity of the attributes, we 
will simplify n(Xi, = xi,, . . . . Xi, = xi,) to n(x,,, . . . . xi,). 

3. THEORETICAL GROUNDS FOR TREE DECOMPOSITION 

The following is a demonstration of the algorithm which will be developed in the 
sequel. Consider the relation over the binary attributes {A, B, C, D, E) given in 
Fig. 3. The first step of the algorithm computes the quantities {n(X, = xi)} and 
{n(X,=xi, xi= ,) x } for all attributes and their values. Obtaining: 

n(A=0)=8, n(B= 1)=6, n(B=0)=2, 

n(B=O, C= 1)=2, n(B=l,C=1)=3, etc. 

Next, for each pair of attributes (Xi, Xi) we compute the weights m(X,, X,) 
according to the formula given in Eq. (32) of Section 4, 

m(A, B) = m(A, C) = m(A, D) = m(A, E) = - 16.63, 

m(B, C) = - 13.97, m(B, D) = - 15.95, m(B, E) = - 16.55, 

m(C, D) = - 16.55, m(C, E) = - 17.13, m(D, E) = - 15.50. 

FIGURE 3 FIGURE 3 
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Finally, using the maximum-weight spanning-tree algorithm on these weighted arcs, 
the tree shown in Fig. 4 is produced. The relations associated with the arcs of the 
tree are the projections of the global relation on pairs of connected attributes. For 
instance, the relation associated with attributes D and B is pDB. The tree generated 
in this example, together with its associated database (see Fig. 4) represents the 
original relation, in the sense that it provides a iossless decomposition. The relation 
can be efficiently recovered by performing the natural join operation in the partial 
order dictated by the tree going from leaves to the root. 

The tree structure also explicates several conditional independencies (i.e., 
EMVDs). For instance, since attribute D separates attributes B, A, C, from E, the 
conditional independence, (BAC[ D 1 E) holds. In trees every attribute separates 
the graph into two subsets, and each separation represents a genuine EMVD in the 
relation. 

The following paragraphs contain the justification for this algorithm. It is par- 
tially based on a result by Chow and Liu [3] concerning an optimal approximation 
of a probability distribution by a tree-dependent distribution. We shall first sum- 
marize Chow and Liu’s result and then establish a relationship between relations 
and probability distributions, from which a similar algorithm for finding tree 
decompositions for relations will emerge. 

Let P(x) be a probability distribution of n variables, X,, X,, . . . . X,, and let T be 
a tree connecting the n variables. To our convenience we use both the n-tuple 
x1 , x2 > ..., x, and the symbol x to denote the set of n propositions X, =x1, 
x2 = X2) . ..) X, = x,. The tree-dependent distribution associated with P and T, 
denoted by PT, is defined by the product form 

PT(xl 7 ?..., xn) = fi p(xi I xj(i)), 

i=l 
(1) 

where Xici) is the variable designated as the parent of Xi in some root-down orienta- 
tion of the tree. The root X, can be chosen arbitrarily and, having no parents, is 
characterized by the prior probability P(x, 1 x,,) = P(xl) (see Fig. 5). Chow and Liu 
asked the following question: Given a probability distribution P, what is the tree- 
dependent distribution PT that best approximates P? In other words, among all the 
spanning trees that one can draw on n variables, each yielding a product form PT 

A C 

FIGURE 4 
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FIG. 5. A tree-dependent distribution. 

(see (l)), which PT will be closest to P? As a distance criterion between two 
distributions, P and PT, they chose the cross-entropy measure [S, 19) 

P(x) D(P,PT)=C P(x) log- 
i P'(x)' (2) 

This measure is non-negative and attains the value zero iff PT coincides with P. 
Surprisingly, they found a simple solution: 

THEOREM 1 [3]. The distance measure (2) is minimized when T is any maxi- 
mum weight spanning tree (MWST), where the weights of all arcs (Xi, Xi) are 
defined by the mutual information measure 

Z(X;, Xi) = 1 P(Xj, x,) log pT;;:‘, 20. 
I,, -q I I 

(3) 

By virtue of this result, the minimization can be solved, without exhaustively 
considering all possible trees, by the efficient MWST algorithm [S]. 

