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ABSTRACT

We consider 3-place relations [/ (x, z, y) where, x, y, and z are three non-intersecting
sets of elements (e.g., propositions), and I (x, z, y) stands for the statement: ‘“Knowing z
renders x irrelevant to y.”” We give sufficient conditions on I for the existence of a (minimal)
graph G such that I (x, z, y) can be validated by testing whether z separates x fromy in G.

These conditions define a GRAPHOID.

The theory of graphoids uncovers the axiomatic basis of probabilistic dependencies and
ties it to vertex-separation conditions in graphs. The defining axioms can also be viewed as
inference rules for deducing which propositions are relevant to each other, given a certain state

of knowledge.



1. INTRODUCTION

Any system that reasons about knowledge and beliefs must make use of information
about relevancies. If we have acquired a body of knowledge z and now wish to assess the truth
of proposition x, it is important to know whether it would be worthwhile to consult another pro-
position y, which is not in z. In other words, before we consult y we need to know if its truth
value can potentially generate new information relative to x, information not available from z.
For example, in trying to predict whether I am going to be late for a meeting, it is normally a
good idea to ask somebody on the street for the time. However, once I establish the precise time
by listening to the radio, asking people for the time becomes superfluous and their responses
would be irrelevant. Similarly, knowing the color of X ’s car normally tells me nothing about
the color of Y ’s. However, if X were to tell me that he almost mistook ¥ ’s car for his own, the
two pieces of information become relevant to each other. What logic would facilitate this type

of reasoning?

In probability theory, the notion of relevance is given precise quantitative underpinning
using the device of conditional independence. A variable x is said to be independent of y given
the information z if

Px,ylz)=Px|z)P(y|z)
However, it is rather unreasonable to expect people or machines to resort to numerical
verification of equalities in order to extract relevance information. The ease and conviction with
which people detect relevance relationships strongly suggest that such information is readily
available from the organizational structure of human memory, not from numerical values as-

signed to its components. Accordingly, it would be interesting to explore how assertions about



relevance can be tested in various models of memory and, in particular, whether such assertions

can be derived by simple manipulations on graphs.

Graphs offer useful representations for a variety of phenomena. They give vivid visual
display for the essential relations in the phenomenon and provide a convenient medium for peo-
ple to communicate and reason about it. Graph-related concepts are so entrenched in our
language that one wonders whether people can in fact reason any other way, except by tracing
links and arrows and paths in some mental representation of concepts and relations. Therefore,
if we aspire to use non-numeric logic to mimic human reasoning about knowledge and beliefs,
we should make sure that most derivational steps in that logic correspond to simple operations

on some graphs.

When we deal with a phenomenon where the notion of neighborhood or connectedness is
explicit (e.g., family relations, electronic circuits, communication networks, etc.) we have no
problem configuring a graph which represents the main features of the phenomenon. However,
in modelling conceptual relations such as causation, association, and relevance, it is often hard
to distinguish direct neighbors from indirect neighbors and, so, the task of constructing a graph
representation becomes more delicate. Moreover, once we construct such a graph it is not al-
ways clear which of its topological properties carries meaningful information about the relations

under study.

This paper studies the feasibility of devising graphical representations for relational
structures in which the notion of neighborhood is not specified in advance. Rather, what is

given explicitly is the relation of ‘‘in betweenness.’’ In other words, we are given the means to



test whether any given subset S of elements intervenes in a relation between elements x and y,
but it remains up to us to decide how to connect the elements together in a graph that accounts

for these interventions.

The notion of conditional independence in probability theory is a perfect example of
such a relational structure. For a given probability distribution P and any three variables
X,y,z,itis fairly easy to verify whether knowing z renders x independent of y. However, P
does not dictate which variables should be regarded as direct neighbors. That decision is left to
the conceptualizer who must decide which dependencies to encode in the graph and what decod-

ing techniques to use to recover them.

In the case of probabilistic dependencies, we are fortunate to have the theory of
Markov-Fields. It tells us how to construct an edge-minimum graph G such that each time we
observe a vertex x separated from y by a subset S of vertices, we can be guaranteed that vari-
ables x and y are independent given the values of the variables in .S. Moreover, the set of
neighbors assigned by G to each x coincides exactly with the boundary of x, i.e., the smallest

set of variables needed to shield x from the influence of all other variables in the system.

