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Abstract

The unit selection problem aims to identify a set of individuals
who are most likely to exhibit a desired mode of behavior,
for example, selecting individuals who would respond one
way if encouraged and a different way if not encouraged. Us-
ing a combination of experimental and observational data, Li
and Pearl derived tight bounds on the “benefit function” - the
payoff/cost associated with selecting an individual with given
characteristics. This paper shows that these bounds can be
narrowed significantly (enough to change decisions) when
structural information is available in the form of a causal
model. We address the problem of estimating the benefit func-
tion using observational and experimental data when specific
graphical criteria are assumed to hold.

Introduction
In many areas of industry, marketing, and health science, the
unit selection dilemma arises. For example, in customer rela-
tionship management (Berson, Smith, and Thearling 1999;
Lejeune 2001; Hung, Yen, and Wang 2006; Tsai and Lu
2009), it is useful to know which customers are going to
churn but might reconsider if encouraged to stay. Due to the
high expense of such initiatives, management is forced to
limit inducement to customers who are most likely to exhibit
the behavior of interest. As another example, companies are
interested in identifying users who would click on an adver-
tisement if and only if it is highlighted in online advertising
(Yan et al. 2009; Bottou et al. 2013; Li et al. 2014; Sun et al.
2015). The challenge in identifying these users stems from
the fact that the desired response pattern is not observed di-
rectly but rather is defined counterfactually in terms of what
the individual would do under hypothetical unrealized condi-
tions. For example, when we observe that a user has clicked
on a highlighted advertisement, we do not know whether
they would click on that same advertisement if it were not
highlighted.

The benefit function for the unit selection problem was
defined by Li and Pearl (Li and Pearl 2019), and it properly
captures the nature of the desired behavior. Using a combi-
nation of experimental and observational data, Li and Pearl
derived tight bounds of the benefit function. The only as-
sumption is that the treatment has no effect on the population
specific characteristics. However, Li-Pearl’s derivation does
not leverage information from auxiliary covariates, if such is

available. Mueller, Li, and Pearl (Mueller, Li, and Pearl 2021)
recently proposed using covariate information and the causal
structure to narrow the bounds of probability of necessity and
sufficiency. Dawid et al. (Dawid, Musio, and Murtas 2017)
also proposed using covariates information to narrow the
bounds of probability of necessity. A similar approach might
be used for the benefit function. Most crucially, the informa-
tion provided by covariates and their causal structure may
result in a reversal of decision (relative to not considering
such covariates).

Consider the following motivating scenario: a carwash
company wants to offer a discount to employees of company
A. The offer can only be presented to the entire company
A; the carwash company will not be able to provide a dis-
count to a specific group inside the company A. The carwash
company’s manager seeks to maximize total profit, includ-
ing nonimmediate profit. The management estimates that
the benefit of selecting a complier (i.e., offer the discount
to a customer who would use the carwash service if they
received the discount, but would not otherwise) is $100 as
the profit is $140 but the discount is $40, that of selecting
an always-taker (i.e., offer the discount to a customer who
would use the carwash service regardless of whether they
received the discount) is −$60 as the customer would use
the service anyway (so the company loses the value of the
discount and an extra cost of $20 because the always-taker
may require additional discounts in the future), that of select-
ing a never-taker (i.e., offer the discount to a customer who
would never use the carwash service regardless of whether
they received the discount) is $0 as the cost of issuing the
discount is negligible, and that of selecting a defier (i.e., offer
the discount to a customer who would not use the carwash
service if they received the discount, but would use the car-
wash service otherwise) is −$140 as the customer is lost due
to the discount. The manager of carwash company has both
experimental and observational data related to customer age
collected from the company A. If the entire company A’s
employees are given the discount, the manager of carwash
wants to know what the average profit will be.

Based on Li-Pearl’s model, it is easy to see that
the benefit vector for the aforementioned example is
(100,−60, 0,−140), and a corresponding benefit function
can be defined as the objective function. Li-Pearl’s model can
then obtain the bounds of the benefit function using experi-
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mental and observational data. The model, however, does not
take into account the covariate information (customer age)
and the causal structure.

In this paper, we show how the information included in
such covariates and their causal structure, can be used to
narrow the bounds of the benefit function in Li-Pearl’s model.
Most importantly, the narrower bounds can, sometimes, flip
the decision.