We now address the question whether it is possible to extend Chow and Liu’s 
result from probabilities to relations in the following intuitive way. Suppose that a 
relation p is associated with a uniform probability distribution which accords equal 
non-zero probabilities to all tuples in the relation and to those tuples only. Does 
the existence of an exact tree-dependent distribution for this uniform distribution 
imply that the relation is tree decomposable? Moreover, does a tree-decomposable 
relation necessarily have a tree-dependent uniform probability distribution? Are 
they decomposable by the same tree? And if so, can we use the method to find an 
optimal tree-decomposition approximation to a given relation? We will formalize 
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these questions and show that the answer is in the affirmative for exact decomposi- 
tion but remains unsettled for approximate decompositions. 

Let p be an n-ary relation on attributes Xi, . . . . X,. We define by PP(p) the set 
of all probability distributions that associate non-zero probabilities with tuples in 
p, and with these tuples only. Namely, 

PP(p)= {PIP(x)>OVxEp and P(x)=OVx$p}. (4) 

An arbitrary member of PP(p) will be denoted by P,. In particular, the uniform 
probability distribution, denoted by U,, is a member of PP(p). It is defined by 

1 
U,(x) = EY VXEP, 

where 1 p 1 is the cardinality of p. 
Given a probability distribution on n variables (attributes) we define the relation 

rel(P), associated with P, as the set of all tuples that have non-zero probabilities, 
namely, 

rel(P)= {xlP(x)>O}. (6) 

Clearly, 

P = Wp,), VP, E PP(p). (7) 

For a probability distribution P and a tree T, the tree-dependent distribution PT 
is defined in (1). Similarly, for a relation p and a tree T we define the tree- 
dependent relation pT as the relation generated by projecting p on pairs of 
attributes connected in the tree and then joining these binary relations. Formally, 

PT’ w Px,x,* (8) 

Next, we show that if P is tree dependent along a tree T, then rel(P) has a 
lossless decomposition by the same tree. 

THEOREM 2. If P = PT then (rel( P) = rel(P))=. 

ProojI For every relation p and a tree T it is always the case that pT 1 p. In par- 
ticular, (rel(P))’ 3 rel(P). We have to show that if a tuple is not a member of rel(P) 
it is also not a member of (rel(P))=. Suppose that x # rel(P). From the definition of 
rel(P), it follows that P(x) = 0, and since T supports an exact tree-dependent 
distribution of P, it also follows that P’(x) = 0. This last equality translates to 

P’(x)= JJ p(xi I xj(i)) = 07 
(X,, X,(&E = 

(9) 
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which implies that at least one component of the product must be zero. Assume 
that P(x, 1 xjciO,) = 0, then, also P(x,, xjciO,) = 0. Since Vx, P(x) > 0 and, since 

O = p(xio, xj(io)) = c P(x), (10) 

~.~I~‘~=~‘o.x,l,~)=x,(,~,~ 

all tuples x having Xi0 = x,, X,(,,, = xlciO, must have P(x) = 0, and, therefore, do not 
appear in rel(P). Consequently, the projection of rel(P) on these two attributes 
cannot contain the tuple (xi,, xjciO,). Thus 

(11) 

Since (X,, XjciO,) is an arc in the tree T, it is impossible that x will be a member 
of (rel(P))? 1 

Theorem 2 implies that for a given relation p, if U, is an exact tree-dependent 
distribution, UT, then the tree T supports a lossless decomposition of p and the 
MWST algorithm on U, will generate such a tree. In the continuation of this 
section we show that a partial converse of Theorem 2 is also true, namely, that if 
p can be decomposed losslessly into some tree T, then its associated uniform 
distribution, U,, is indeed tree dependent along T. Therefore, the MWST algorithm 
is guaranteed to produce a tree decomposition to p if such a decomposition exists. 
It is not true, however, that every probability P, is tree-dependent when p is tree 
decomposable. The main result is stated in Theorem 4 below. But first, we need the 
following theorem which establishes a product form for tuples of a tree decomposed 
relation. 

THEOREM 3. Zf p is representable by a tree, T, namely p = p T, then Vx E p, 

(12) 

The following subsections establish the proof of Theorem 3 via several lemmas. 
We say that a (constraint) graph represents the relation p, if p can be losslessly 

decomposed into the binary relations corresponding to the arcs of the graph. If, in 
a constraint graph, an attribute Xi separates two subsets of attributes, Si and S,, 
each containing Xi, then, in the joined relation each value of Xi which appears in 
ps, will be duplicated as many times as it appears in ps,. The following lemma 
states this property. 