The theory of graphoids extends this construction to cases where the notion of indepen-
dence is not given probabilistically or numerically. We now ask what /logical conditions should

constrain the relationship:

I(x,z,y)= "knowing z renders x irrelevanttoy”’

so that we can validate it by testing whether z separates x from y in some graph G.



We show that two main conditions (together with symmetry and subset closure) are

sufficient;

(1) weak closure for intersection
I,z w,y) & I(x, 2y, w) ==I(x,z,y (W) and
2 weak closure for union
Ix,z,y gw) ==I(x,z\w,y)

Loosely speaking, (1) states that if y does not affect x when w is held constant and if,
simultaneously, w does not affect x when y is held constant, then neither w nor y can affect x.
(2) states that learning an irrelevant fact (w) cannot help another irrelevant fact (y ) become
relevant. Condition (1) is sufficient to guarantee a unique construction of an edge-minimum
graph G that validates / (x, z, y) by vertex separation. Condition (2) guarantees that the neigh-
borhoods defined by the edges of G coincide with the relevance boundaries defined by I. These
two conditions are chosen as the defining axioms of graphoids and are shown to account for the

graphical properties of Markov-Fields.

This paper is organized as follows: In Section 2 we summarize the properties of proba-
bilistic independencies and their graphical representations. This is done in order to exemplify
and motivate the generalizations embodied in the theory of graphoids and can be skipped by
readers preferring a purely axiomatic approach. Section 3 introduces an axiomatic definition of
graphoids and proves their graph-representation properties. Section 4 discusses a few exten-

sions and outlines open problems awaiting further theoretical development.



2. AN EXAMPLE: PROBABILISTIC DEPENDENCIES AND THEIR GRAPHICAL

REPRESENTATION

Let U ={a, B, - - - ] be afinite set of discrete-valued random variables characterized by
a joint probability function P (*), and let x, y, and z stand for any three subsets of variables in
U. We say that x and y are conditionally independent given z if
P,y |2)=P (x|2)P(y|z) when P(z)>0 (D
Eq.(1) is a terse notation for the assertion that for any instantiation z; of the variables in z and
for any instantiation x; and y; of x and y, we have
Px=x; and y=y;lz=z;) =P x=x;|z=2;) P (y=y;|z=z;) (2)
The requirement P (z) > 0 guarantees that all the conditional probabilities are well defined, and
we shall henceforth assume that P > 0 for any instantiation of the variables in /. This rules out
logical and functional dependencies among the variables; a case which would require special

freatment.

We shall use the notation (x | z | ¥)p orsimply (x | z | ¥) to denote the independence

of x and y given z. Thus,

xlz [y} if Px,ylz)=Px|z)P(©|z) 3)

Note that (x | z | y) implies the conditional independence of all pairs of variables o € x and

B €y, but the converse is not necessarily true.

The conditional independence relation (x | z | y) satisfies the following properties:

xlz]ly)<==>Pxl|y,z)=Px|z) (4.2)



x]lz|y)<==>P@x,z|y)=P(x|z)P(z|y)
x|z ]|y)<==>3f,8 P(x,y,2)=f(x,2)g(y,z)

& lz|y)<==>Px,y,2)=Px|z)P(y,2)

Glzly)==>@&lz,fG)y)
@lz|y)=>&,2)]z]y)
xlylz) & (,ylz|w)=>(@&]y|w) (chaining)

Symmetry:

xlzly)s==>(@ ]z |x)

Closure for subsets:

xlzly,w)==>&x]|z]y) & x|z ]w)

Weak closure for intersection

xly,z|w) & &ly,wlz)=>x]y]z,w)

Weak closure for union:

G lylz,w)==>x|y,z [w)

Contraction:

xly,z | w) & &lylz)y=>@x]y|w)

(4.b)

(4.0)

(4.d)

(5.a)

(5.b)
(5.c)

(6.a)

(6.b)

(6.c)

(6.d)

(6.e)

The proof of these assertions can be derived by elementary means. The properties in (4) and (5)

are taken from Lauritzen (1982) and those in (6) were added for completeness. The properties

in (4) characterize the numeric representation of P, while the rest are purely logical, void of any

association with numerical forms. (6.d) is a derivative of (5.a) using z Cy for f (y), and (5.c)

is a consequence of (6.d) and (6.e). A graphical interpretation for properties (5.c) to (6.e) can be

obtained by envisioning the chain x —y—z—w and associating the triplet (x | z | y) with the



statement ‘‘z separates x from y’’ or “‘z intervenes between x and y.”’ The five properties in
(6) are logically independent and can form an axiomatic, possibly complete, basis for a logic of
independencies. However, rather than pursuing this prospect, we focus on the correspondence

between | and vertex separation in graphs.

