
Appendix
Proof of Theorem 4
Theorem 4. Given a causal diagram G and a distribution
compatible with G, let W ∪ U be a set of variables satisfy-
ing the back-door criterion in G relative to an ordered pair
(X,Y ), where W ∪ U is partially observable, i.e., only prob-
abilities P (X,Y,W ) and P (U) are given, the causal effects
of X on Y are then bounded as follows:

LB ≤ P (y|do(x)) ≤ UB

where LB is the solution to the non-linear optimization prob-
lem in Equation 9 and UB is the solution to the non-linear
optimization problem in Equation 10.

LB = min
∑
w,u

aw,ubw,u

cw,u
, (9)

UB = max
∑
w,u

aw,ubw,u

cw,u
, (10)

where,∑
u

aw,u = P (x, y, w),
∑
u

bw,u = P (w),∑
u

cw,u = P (x,w) for all w ∈W ;

and for all w ∈W and u ∈ U,

bw,u ≥ cw,u ≥ aw,u,

max{0, p(x, y, w) + p(u)− 1} ≤ aw,u,

min{P (x, y, w), p(u)} ≥ aw,u,

max{0, p(w) + p(u)− 1} ≤ bw,u,

min{P (w), p(u)} ≥ bw,u,

max{0, p(x,w) + p(u)− 1} ≤ cw,u,

min{P (x,w), p(u)} ≥ cw,u.

Proof. To show that the LB and UB bound the actual
causal effects, we only need to show that there exists a
point in feasible space of the non-linear optimization that∑

w,u
aw,ubw,u

cw,u
is equal to the actual causal effects.

Since W ∪U satisfies the back-door criterion, by adjustment
formula in Equation 1, we have,

P (y|do(x)) =
∑
w,u

P (y|x,w, u)P (w, u)

=
∑
w,u

P (x, y, w, u)P (w, u)

P (x,w, u)

Let

aw,u = P (x, y, w, u)

bw,u = P (w, u)

cw,u = P (x,w, u)

We now show that the above set of aw,u, bw,u, cw,u are in
feasible space.

We have,

for w ∈W,∑
u

aw,u =
∑
u

P (x, y, w, u) = P (x, y, w),∑
u

bw,u =
∑
u

P (w, u) = P (w),∑
u

cw,u =
∑
u

P (x,w, u) = P (x,w);

and,

for all w ∈W and u ∈ U,

bw,u = P (w, u) ≥ P (x,w, u) = cw,u,

cw,u = P (x,w, u) ≥ P (x, y, w, u) = aw,u,

aw,u = P (x, y, w, u) ≤ min{P (x, y, w), p(u)},
bw,u = P (w, u) ≤ min{P (w), p(u)},
cw,u = P (x,w, u) ≤ min{P (x,w), p(u)},
aw,u = P (x, y, w, u) ≥
max{0, p(x, y, w) + p(u)− 1},
bw,u = P (w, u) ≥ max{0, p(w) + p(u)− 1},
cw,u = P (x,w, u) ≥ max{0, p(x,w) + p(u)− 1}.

Therefore, the above set of aw,u, bw,u, cw,u are in feasible
space, and thus, the UB and LB bound the actual causal
effects.

Proof of Theorem 5
Theorem 5. Given a causal diagram G and distribution com-
patible with G, let W ∪U be a set of variables satisfying the
front-door criterion in G relative to an ordered pair (X,Y ),
where W ∪ U is partially observable, i.e., only probabilities
P (X,Y,W ) and P (U) are given and P (x,W,U) > 0, the
causal effects of X on Y are then bounded as follows:

LB ≤ P (y|do(x)) ≤ UB

where LB is the solution to the non-linear optimization prob-
lem in Equation 11 and UB is the solution to the non-linear
optimization problem in Equation 12.