LEMMA 1. Let S1, S,, and S, be subsets of U such that U = S, S2S3. If in a 
constraint grah representing p, S, separates S, from S,, then Vx E ps,, 

n,(& = xl = n,,,,(S, = xl .n,,,,(& = xl. I 
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A similar product form holds for a tuple in p: 

LEMMA 2. If, in a graph representing p, X, separates S1 = X, ... A’-, from 
sZ=xj+I ... X,, (see Fig. 6), then Vx E p, 

n(xj)=n(x,, . . . . xj-,, X,).n(Xj, Xj+I, . . . . X,). 

Proof Let S:= XjSi, i= 1,2. Since (X,, . . . . X,_, IXjIXj+i, 
Lemma 1, 

Vxj E Dom( Xi), n(Xj) = ns;(Xj) . ng(xj). 

However, 

a. ns;(xj)=n(xj, xi+ 1, . . . . x,), and 
b. ns;(xj) = n(x,, . . . . x,). 

.  . . )  

(13) 

X, ) then from 

(14) 

Equality (a) is true since (x,, xj+ , , . . . . x,) E ps; will appear in p as many times as 
X, = xi appears in ps;(xj). The same argument works for (b). Substituting (a) and 
(b) in (14) yields (13). 1 

An immediate extension of Lemma 2 is obtained if, instead of one separating 
variable, we have a chain or any subset of separating variables. In particular, we 
state the following corollary: 

COROLLARY 1. If in a graph representing p, X,, . . . . Xi+, separate S, = X1 ... Xi+ I 
from S,=Xj,i,, . ..X., then Vx~p, 

n(Xj+ I, .-, ~~+~)=n(x,, . . . . xjpl, xi, . . . . ~,+~).n(x,, x~+~, . . . . x,). (15) 

The proof is based on Lemma 1 and follows the same steps as Lemma 2. 

Sl s2 

FIG. 6. (S,IX,IS,). 



DECOMPOSINGARELATION INTO A TREE 11 

LEMMA 3. if S is a subtree of T rooted at Xi, and if Xi separates S, from S, (see 
Fig. 7), then V’x E S, 

n(x) = 
n(21SIXi).n(xIS2Xj) 

n(xi) ’ 
(16) 

where X 1 S denotes the projection of tuple x on the attributes in S. 

Proof From Lemma 2, 

V’xES, 1 = n&f I SI Xi) .ns(x I s*xi) 

ns(xi) 
(17) 

Let S’ = (U - S) Xi. From the tree-structure we obtain 

n(x,) = nY(xi) .ns(xi). 

Also, for both S, and Sz it holds that 

(18) 

Since also 

n(x I S,X,) = n,(x I SiXi) .ns(xi). (19) 

n(x) = n,.(x,), (20) 

we obtain 

n(x) = 
n(~~S,Xi)~n(~~S,Xi) 

n(xi) 
. I (21) 

LEMMA 4. Let p be a relation on X, . . .X,, represented by tree T and let S be a 
subtree of T rooted at Xi with XjCi, as its parent node (see Fig. 8), then 
t/x = (Xi,, . ..) Xi,) E p&y, 

n(2) = n(xi, xj(i)) . n&f I s) 

4x;) ’ 

where S’ is the union of S with XjCi,. 

(22) 

FIGURE 7 
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FIGURE 8 

Proof Let S” = U- S, X be a member of ps9, and let ext(Z) be an arbitrary 
extension of X to all attributes s.t. ext(Z) E p. Since Xi separates S from S”, from 
Lemma 2 we obtain 

n(x,) = n(i 1 S) .n(ext(Z)l SUXi). (23) 

Also from Corollary 1 we obtain 

n(x,, xjci,) = n(Z) . n(ext(Z) I S”Xi). (24) 

Substituting (24) in (23) and some manipulation yields the desired result. 1 

Proof of Theorem 3. Theorem 3 can be proved by recursively applying Lemmas 
2, 3, and 4. Given an n-tuple XE p, then for x1, the root value, we first apply 
Lemma 2 to yield 

1 = n(xs, . ..) x1, . ..) Xi”) = n(xi, 3  ...v x1) ’ n(xl 3 ...9 xin) 

n(xJ 
7 (25) 

where the indices in the first and in the second tuples correspond to two subtrees 
separated by X,. We continue to decompose each part of the numerator by 
applying Lemma 3 and Lemma 4 as necessary until we have only single and pairs 
of n-quantities. In this decomposition, each parent node appears b - 1 times in the 
denominator when b is its degree in the tree. For all parents accept X,, b - 1 is also 
the number of children. We therefore obtain 

’ n(xi9 xj(i)) 1=4x1) ll 
i=l n(xj(i)) ’ 

which completes the proof. 1 

(26) 
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We are now ready to state and prove the promised theorem 4. 