Ideally, we would like to display independence between variables by the lack of connec-
tivity between their corresponding nodes in some graph G. Likewise, we would like to require
that if the removal of some subset S of nodes from the graph renders nodes x and y disconnect-
ed, written <x | |y >, then this separation should correspond to conditional independence
between x and y given §, namely

<x|[S|y>g=>& S [y

and conversely,

1S [y)p==><xx|S]|y>¢
This would provide a clear graphical representation for the notion that x does not affect y direct-
ly, that its influence is mediated by the variables in §. Unfortunately, we shall next see that
these two requirements might be incompatible; there might exist no way to display all the in-

dependencies embodied in P by vertex separation in a graph.

Definition

An undirected graph G is a dependency map (D-map) of P if there is a one-to-one
correspondence between the variables in P and the nodes of G, such that for all non-intersecting

subsets, x, y, S of variables we have:



[ § [y)p==><x|S|y>¢ @)
Similarly, G is an Independency map (I-map) of P if:

@® LS 1y)p <= <x|S|y>¢ (8)
A D-map guarantees that vertices found to be connected are indeed dependent; however, it may
occasionally display dependent variables as separated vertices. An I-map works the opposite
way: it guarantees that vertices found to be separated always correspond to genuinely indepen-
dent variables but does not guarantee that all those shown to be connected are in fact dependent.

Empty graphs are trivial D-maps, while complete graphs are trivial I-maps.

Lemma

There are probability distributions for which no graph can be both a D-map and an I-map.
Proof

Graph separation always satisfies <x |S|y>g ==> <x [§ ) S,|y > for any two subsets S
and S, of vertices. Some P ’s, however, may induce both (x | §; | y)p and NOT

(x | S1 U S21y)p. SuchP’s cannot have a graph representation which is both an I-map and
a D-map because D-mapness forces G to display S as a cutset separating x and y, while I-
mapness prevents S \_J S, from separating x and y. No graph can satisfy these two require-

ments simultaneously. Q.E.D.

A simple example illustrating the conditions of the proof involves an experiment with
two coins and a bell that rings whenever the outcomes of the two coins are the same. If we ig-
nore the bell, the coin outcomes are mutually independent, i.e., S| = &. However, if we notice
the bell (S), then learning the outcome of one coin should change our opinion about the other

coin.

10



Being unable to provide a graphical description for all independencies, we settle for the
following compromise: we will consider only I-maps but will insist that the graphs in those
maps capture as many of P ’s independencies as possible, i.e., they should contain no

superfluous edges.

Definition
A graph G is a minimal I-map of P if no edge of G can be deleted without destroying its I-

mapness.

Theorem

Every P has a (unique) minimal I-map G ( produced by connecting only pairs (o, B) for which:
(@ | U-a—B | B)p is FALSE )]

[i.€., deleting from the complete graph all edges (o, B) for which (o | U—o—p | B)p].

Proof

(1) G g is an I-map -- The proof found in the literature is rather lengthy and involves the pro-
perties of Markov Fields (see Lauritzen, 1982). In section 3 we show that it follows

directly from (6.c).

(2) G o is minimal and unique -- deleting any of its (a, 3) edges would render o separable
from [ by the complementary set U —o—[ and would lead us to predict (by I-mapness)
(o | U-a—B | B)p. However, this prediction would be false; otherwise (by the con-

struction method of G ), (o, B) would not be connected in the first place. Q.E.D,

We call G (P ) -- The MARKOV-NET of P.
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Definition
A Markov boundary Bp (o) of variable o is a minimal subset S that renders o independent of all

other variables, i.e.,

@[S | U-S—o)p, & S, (10)

and simultaneously, no proper subset S’ of S satisfies (& | S’ | U=S'—a)p. Ifno S satisfies

(10), define Bp() = U — «.