LB = min
∑
w,u

bx,w,u

P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
, (11)

UB = max
∑
w,u

bx,w,u

P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
, (12)

where,∑
u

ax,w,u = P (x, y, w),
∑
u

bx,w,u = P (x,w)

for all x ∈ X and w ∈W ;

and for all x ∈ X ,w ∈W , and u ∈ U,

bx,w,u ≥ ax,w,u,

max{0, p(x, y, w) + p(u)− 1} ≤ ax,w,u,

min{P (x, y, w), p(u)} ≥ ax,w,u,

max{0, p(x,w) + p(u)− 1} ≤ bx,w,u,

min{P (x,w), p(u)} ≥ bx,w,u.
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Proof. To show that the LB and UB bound the actual
causal effects, we only need to show that there exists a
point in feasible space of the non-linear optimization that∑

w,u
bx,w,u

P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
is equal to the actual causal

effects.
Since W ∪ U satisfies front-door criterion and
P (u,W,U) > 0, by adjustment formula in Equation
2, we have,

P (y|do(x)) =
∑
w,u

P (w, u|x)
∑
x′

P (y|x′, w, u)P (x′)

=
∑
w,u

P (x,w, u)

P (x)

∑
x′

P (x′, y, w, u)P (x′)

P (x′, w, u)
.

Let

ax,w,u = P (x, y, w, u),

bx,w,u = P (x,w, u).

Similarly to the proof of Theorem 4, it is easy to show that the
above set of ax,w,u, bx,w,u are in feasible space, and therefore,
LB and UB bound the actual causal effects.

Proof of Theorem 7
Theorem 7. Let G be a causal diagram containing nodes
{V1, ..., Vn−3, X, Y, Z}. Let O be any observational data
compatible with G. Suppose there exists a set of variables
that satisfies the back-door or front-door criterion relative
to (X,Y ) in G, then, (G,O) is equivalent to (G′, O′) (G′
containing nodes {V1, ..., Vn−3, X, Y,W,U}; O′ is observa-
tional data compatible with G′), where the number of states
in W times the number of states in U is equal to the number
of states in Z, and the structure of G′ and the observational
data O′ are obtained as follows:

Structure of G′:
Let ParentsG(H) be the parents of H in causal diagram G.
ParentsG′(U) = ParentsG(Z), ParentsG′(W ) =
ParentsG(Z) ∪ {U},
ParentsG′(H) = ParentsG(H) if Z /∈ ParentsG(H)
for H ∈ {V1, ..., Vn−3, X, Y },
ParentsG′(H) = ParentsG(H) \ {Z} ∪ {W,U} if Z ∈
ParentsG(H) for H ∈ {V1, ..., Vn−3, X, Y }.

Note that, let Q be the set of variables in G that satisfies
the back-door or front-door criterion relative to (X,Y ), then
Q′ satisfies the back-door or front-door criterion relative to
(X,Y ) in G′ , where
Q′ = Q if Z /∈ Q,
Q′ = Q \ {Z} ∪ {W,U} if Z ∈ Q.

Observational data:
Let the number of states in W be p, and let the number of
states in U be q.
The states of Z is the Cartesian product of the states of W and
the states of U.
In detail, (wj , uk) is equivalent to z(j−1)∗q+k, wj is
equivalent to ∨qk=1(wj , uk) = ∨qk=1z(j−1)∗q+k, and
uk is equivalent to ∨pj=1(wj , uk) = ∨pj=1z(j−1)∗q+k,
i.e., P (wj , uk, V ) = P (z(j−1)∗q+k, V ) for any V ⊆
{V1, ..., Vn−3, X, Y }.

Proof. First, we show that Q′ satisfies the back-door or
front-door criterion relative to (X,Y ) in G′.

If Q satisfies the back-door criterion relative to (X,Y ) in
G, we need to show that,

• no node in Q′ is a descendant of X .

• Q′ blocks every path between X and Y that contains an
arrow into X .

It is easy to show that if there is a node in Q′ that is a descen-
dant of X in G′, then there is a node in Q that is a descendant
of X in G. And if there is a path between X and Y that
contains an arrow into X does not blocked by Q′ in G′, then
there is a path between X and Y that contains an arrow into
X does not blocked by Q in G. Thus, Q′ satisfies the back-
door criterion relative to (X,Y ) in G′. Similarly, we can
show that if Q satisfies the front-door criterion relative to
(X,Y ) in G, then Q′ satisfies the front-door criterion relative
to (X,Y ) in G′.