THEOREM 4. For any relation p, if p = p T then U, = ( U,) T. 

ProojI Let T be a tree such that p = p T. By definition, U, satisfies: VXE p, 
U,(x) = l/l p I. We have to show, therefore, that Vx E p, ( U,)T (x) = l/l p I. By 
definition, 

t”p)’ tx) = fl p(x, I x,(i)). (27) 
(X,3 -y,(r)) 6 T 

The conditional probabilities for U, satisfies 

P(Xi 1 Xi) = n(xi3 xj) 

n(Xj) 

and 
4x1) p(xd=pl. 

Substituting (28) and (29) in (27) we obtain 

4x, 1 
(up)T(X)= IpI (X,,X,,,,)ET 

-n 

(28) 

(29) 

(30) 

Finally, from Theorem 3 and (30) it follows that 

1 
(u,)““‘=~= ~,(X)~ I (31) 

Although Theorems 3 and 4 could also be proved using maximum-entropy 
considerations [ 12, 141 the derivation we showed uses only structural properties of 
the relation and reveals interesting features, characteristic of tree-decomposable 
relations. 

4. AN ALGORITHM FOR TREE DECOMPOSITION 

Theorems 3 and 4 guarantee that a relation p has a tree-decomposition iff U, is 
tree-dependent distribution. From Theorem 1 we know that a tree supporting a 
tree-dependent distribution is generated by MWST algorithm using the arc weights 
given in (3). If we substitute the conditional probabilities for the uniform distribu- 
tion (given in (28) and (29)) in (3), we obtain the following arc-weights: 

1 
1 

m(Xi9 4)=m(x,,r,)EP,,S 
4x,, xj) log n~~~~~~,,. 

I J 
(32) 

Since the quantity I pi is common to all weights it can be ignored. 
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The tree-decomposition algorithm (described next), denoted also the MWST 
decomposition, takes a relation p and returns a set of tree-structured binary 
relations, which are guaranteed to be lossless if the relation is tree-decomposable. 

TREE-GENERATION ALGORITHM. a. Compute the basic quantities: n(xi) and 
ntxi, Xj). 

b. For every two attributes Xi, Xj compute the weights m(X,, X,) given in 
(32). 

c. Find a maximum weight spanning tree of the complete graph w.r.t. the 
above arc weights. 

d. For each pair of attributes that corresponds to an arc in the selected tree 
find the associated relation by projecting the global relation on that pair. 

The complexity of the algorithm is O((Z+ log n) n2), where n is the number of 
attributes and 1 is the size of the relation. This can be shown by following its 
individual steps. The computation of part (a) can be completed in O(Zn2) steps. Part 
(b) is bounded by O(n2Z) since the number of weights needed to be computed is 
O(n2), and each computation can take at most 1 steps. Since the MWST algorithm 
of part (c) takes just O(n* log n) steps [7], the total complexity is O((Z+ log n) n*). 

To verify that the generated tree represents the input relation, we can compute 
the number of n-tuples represented by the tree-decomposition and compare it to the 
size of the given relation. If the two numbers are equal, the database losslessly 
represents the relation. Otherwise, we know that no tree representation exists. The 
size of a relation represented by the tree can be computed in linear time [4], and 
(for the sake of completeness) an algorithm for doing so is henceforth described. 

Given a directed tree (arcs are directed from a parent to its children), choose an 
ordering, d, on the attributes, such that a parent always precedes all its children. 
Let N(xj,) stands for the size of the projection of p on the variables in the subtree 
rooted at Xi, after selecting those with X, = xi!. Consider a node X, with all its child 
successor nodes as in Fig. 9. 