Theorem
Each variable o, has a unique Markov boundary Bp () that coincides with the set of vertices

Bg (o) adjacent to o in the Markov net G,

Proof

) Bp(0) is unique because, from (6.c), the family of sets satisfying (10) is closed under in-

tersection.
(2) Bg (o) satisfies the condition in (10) because G is an I-map.

(3) Bg (@) is contained in every set S satisfying (10), because otherwise (following (6.d)) at

least one of its members should not have been connected to o. Q.E.D.

The usefulness of the preceding theorem lies in the fact that in many cases it is the Mar-
kov boundaries Bp () that define the organizational structure of human memory (e.g., storing
the immediate consequences and/or justifications of each action or event (Doyle, 1979)). The

fact that Bp (1) coincides with B (o) guarantees that many independency relationships can be

validated by tests for graph separation at the knowledge level itself (Pearl, 1985).

12



3 GRAPHOIDS

Definition

A graphoid is a setI of triples (x, z, y) where x, z, y are three non-intersecting subsets
of elements drawn from a finite collection U = {a, B, - - - }, having the following four proper-

ties. (We shall write 7 (x, y, z) to state that the triple (x, y, z) belongs to graphoid /7 .)

Symmetry -- I (x,z,y) <==>I(y, z, x) (11.a)
Subset Closure -- I (x, z,y \ yw)=>1(x,z,y) & (x,z,w) (11.b)
Intersection - I (x, z (yw,y) & (x,z Uy.w)=>Ix,z,y yw) (11.¢)
Union--I(x,z,y \w)==>1(x,z Yw,y) (11.d)

For technical convenience we shall adopt the convention that I contains all triples in which ei-

ther x ory are empty, i.e., I (x, z, &).

If U stands for the set of vertices in some graph G, and if we equate I (x, z, y) with the

[4

statement: “‘z separates between x and y,’’ written <x |z |y >, then the conditions in (11) are

clearly satisfied. However, not all properties of graph separation are required for graphoids. For

example, in graphs we always have [ <a.|z |B>g & <u|z |y>g ] iff <a| z | B y>¢ while

property (11.b) requires only the “‘if’” part. Similarly, graph separation dictates:
x|zly>g=> x|z ywly>g Vw

while (11.d) severely restricts the conditions under which a separating set z can be enlarged by

w.

13



Definition

A graph G is said to be an I-map of I if there is a one-to-one correspondence between
the elements in U and the vertices of G, such that, for all non-intersecting subsets x, y, § we

have:
<x|S |y>g ==>1(x,S5,y) (12)
Theorem-1
Every graphoid / has a unique edge-minimum I-map G 4. G o= (U, E ) is constructed
by connecting only pairs (o, ) for which the triple (o, U—o—f, B) isnotin 7, i.e.,
(o, B) e Ey iff I(a, U-a—PB, B) (13)

Proof
(1) We first prove that G ( is an I-map using descending induction:

@) Letn=|U|. For |S | = n—2 the I-mapness of G is guaranteed by its method of

construction (13).

(ii) Assume the theorem holds for every S’ with size |S’| =k £n-2, and let S be

any sets.t. [S| =k—1and <x |§ |y>g,. We distinguish two subcases:

xS yy=UandX yS yy=zU.

(i) IfX S Uy =U theneither |[x| 22or |y| 22. Assume, without loss of
generality, that |y| 22,ie.y =y" (Y. From <x |§ |y>g, and obvious proper-

ties of vertex separation in graphs, we conclude <x | S\ Y|y >¢, and

14



2)

(iv)

< |S Y| v>¢, The two separating sets, S \JYand S \y, are at least

| S| + 1=k in size; therefore, by induction hypothesis

T, 5 U%y) & Ix, Sy,
Applying the intersection property (11.c) yields the desired result: 1(x, S, y).

Ifx S Uy # U, then there exists at least one element 8 which is not in
xS Y, and for any such 6 two obvious properties of graph separation hold:

< |§ U dly>g, (14)

and:

either <x[S Yy | 6>, or <8|S yx|y> or both. (15)
The separating sets above are at least |S | + 1 =k in size; therefore, by induction
hypothesis:

Ix,SUdy) & I(x,5y,d), (16)

or:
I(x,SyUdy) & IG,SUx,y) (17)
Applying the intersection property (11.c) of graphoids to either (16) or (17)

yields I (x, S, y), which establishes the I-mapness of G .