Now, we show that (G,O) is equivalent to (G′, O′), i.e.,
show that P (y|do(x)) is the same between (G,O) and
(G′, O′). Suppose Q satisfies the back-door criterion relative
to (X,Y ) in G. By adjustment formula in Equation 1, we
have,
P (y|do(x)) =

∑
q∈Q P (y|x, q) × P (q) =∑

q∈Q
P (x,y,q)×P (q)

P (x,q) .
And in G′,
P (y|do(x)) =

∑
q∈Q′ P (y|x, q) × P (q) =∑

q∈Q′
P (x,y,q)×P (q)

P (x,q) ,
it is obviously that these two causal effects are the
same, because P (wj , uk, V ) = P (z(j−1)∗q+k, V ) for any
V ⊆ {V1, ..., Vn−3, X, Y }.
Similarly, we can show that if Q satisfies the front-door
criterion relative to (X,Y ) in G, (G,O) is equivalent to
(G′, O′).

Simulation Algorithm for Generating Sample
Distributions

The two sample distributions generated in the paper (in two
Simulation Results sections) were generated by Algorithm 2
with D equal to the uniform distribution.



Algorithm 2: Generate-cpt()
Input: n causal diagram nodes (X1, ..., Xn); Distribution D.
Output: n conditional probability tables for
P (Xi|Parents(Xi)).

1: for i = 1 to n do
2: s = num instantiates(Xi);
3: p = num instantiates(Parents(Xi));
4: for k = 1 to p do
5: sum = 0;
6: for j = 1 to s do
7: aj = sample(D);
8: sum = sum+ aj ;
9: end for

10: for j = 1 to s do
11: P (xij |Parents(Xi)k) = aj/sum;
12: end for
13: end for
14: end for

Construction of the Data in Table 4

P (u,w) = P (z1),

P (u,w′) = P (z2),

P (u′, w) = P (z3),

P (u′, w′) = P (z4),

P (u) = P (u,w) + P (u,w′)

= P (z1) + P (z2) = 0.5,

P (w|u) = P (u,w)/p(u)

= P (z1)/P (u) = 0.3/0.5 = 0.6,

P (w|u′) = P (u′, w)/p(u′)

= P (z3)/(1− P (u)) = 0.2/0.5 = 0.4,

P (x|u,w) = P (x|z1) = 0.1,

P (x|u,w′) = P (x|z2) = 0.4,

P (x|u′, w) = P (x|z3) = 0.5,

P (x|u′, w′) = P (x|z4) = 0.7,

P (y|x, u, w) = P (y|x, z1) = 0.2,

P (y|x′, u, w) = P (y|x′, z1) = 0.3,

P (y|x, u, w′) = P (y|x, z2) = 0.7,

P (y|x′, u, w′) = P (y|x′, z2) = 0.1,

P (y|x, u′, w) = P (y|x, z3) = 0.6,

P (y|x′, u′, w) = P (y|x′, z3) = 0.5,

P (y|x, u′, w′) = P (y|x, z4) = 0.5,

P (y|x′, u′, w′) = P (y|x′, z4) = 0.4.

Construction of the Distribution in the Example of
Dimensionality Reduction
Here is how the data used in the example of Dimen-
sionality Reduction were generated (both P (X,Y, Z) and
P (X,Y,W ), P (U)). Instead of providing the resulting 1024
rows of the observational data, we provide the details for
regenerating the observational data as following steps.
• Generate P (X,Y, Z) using Algorithm 2.

• Let P (X,Y,wj , uk) = P (X,Y, z(j−1)∗16+k).

• Let P (X,Y,wj) =
∑q

k=1 P (X,Y,wj , uk).

• Let P (X,Y, uk) =
∑p

j=1 P (X,Y,wj , uk).

• Let P (uk) =
∑

X,Y P (X,Y, uk).

For example,

P (u1)

=
∑
X,Y

P (X,Y, u1)

= P (x, y, u1) + P (x, y′, u1) +

+P (x′, y, u1) + P (x′, y′, u1)

=

16∑
j=1

P (x, y, wj , u1) +

16∑
j=1

P (x, y′, wj , u1) +

+

16∑
j=1

P (x′, y, wj , u1) +

16∑
j=1

P (x′, y′, wj , u1)

=

16∑
j=1

P (x, y, z(j−1)∗16+1) +

+

16∑
j=1

P (x, y′, z(j−1)∗16+1) +

16∑
j=1

P (x′, y, z(j−1)∗16+1) +

+

16∑
j=1

P (x′, y′, z(j−1)∗16+1),

P (x, y, w1)

=

16∑
k=1

P (x, y, w1, uk)

=

16∑
k=1

P (x, y, zk).
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