Preliminaries
In this section, we review Li and Pearl’s benefit function of
the unit selection problem (Li and Pearl 2019). Individual
behavior was classified into four response types: labeled com-
plier, always-taker, never-taker, and defier. Suppose the bene-
fit of selecting one individual in each category are β, γ, θ, δ
respectively (i.e., the benefit vector is (β, γ, θ, δ)). They de-
fined the objective function of the unit selection problem as
the average benefit gained per individual. Suppose a and a′
are binary treatments, r and r′ are binary outcomes, and c
are population-specific characteristics, the objective function
(i.e., benefit function) is following (If the goal is to evalu-
ate the average benefit gained per individual for a specific
population c, argmaxc can be dropped.):

argmaxc βP (ra, r
′
a′ |c) + γP (ra, ra′ |c) +

+θP (r′a, r
′
a′ |c) + δP (r′a, ra′ |c).

Using a combination of experimental and observational data,
Li and Pearl established the most general tight bounds on
this benefit function (which we refer to as Li-Pearl’s Theo-
rem in the rest of the paper). The only constraint is that the
population-specific characteristics are not a descendant of the
treatment.

However, the information of covariates (if available, such
as the age in the motivating example in the previous section)
are not considered. In this paper, we present three common
cases of covariates and their causal structures and theorems
that show how the information about the covariates along
with their causal structures could narrow the bounds of the
benefit function. The improvement of the bounds is some-
times significant and can change the decisions compared to
Li-Pearl’s Theorem.

Selection Criteria with Causal Diagrams
We present three common cases of the covariates and their
causal structures in this section. For each case, we provide a
theorem for estimating the benefit function in such a case. The
proof of all theorems is in the appendix. In any causal diagram
of this paper, the dot line between A and B represents either
A affects B, B affects A, or A and B are independent; the
dot line with arrow from A to B represents either A affects
B or A and B are independent.

Causal Diagram with Non-descendant Covariates
Theorem 1 provides bounds for the benefit function when
a set Z of variables can be measured, which satisfies only
one condition: both population-specific variables C and co-
variates Z contain no descendant of X . This condition is
important because if X is set to x and C ∪ Z contains a

descendant of X , then C ∪Z could be altered and P (yx|z, c)
would be another unmeasurable counterfactual term. If the
descendant is independent of Yx, then P (yx|z, c) would be
measurable, but the descendant would not contribute to any
narrowing of the bounds. These bounds are always contained
within the bounds of the benefit function in Li-Pearl’s Theo-
rem.
Theorem 1. Given a causal diagramG and distribution com-
patible with G, let Z ∪ C be a set of variables that does not
contain any descendant of X in G, then the benefit function
f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) +

δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f(c) ≤W + σL if σ < 0,

W + σL ≤ f(c) ≤W + σU if σ > 0,

where σ,W,L,U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L =
∑
z

max


0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)


×P (z|c),

U =
∑
z

min


P (yx|z, c),
P (y′x′ |z, c),

P (y, x|z, c) + P (y′, x′|z, c),
P (yx|z, c)− P (yx′ |z, c)+

+P (y, x′|z, c) + P (y′, x|z, c)


×P (z|c).

Notably, C can be interpreted as the population-specific
variables, and Z are the attributes in each population. More-
over, the bounds provided above are always no worse than
Li-Pearl’s bound (see proof in the appendix). Besides, if
σ = 0, the Gain Equality is satisfied in Li-Pearl’s model, and
the result of the benefit function is no longer bounds, but a
point estimate.

Causal Diagram with Mediators

Z

X Y

C

Figure 1: Mediator Z with direct effects of X on Y .

Partial Mediators In Figure 1, partial mediator Z is a de-
scendant of X; thus, we cannot use Theorem 1. However,
the absence of confounders (other than population specific
variables C) between Z and Y and betweenX and Y permits
us to bound the benefit function as follows:

Theorem 2. Given a causal diagram G and distribution
compatible with G, let Z be a set of variables such that
∀x, x′ ∈ X : x 6= x′, (Yx ⊥⊥ X ∪ Zx′ | Zx, C) in G, and



C does not contain any descendant of X in G, then the
benefit function f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) +

θP (y′x, y
′
x′ |c) + δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f(c) ≤W + σL if σ < 0,

W + σL ≤ f(c) ≤W + σU if σ > 0,

where σ,W,L, U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ,

U = min



P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c),∑
z

∑
z′ min{P (y|z, x, c),

P (y′|z′, x′, c)}×
min{P (zx|c), P (z′x′ |c)}


.

Although this lower bound is unchanged from that in Li-
Pearl’s Theorem, the upper bound contains a vital additional
argument (i.e., the last term in the min function of U ) to
the min function. This new term can significantly reduce
the upper bound. The rest of the terms are included because
sometimes the bounds of Li-Pearl’s Theorem are superior.
The following theorem has the same quality.