Next we show that G is edge-minimum and unique, i.e., that no edge can be deleted

from G o without destroying its I-mapness. Indeed deleting an edge (a.,3) € E  leaves o

separated from B by the complementary set U —o—f, and if the resulting graph is still an

I-map, we can conclude 7 (o, U—0—~B, B). However, from the method of constructing G

and from (o, B) € E  we know that (o, U—o—f, B) is not in /. Thus, no edge can be re-

moved from G, and its minimality and uniqueness are established. Q.E.D.

£



Note that the union property (11.d) is not needed for the proof.
Definition

A relevance sphere R;(0i) of an element o € U is any subset S of elements for which

I(o,S,U~S~-a) and o€ S (18)

Let R;"(ct) stand for the set of all relevance spheres of a.. A set is called a relevance boundary

of a, denoted B;(w), if it is in R;"(ct) and if, in addition, none of its proper subsets is in R;*(cx).

Bj(o) is to be interpreted as the smallest set that “‘shields’ o from the influence of all
other elements. Note that R;"(cr) is non-empty because / (x, z, &) guarantees that the set

S = U—a satisfies (18).

16



Theorem 2

Every element o € U in a graphoid I has a unique relevance boundary B;(c). Bj(ct)

coincides with the set of vertices B (o) adjacent to o in the minimal graph G .

Proof

)

(i)

(iii)

(iv)

B (o) is unique because the intersection property of graphoids (11.c) renders R (o)
closed under intersection. Moreover, Bj(ct) equals the intersection of all members of

R/ ().

Conversely, every relevance sphere R € R;'(x) remains in R;"(cr) after we add to it an
arbitrary set of elements S’, not containing a. This follows from the union property of
graphoids (11.d). In particular, if there is an element B outside By () _y o then U—o—B
is in R/ (o).

From (ii) we conclude that for every element [ # o outside B;(x), we have

I(a, U—0~f, B), meaning B could not be connected to o in G . Thus,

Bg (o) =B (o) (19)

To prove that B¢ (or) actually coincides with By (o) it is sufficient to show that Bg (o) is

in R;"(c), but this follows from the fact that G g, as an I-map, must satisfy (18).

QED.

Corollary 1

The set of relevance boundaries B;(¢) forms a neighbor system, i.e., a collection

B/ ={B;(0) : oo € U} of subsets of U such that

@
(i)

o € Bj(e), and

oeB;(B) iff PeByo), oPel

17



Corollary 2
The edge-minimum I-map G can be constructed by connecting each o to all members

of its relevance boundary B;(ct).

Thus we see that the major graphical properties found in probabilistic independencies are
consequences of the intersection and union properties, (11.c) and (11.d), and will therefore be

shared by all graphoids.

An Illustration
To illustrate the role of these properties consider a simple graphoid defined on a set of

four integers U ={ (1, 2, 3,4 }. Let[ be the set of twelve triples listed below:
1={(1,2,3),(1,3,4), (2,3,4),({1,2},3,4), (1, {2,3},4), (2, {1, 3}, 4), + symmetrical images }

It is easy to see that / satisfies (11.a)-(11.d) and thus it has a unique minimal I-map G ;, shown
in Figure 1, This graph can be constructed either by deleting the edges (1, 4) and (2, 4) from the
complete graph or by computing from / the relevance boundary of each element, i.e.,

B[(1)={2’3}!BI(2)={1’3}’31(3)={1: 2!4}331(4):{3.}'

Suppose that I contained only the last two triples (and their symmetrical images)
I'={(1,{2,3},4), (2,{1,3},4), + symmetrical images }
I" is clearly not a graphoid because the absence of the triples (1, 3, 4) and (2, 3, 4) violates the
intersection axiom (11.c). Indeed, if we try to construct G ( by the usual criterion of edge dele-
tion, the graph in Figure 1 ensues, but it is no longer an I-map of /”; it shows 3 separating 1
from 4 while (1, 3, 4) is notin /”. In fact, the only I-maps of /” are the three graphs in Figure 2,

and the edge-minimum graph is clearly not unique.