Xi 
x; 

FIG. 9. Schematic computation of relation size on trees. 
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Looking first on the association between A’, and a specific child node X,, it is 
clear that the value xi! can participate in a consistent tuple with each compatible 
value of A’,, no matter what values are assigned to variables in the subtree rooted 
at A’,. Therefore, the number of tuples consistent with xj, in the subtree rooted at 
X, (i.e., in the projection of p on the variables in the subtree rooted at A’,), denoted 
N,(xj,), is a sum of those contributed by each compatible value of X,.. Namely, 

NX<(X, ) = c JW,.,). (33) 
i.~~r~Dom(X,.)l(.~,,,x~~)~~~,,~} 

Since the partial tuples associated with different successor nodes can be joined (all 
of them have X, = xi,), the size of the joined relation, restricted to xi = xjt and to 
the successors of Xi, will be the product of the corresponding sizes. Therefore, N( .) 
satisfies the following recurrence: 

Nx,,) = n c Wd (34) 

From this recurrence it is clear that the computation of N(xjt) has the following 
steps. For each value xi,, transfer to X,, from each of its children, the sum total of 
the counts computed for the child’s values that are consistent with xjt. The overall 
value of N(x,,) will be computed later by multiplying the summations obtained 
from each of the children. The computation starts at the leaves, initialized to N = 1, 
and progresses towards the root. Each variable performs the counting only after all 
its child nodes computed their counts using the procedure COUNT that follows. 

The procedure COUNT peforms the calculation according to (34). The algo- 
rithm terminates when the root is assigned counts for all its values. The COUNT 
procedure is next defined for a parent node X, and all its children X,, . . . . X,, 

COUNT&,, X,, X2, . . . . X,) 

1. begin 
2. For each (X,, X,) do 
3. For each xP, E Dom(X,,) (for each value of X,) do 
4. I, = c Nx,,) 

.x ‘I ;&I,. X,,) E Pxpx, 
5. end 
6. For each xP, E Dom(X,) do 
7. Wxp,) = fl dx,,) 

/;X, a child 

8. end 
9. end 

Lines 3 and 4 take k2 steps, where k bounds the domain size and, therefore, for 
each parent node, XP, processing takes k2. deg(X,) steps, where deg(X) denotes the 
degree of X in the tree. Thus, the counting for all n variables in the subtree adds 
up to O(nk*). 

571/41/l-2 
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5. PRECISION 

The MWST algorithm, which is part of the tree-decomposing algorithm, bases its 
selection on the weights m(Xi, Xi) given in (32). Therefore, we should compute the 
precision (i.e., the number of binary digits) required to reliably compare the 
weights. Since the weights are used merely to establish relative order, we can 
eliminate the logarithm function in (32) and use as weights, 2” instead of m, thus 
maintaining the same relative order. The new weights m’ = 2” are expressed by 

Since 

n(xi, xj) 

n(xi) n(xj) 
< 1, 

(35) 

(36) 

we get that always m’ < 1. In order to get a lower bound we use the fact that all 
the counts n(x,) and n(x,, xi) are bounded by 1, the size of the input relation, to 
obtain 

(37) 

Representing numbers of this size requires 212 log I binary digits. Hence, the 
precision needed for reliable decomposition requires temporary storage roughly 
quadratic in the size of the relation itself. 

6. TREE- DECOMPOSITION AS APPROXIMATION 

It is clear that there is a very small chance that a random relation has a lossless 
decomposition into a tree of binary relations. If we take the set of binary relations 
generated by projecting the relation on each pair of variables, we get what 
Montanari called the minimal network [16] of the relation. He showed that the 
relation represented by the minimal network (i.e., the relation generated by joining 
all the binary relations in the minimal network) yields the best approximation to 
the original relation among all networks of binary relations. Clearly any tree 
decomposition is just an approximation to the minimal network’s relation. Since 
the number of possible relations having n variables and k values each, is 2k, while 
the number of possible networks of binary relations is roughly 2k2n2 (the number of 
possible tree relations is about O(nk’“)), there is a very small probability that an 
arbitrary relation will have a lossless decomposition by the minimal network, and 
more so by any tree decomposition. 
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When no tree decomposition exists, the decomposition algorithm still produces a 
tree decomposition which is not lossless but can be regarded as an approximation 
to p. In the context of probability distribution we know that the tree, T, generated 
by the algorithm determines a tree-dependent distribution (U,)’ which is the best 
approximation to U, with respect to proximity measure (2). However, it is not clear 
how this proximity measure can be translated into a meaningful distance measure 
for relations. The distance measure (2) for U, is given by 