Pure Mediators Figure 2 is a special case of Figure 1, in
which X has no direct effects on Y . The resulting bounds for
the benefit function are as follows:

Theorem 3. Given a causal diagram G in Figure 2
and distribution compatible with G, and C does not
contain any descendant of X , then the benefit function
f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) +

δP (yx′ , y′x|c) is bounded as follows:

C

Z

X Y

Figure 2: Mediator Z with no direct effects of X on Y .

W + σU ≤ f(c) ≤W + σL if σ < 0,

W + σL ≤ f(c) ≤W + σU if σ > 0,

where σ,W,L, U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ,

U = min



P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c),
ΣzΣz′ 6=z min{P (y|z, c),

P (y′|z′, c)}×
min{P (z|x, c), P (z′|x′, c)}


.

The core term (i.e., the last term in the min function of
U ) for Theorem 3 added to the upper bound notably only
requires observational data.

Examples
In this section, we will show how the presented theorems
can be applied to applications and how the theorems affect
judgments using two cases.

Company Selection
Consider the motivating example in the introduction section.

Let A = a denote the event that a customer receives the
discount, A = a′ denote the event that a customer does not
receive the discount, R = r denote the event that a customer
uses the services, R = r′ denote the event that a customer
does not use the services, C = c denote a company A’s
customer, Z = z denote a younger customer (age below or
equal to 50), and Z = z′ denote an older customer (age above
50). The model is as shown in Figure 3.

Z

C

A R

Figure 3: Company selection model.

Based on Li-Pearl’s model, it is easy to see that the benefit
vector is (100,−60, 0,−140) (see the introduction section).
Therefore, the benefit function is:

argmaxc 100P (ra, r
′
a′ |c)− 60P (ra, ra′ |c) +

+0P (r′a, r
′
a′ |c)− 140P (r′a, ra′ |c). (1)

The manager of the carwash company collected the data
listed in Tables 1 and 2 from company A. By Li-Pearl’s The-
orem, the bounds of the benefit function are [−0.423, 2.832]
(see the appendix for details), and the midpoint is 1.205. It
suggests that the carwash company would gain $1.205 profit



Table 1: Experimental data collected by the carwash company.
350 customers were forced to receive the discount and 350
customers were forced not to receive the discount.

Discount No Discount

Young
45 out of 101

used the service
(44.6%)

5 out of 101
used the service

(5.0%)

Elder
248 out of 249

used the service
(99.6%)

179 out of 249
used the service

(71.9%)

Overall
293 out of 350

used the service
(83.7%)

184 out of 350
used the service

(52.6%)

Table 2: Observational data collected by the carwash com-
pany. 700 customers were given access to the discount, they
can choose whether to obtain the discount by themselves
(note that a customer may still not use the service even they
obtained the discount by themselves).

Discount No Discount

Young
90 out of 152

used the service
(59.2%)

9 out of 50
used the service

(18.0%)

Elder
157 out of 159

used the service
(98.7%)

239 out of 339
used the service

(70.5%)

Overall
247 out of 311

used the service
(79.4%)

248 out of 389
used the service

(63.8%)

from each individual from company A if they offer company
A’s employees the discount. Besides, most of the bounded
area is positive, which provided more confidence that the
conclusion is correct. However, Li-Pearl’s theorem only uses
the overall data in Tables 1 and 2 (i.e., customer age is not
considered).

Now, if we apply Theorem 1 to the data in Tables 1 and
2, the bounds of the benefit function is [−0.168,−0.077]
(see the appendix for details), with the midpoint at −0.123.
This suggests that if the carwash company offers the dis-
count to company A’s employees, the carwash company will
lose $0.123 profit per individual. Notably, the upper bound
(−0.077) is negative, implying that the carwash company
must lose profit if they offers the discount to company A’s
employees regardless of how the bounds are used.

Effective Patients of a Drug
When a pharmaceutical company develops a new drug, it
seeks to identify patients so as to maximize the difference
between the number of effective patients and the number of
ineffective patients. The causal diagram is shown in Figure 4.

For the benefit vector, the pharmaceutical company as-
signed 1 to a complier because the complier is the patient
cured by the drug, assign −1 to an always-taker, a never-
taker, and a defier because they are all ineffective patients.
The benefit vector is then (1,−1,−1,−1).

Table 3: Results of an observational study (30 years old male)
into a new drug, with post-treatment blood pressure taken
into account.