18



Now consider the list
1”=((1,2,3),(1,3,4),(2,3,4),({ 1,2}, 3,4), + images }
17 satisfies the first three axioms (11.a)-(11.c) but not the union axiém (11.d). Since no triple of
the form (c, U~0—B, B) appears in /”, the only I-map for this list is the complete graph. How-
ever, the relevance boundaries of /” do not form a neighbor set; e.g., B;+(4) = 3,

BI"(2) = { 1, 3, 4}, so2¢é B[" (4) while 4 € BI"(Z).

Note that the graphoid / does not possess the contraction property (6.e) of probabilistic
dependencies. Therefore, there is no probabilistic model capable of inducing this set of

relevance relationships unless we also add to / the triplet (1, 2, 3).

4
FIGVRE 4 — The Mndwnd T-map G,, 0 T,

4 1

FIGURE 2 = Tk Three Iwafs of I,
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4. SPECIAL GRAPHOIDS AND OPEN PROBLEMS

In this section we study the special types of graphoid systems which have restricted
domains of application. The most restricted type of graphoid is that which is isomorphic to
some underlying graph, i.e., all triples (x, z, y) in I reflect vertex-separation conditions in an

actual graph. We shall call this class of graphoids graph-induced.

4.1 Graph-induced Graphoids

Definition

A graphoid [ is said to be graph-induced if there exists a graph G such that
I(x,z,y)<==><x|z|y >¢ (20)

The left-pointing implication is automatically guaranteed for all graphoids. It is the

right-pointing implication that makes this class unique and restricted.

Definition
Let L be an arbitrary set of triples (x, z, y), where x, y, z are non-intersecting subsets of
U. A graph G is said to be a D-map of L if there is a correspondence between U and the ver-
tices of G such that
(x,z,y)e L =><x|z|y > . (21)
With this terminology we can say that a graphoid J is graph-induced whenever there exists a

graph which is both an I-map and a D-map of /.

Lemma-2

A sufficient condition for a graphoid to be graph-induced is that G o(/) is a D-map of /,

20



ie.,

I(x,z,y)==><x|z|y >q, (22)
where G is constructed from 7 using the connecting criterion of (13).

Proof

The I-mapness of G, together with (22), implies (20).

Theorem-3

A necessary and sufficient condition for a graphoid / to be graph induced is that it

satisfies the following five axioms:

Ix,z,y)<=>1(y,z,x) (symmetry) (23.a)
Ix,z,y yw)=>I(x,z,y) & I(x,z,w) (subset closure) (23.b)
Ix,z yw,y) & I(x,z Yy, w)=>1I(x,z,y U w) (intersection) (23.c)
Ix,z,y)==>I(x,z \yw,z) VwcU (strong union) (23.d)

I(x,z,y)==>1(x,z,¥) or I(Y,z,y) VYéx\yz Yy (transitivity) (23.e)

Remarks

(23.c) and (23.d) imply the converse of (23.b), which makes I completely defined by the
set of triples (x, z, y) in which x and y are individual elements of U. Equivalently, we can ex-
press the axioms in (23) in terms of such triples. Note also that the union axiom (23.d) is un-
conditional and therefore stronger than the one required for general graphoids (11.d). It allows
us to construct G o by simply deleting from a complete graph every edge (0., B) for which a tri-
ple of the form (e, S, B) appears in /. These five axioms are independent and imply all the pro-

perties of probabilistic dependencies, especially chaining (5.c) and contraction (6.e).

Z1



Proof

L, The necessary part follows from the observation that all five properties are satisfied by

vertex separation in graphs.

2, To prove sufficiency we need to show that for any set I of triples (x, z, y) satisfying
(23.a2)-(23.¢) there exists a graph G such that (x, z, y) is in 7 iff z is a cutset in G that
separates x from y. We show that G is such a graph. In view of Lemma 2 and the re-

mark above, it is sufficient to show that

I(o,S,B)==><alS B>, aPelU,ScU

This is proved by descending finite induction:
@) For |§'| = n-2 the theorem holds automatically, from the way G is constructed.

(i)  Assume the theorem holds for any S with size | S| =k <n-2. Let S’ be any set

of size |S’| =k~—1.

(iif) ~ For k < n-2, there exists an element y outside S”(_ oty B, and, using (23.d),

we have: I (0, §7, B)y==>I(0,, S" U 7, B).
(iv) By (23.e) we have either 7 (o, S’, y) or I (v, S*, B).