(38) 

and after some manipulation one can show that minimizing (38) is equivalent to 
maximizing the product 

I-l uJ,)‘(x). (39) 
XCP 

Substituting (30) in (39), results in 

(40) 

Therefore, the algorithm finds a tree, T, which maximizes D’(T). 
We cannot, however (as of this writing), make any theoretical claim regarding 

the relationship between this measure and a more intuitive measure such as the 
number of tuples in the approximating relation. Setting aside the issue of how well 
a relation can be approximated by a tree, we still would like to verify that the 
approximation provided by the MWST method is better than random tree decom- 
positions. To gain insight we performed an initial set of experiments the results of 
which are summarized in Figs. l&12. In the table of Fig. 10, each row shows the 
results associated with one randomly generated relation. We experimented with 
relations having 415 variables each having two values. For each relation we show 
its size (r-size), the size of the relation generated from the MWST decomposition 
(mwst-size) and the size of relations generated from random tree decompositions 
(# Ti). To our satisfaction, in all cases tried, the MWST decomposition was better 
or equal to a random tree decomposition. For larger relations the binary projec- 
tions permitted all four pairs and, therefore, the approximation is equally bad for 
all trees. Later, when we experimented with multi-valued relations (not reported 
here), we could scarcely see cases where the MWST decomposition was outperformed 
by a randomly generated tree. 

Intuitively, one may think that an approximating tree decomposition should 
consist of the tightest binary relations. We followed this intuition and in Fig. 11 we 
compare the MWST decomposition and random trees decompositions with the tree 
generated by the minimum weight spanning tree algorithm, where the weight of 
each arc is the size of the projected binary relation (called minimum projection size 
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FIGURE 10 

FIG. 11. Comparing mwst decomposition with minimum projection size tree (mpst). 



DECOMPOSING A RELATION INTO A TREE 19 

tree-mpst). To our surprise, the trees generated that way provided the worse 
approximations even compared to random tree decompositions. 

As noted earlier, it is quite unfair to judge the approximating power of the tree 
decomposition on an arbitrary relation since even the minimal network which is the 
best possible approximation will do poorly. We therefore evaluated the MWST 
decomposition for relations which are representable by networks of binary relations 
(in this case a random network of binary relations was generated and the relation 
associated with them was computed and served as input to the decomposition algo- 
rithm). The results, tabulated in Fig. 12, show that the MWST decomposition is 
lossless in most cases while in others it provides a very good approximation to the 
relation, much better than any random tree decomposition. 

The quality of the approximation can be enhanced by using also a tree 
approximation of the Complement of p, p = {xIx$p}, which yields a lower bound 
to p. The weights of the arcs associated with the complement relation as well as 
their corresponding binary relations do not require that the complement relation be 
explicitly generated. Assume that, a priori, each variable has k possible values, and 
let ti denote the n-qauntities of the complement relation. The equality 

E(xi, xj) = k”- * - n(x,, x,) (41) 
holds, since any (n - 2)-tuple of all the attributes excluding Xi and X,, which is not 
consistent with (xi, x,) will be consistent with (xi, xi) in p. Similarly, 

ii = k”- ’ - n(x,). (42) 
Thus, the weights fi are given by 

52(X;, Xj) = c (k,-‘--n(x;, xi)) 
(x8, x,) E Dom(X,) x Dom(X,) 

x log 
k”-*--(xi, xi) 

(kn--l -n(x,))(k”-’ -n(xj))’ (43) 

FIG. 12. Comparing mwst-decomposition for relations represenatable by a binary network of relations. 
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With these weights the minimum spanning tree algorithm determines a tree F, so 
that p’ can be generated. The binary relations associated with each arc of this tree 
contain the Cartesian product of the domains of the two attributes excluding those 
pairs (xi, x,) for which ii(xi, x,) is 0. Namely, for each (Xi, X,) E F, 

P cx, = {(xi, xj)l (xi, xj) E Dom(Xi) X Dom(X,); fi(Xi, Xj) > O}. (44) 

pT and p’ provide two bounding sets for the relation p that have a compact 
representation, and the membership of a tuple in each set can be efficiently deter- 
mined. A tuple which is not in pT is definitely not in p and a tuple which is not in 
p’ is definitely in p (see Fig. 13). A tuple belonging to both sets is undetermined. 