(v) Choosing the first alternative in (iv) (the latter gives an identical result) and ap-

plying (23.d) gives I (o, S” (U B, V).

(vi)  The middle arguments in (iii) and (v) are both of size &, so by induction hy-

pothesis we have: < a|S"\ ¥IB >¢, and < | S BV >g,,
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(vii) By the intersection property (23.c) for vertex-separation in graphs, these two

assertions imply < &.|S’| B >5,. QE.D.

4.2 Probabilistic Graphoids

DEFINITION

A graphoid is called probabilistic if there exists a probability distribution P on the vari-

ables in U such that [ (x, z, y) iff x is independent of y given z, i.e.,
Ix,z,y)<==>(x |z |y)p (24)

In other words, probabilistic graphoids capture the notion of conditional independence in
Probability Theory. The properties of this family of graphoids were discussed in detail in Sec-
tion 2, where it was shown that the graphical properties of Markov nets stem from the two gra-

phoid axioms, Egs. (6.c) and (6.d).
Since every probabilistic-independence relation satisfies (6.a)-(6.e) we have:

Lemma-3
A necessary condition for a graphoid to be probabilistic is that, in a;ddition to (11), it also
satisfies the contraction property (6.e), i.e.,
Ix,y z,w) & Ix,y,z)=>1(x,y,w) (25)
(25) can be interpreted to state that if we judge w to be irrelevant (to x) after learning some ir-
relevant facts z, then w must have been irrelevant before learning z. Together with the union
property (11.d) it means that learning irrelevant facts should not alter the relevance status of oth-

er propositions in the system; whatever was relevant remains relevant and what was irrelevant
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remains irrelevant.

Conjecture

The contraction property (25) is sufficient for a graphoid to be probabilistic.

Unlike the sufficiency proof for graph-induced graphoids, we found no way of construct-
ing a distribution P that yields / (x,z,y) ==> (x | z | y)p forevery I that satisfies (25). We,

therefore, leave this conjecture as an open question.
4.3  Correlational Graphoids

Let u consist of » random variables u ,u,, . . ., u,, and let z be a subset of u such that
|z|<n—2. The partial correlation coefficient of u; and u ; with respect to z, denoted p;; 7,
measures the correlation between u; and u; after subtracting from them the best linear estimates
using the variables in z (Cramér, 1946). In other words, Pij- measures the correlation that

remains after removal of any part of the variation due to the influence of the variables in z.
Definition

Let x,y,z be three nonintersecting subsets of u. A relation I, (x,y,z) is said to be

correlation-based if for every u;ex and ujey we have:

I.(x,y,2) <==>pj;, =0 (26)

In other words, x is considered irrelevant to y and relative to z if every variable in x is uncorre-

lated with every variable in y, after removing the (linear) influence of the variables in z.
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Theorem-4

Every correlation-based relation is a graphoid which, in addition to axioms (11), also

satisfies the contraction property (25) and the converse of (11.d), i.e.,

IGe,y,2) and ] (x,z,w) ==> [ (1,2, _w) @7)

Conjecture

Every graphoid satisfying (25) and (27) is isomorphic to some correlation-based relation.
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5. CONCLUSIONS

We have shown that the essential qualities characterizing the probabilistic notion of con-
ditional independence are captured by two logical axioms: weak closure for intersection (6.c),
and weak closure for union (6.d). These two axioms enable us to construct an edge-minimum
graph in which every cutset corresponds to a genuine independence condition, and these two ax-
ioms were chosen therefore as the logical basis for graphoid systems — a more general, nonpro-
babilistic formalism of relevance. Vertex separation in graphs, probabilistic independence and
partial uncorrelatedness are special cases of graphoid systems where the two defining axioms are

augmented with additional requirements.

The graphical properties associated with graphoid systems offer an effective inference
mechanism for deducing, in any given state of knowledge, which propositional variables are
relevant to each other. If we identify the relevance boundaries associated with each proposition
in the system, and treat them as neighborhood relations defining a graph G, then we can
correctly deduce irrelevance relationships by testing whether the set of currently known proposi-

tions constitutes a cutset in G .
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Figure 1: The Minimal I-Map, G,, of |

Figure 2: The Three I-Maps of | '