Notice, however, that the usefulness of the approximation by the complement 
relation is limited to large relations only. It is apparent (see (41) and (44)) that if 
the relation size, 1, is smaller than k”-* then the projection of the complement 
relation on each pair of variables allows all possible combinations of pairs and the 
approximation generated by such binary relations is the universal relation, thus 
providing no information. By the same token, if the size of the relation itself is very 
big, i.e., if I z (k* - 1) k”-* then approximating the relation itself by binary rela- 
tions will yield the worse approximation-the universal relation. In this case the 
approximation by use of the complement relation may be more informative. In 
summary, if we divide the possible relation sizes into three regions: 1.1 <k”-*; 
2. k”-* < I < (k* - 1) kflm2; 3.1> (k* - 1) k*-*, then only the relation should be 
approximated in the first region, both the relation and its complement should 
be approximated in the second region, and only the complement relation should be 
approximated in the third region. 

An important feature of these approximations is that their quality can be deter- 
mined in advance. The quality of the tree approximation pT can be measured by the 
ratio of its relation size to 1. 

The computation of p’ does not involve a precision problem, since it should only 
be used when I > k” - * and in these cases the size of the complement relation is no 
larger than k*l, where k is the number of values. The 
puting the arc weights of the complement relation are 
in that number. 

precision required for com- 
therefore roughly quadratic 

FIGURE 13 
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7. EXTENSION TO ACYCLIC SCHEMES 

The method described above is restricted to representing, or approximating, a 
relation by a tree of binary relations. It can be generalized to allow relations of 
higher arity in the decomposition as long as they are interconnected via a tree 
structure. Such decompositions are called join-trees [ 111. 

A set of relations R,, . . . . R,, can be associated with a graph, called a clique graph, 
in which the attributes are represented by nodes and pairs of attributes which 
belong to the same relation are connected by an arc. Thus, every relation is 
associated with a clique. A database scheme whose clique graph is chordal (i.e., 
every cycle of length at least four has a chord), and whose maximal cliques 
correspond to relations in the scheme, is called an acyclic scheme [2]. There exists 
an underlying join-tree for such a scheme, namely, the maximal cliques can be 
connected by a tree structure, whose topology dictates an efficient procedure for a 
lossless recovery of the whole relation. The existence of a join-tree enables an 
efficient query processing algorithms and therefore acyclic databases are desirable 
decomposition schemes [2]. 

Since a chordal graph can be associated with an acyclic database scheme whose 
relations are determined by the maximal cliques (i.e., those which are not contained 
in another clique) of the graph, it seems reasonable to extend the decomposition 
target from simple trees, representing only binary relations, to join-trees, having 
relations (cliques) of varying sizes. Since cliques of smaller sizes are preferable, we 
will characterize the join-trees by the cardinality of the cliques and will consider a 
special class of chordal graphs called k-trees. A k-tree is a chordal graph whose 
maximal cliques are of size k + 1 and it can be defined constructively as follows: 

1. A complete graph with k vertices is a k-tree. 
2. A k-tree with r vertices can be extended to r + 1 vertices, by connecting the 

new vertex to all the vertices in a clique of size k. 

In particular, l-trees are ordinary trees. The addition of each vertex (step 2) 
generates a new clique of size k + 1 and, by associating each new clique with one 
“parent clique” which shares k vertices with it, we get a join-tree. Figure 14a 
presents a 2-tree which could be constructed in the order A, B, C, D, E, F. 

\ CDE DBF 

FIGURE 14 
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A possible join tree among the cliques ABC, BCD, DFB, and CDE is given in 
Fig. 14b. For a detailed discussion of the properties of k-trees see [l]. 

Since k-trees represent acyclic schemes, we consider them as a desirable target for 
decomposition. Equation (12) can be extended to any join-tree of an acyclic scheme 
[13]. Given a directed join-tree with relations R,, . . . . R,, when R, is the root of the 
tree, the relation which can be recovered from this scheme satisfies 

vx E p, x = x, ) .*., x,, 1 =@IR,) fi -n(X’Ri) 
i=zn(XIRinRj(i))’ 

(45) 

where Ri represents the set of attributes in the ith relation, (.%I Ri) denotes the 
projection of n-tuple X on the attributes in Ri, and Rjci, is the parent of Ri in the 
join-tree. We can show that if with each join-tree, T, we associate a mapping 

T(%)=n(.flR,) n n(x I Ri) 

(R,, R,(,))E T n(x 1 Ri n RAt))’ 
(46) 

and a measure 

then F,(T) satisfies 

F,(T)= 1 1% W), (47) 
.f’Ep 

where 

Fp(T)=m(R,)+ 1 (m(Ri) - m(Ri n Rj(i))), (48) 
CR,. R,(‘))E 7- 

m( R;) = 1 n(x) log n(x). (49) 
.-fEP,Q 

Associating with each relation pR, the weight 

w( RJ = m( Ri) - m( Ri n Rjci,) 

(for the root, RI, the parent relation is empty), we obtain 

F,(T) = i w(Ri). (51) 
i= 1 

In particular, every join-tree of a k-tree has an F value which can be computed by 
(50). We can prove that: 

THEOREM 5. A relation p has an acyclic decomposition into a k-tree, having a 
join-tree, T, iff T maximizes F over ail other k-trees (and their join-trees). 

The theorem can be proved in the same way as in the binary tree-decomposition 
case, however, here we will present proof of one part of the theorem without using 
the analogy between probabilities and relations. We will show that if T is a join-tree 
representing p, then T maximizes F. 
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Proof of Theorem 5. Since F is a concave and symmetric function on 
I’= { (T(X,), . . . . T(X,))j TE JOIN-TREES OF K-TREES) and it is bounded by a 
symmetric constraint C, T(X) d I [3], where 1 is the size of the relation p, F’s 
extremum (maximum) is achieved when T(2) are all equal. Moreover, since F is 
monotone w.r.t. each of its components, if there exist T such that VX, T(f) = 1, F 
will attain its maximum in this T. I 

We, therefore, seek a k-tree whose directed join-tree has a maximal sum of 
weights. Unfortunately, k-trees do not possess some of the nice properties of 
ordinary trees. In particular, there is no greedy algorithm that enables the deter- 
mination of a k-tree of maximum sum of weights (i.e., k-trees are not matroids 
[9]). Determining the maximum weight k-tree may require exhaustive search 
among all possible k-trees. Alternatively, one can always use a greedy algorithm 
heuristically and arrive at a k-tree which has a (hopefully) good but non-optimal 
F value. 

Such an algorithm can generate the k-tree incrementally. At each step one vertex 
is selected and connected to a clique of size k already in the tree. This determines 
a new clique whose parent will be one of the old cliques that shares k vertices with 
it. The vertex chosen is one which contributes maximum weight according to (50). 
When k = 1 the algorithm is the same as the binary-tree decomposition described 
before, and only in this case is the decomposition guaranteed to be lossless, if one 
exists. Otherwise, the algorithm is heuristic and a lossless decomposition into a 
k-tree may exist even if the algorithm does not arrive at such a decomposition. 

8. CONCLUSION 

We have presented an efficient algorithm for decomposing an n-ary relation into 
a tree of binary relations, and a simple test for checking whether or not the tree 
formed represents the relation. If such a tree decomposition exists, the algorithm is 
guaranteed to find one. Otherwise, the tree generated will fail the test, indicating 
that no tree decomposition into binary relations exists. We then discuss the use of 
tree decomposition of the relation and its complement as an approximation to the 
relation. Finally, we proposed a heuristic algorithm for decomposing any relation 
into an acyclic decomposition of bounded arity by extending the binary-tree decom- 
position scheme into a k-tree decomposition. 

The work reported here has its motivation in the area of constraint satisfaction 
problems (CSPs), which have many applications in AI [lo]. Constraint satisfaction 
involves the assignment of values to variables subject to a set of constraints, where 
each constraint is an i-ary relation on a subset of i variables (i < n), and the task 
is to find one or all solutions. Thus, a network of constraints is an instance of a 
data base scheme, variables in a CSP are attributes in database, and the task of 
finding all solutions is equivalent to creating the join of all relation instances in the 
scheme. As in databases, it was realized in CSPs that tree-like structures provide a 
useful representation that is accompanied by efficient processing algorithms. 
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Normally in a CSP environment the relation itself is not available for decomposi- 
tion (this is the target of processing) but in applications involving large networks 
representing knowledge that is going to be queried repeatedly, it may be worthwhile 
to manipulate the structure of the representation, and the tree-decomposition 
algorithm provides one such tool. Recently, we had developed a greedy 
“qualitative” tree-decomposition scheme which can be applied directly to the 
constraint network (in “Proceedings of AAAI-90, Boston, MA”). 
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