Drug No Drug

Low
BP

375 out of 405
recovered
(92.6%)

159 out of 481
recovered
(33.1%)

High
BP

17 out of 183
recovered

(9.3%)

3 out of 6
recovered
(50.0%)

Combined data
392 out of 588

recovered
(66.7%)

162 out of 487
recovered
(33.3%)

C

Z

A R

Figure 4: A graphical model representing the effects of a
new drug, with A representing drug usage, R representing
recovery, Z representing blood pressure (measured at the
end of the study), and C representing the population specific
variables (gender and age).

Let A = a denote the event that a patient takes the drug,
A = a′ denote the event that a patient does not take the drug,
R = r denote the event that a patient is recovered, R = r′

denote the event that a patient is not recovered, Z = z denote
low blood pressure (measured at the end of the study),Z = z′

denote high blood pressure, and C (a set of variables) denote
the population-specific characteristics (gender and age) of a
patient. The benefit function is then

argmaxc P (ra, r
′
a′ |c)− P (ra, ra′ |c)−

−P (r′a, r
′
a′ |c)− P (r′a, ra′ |c). (2)

The pharmaceutical company records the recovery rates
of 70000 patients who were given access to the drug (i.e.,
observational study). For each group of patients who have the
same gender and age, they record the number of patients who
chose to take the drug and their recovery rates, the number
of patients who did not choose to take the drug, and their
recovery rates. For example, the results of the 30 years old
male patients (1075 patients) are shown in Table 3.

Note that the data in Table 3 is observational data. The
experimental data is not available yet. However, the set {C}
satisfied the back-door criterion for both (A,Z) and (A,R)
(Pearl 1995). By Pearl’s adjustment formula, the experimental
data needed are: P (ra|c) = P (r|a, c) = 0.6667, P (ra′ |c) =
P (r|a′, c) = 0.3326, P (za|c) = P (z|a, c) = 0.6888, and
P (z′a′ |c) = P (z′|a′, c) = 0.0123.

First, we apply Li-Pearl’s Theorem to the combined data
in Table 3 and the above experimental data, the bounds of the
benefit function are [−0.3320, 0.3333] (see the appendix for



details), and the midpoint is 0.0007. It suggests that the drug
should apply to the 30 years old male because the difference
between the number of effective patients and the number of
ineffective patients per 30 years old male is positive. Or some-
one may say that it is hard to decide because the bounded
area is roughly half positive and half negative.

Second, we apply the proposed Theorem 2 to the entire
data in Table 3 and the above experimental data, the bounds
of the benefit function are [−0.3320,−0.0054] (see the ap-
pendix for details), and the midpoint is −0.1687. The upper
bound dropped significantly from 0.3333 to −0.0054. It sug-
gests that the drug should not apply to the 30 years old male,
because the difference between the number of effective pa-
tients and the number of ineffective patients per 30 years old
male is negative. Most importantly, the entire bounded area
is negative so that the decision is convincing.

Simulated Results
In this section, we will show how much in general the bounds
of the benefit function are improved by Theorems 1, 2, and 3
in three simple causal diagrams.

For each theorem, we randomly generated 100000 sam-
ple distributions (observational data and experimental data)
compatible with the causal diagram (see the appendix for the
generating algorithm). Each sample distribution represents a
different instantiate of the population-specific characteristics
C in the model. The generating algorithm ensures that the
experimental data and observational data satisfy the general
relation (i.e., P (x, y|c) ≤ P (y|do(x), c) ≤ 1 − P (x, y′|c))
(Tian and Pearl 2000). We set the benefit vector (β, γ, θ, δ)
to be the most common (1,−1,−1,−1) to encourage com-
pliers while avoiding always-takers, never-takers, and defiers.
For the sample distribution i, let [ai, bi] be the bounds that
considered the covariates and the causal diagram from the
proposed theorems and [ci, di] be the bounds that did not con-
sider the covariates and the causal diagram from Li-Pearl’s
Theorem. We summarized the following criteria for each
case:

• Average increased lower bound :
∑

(ai−ci)
100000 ;

• Average decreased upper bound :
∑

(di−bi)
100000 ;

• Average gap that did not consider the covariates and the
causal diagram :

∑
(di−ci)
100000 ;

• Average gap that considered the covariates and the causal
diagram :

∑
(bi−ai)
100000 ;

• Number of sample distributions in which the decision was
flipped :

∑
ei where, ei = 1 if (ai + bi)× (ci + di) < 0

and ei = 0 otherwise;
• Number of sample distributions in which the bounds that

considered the covariates and the causal diagram from
proposed Theorems were narrower :

∑
fi where, fi = 1

if (ai > ci) or (bi < di) and fi = 0 otherwise.

Non-descendant Covariates
In the case of non-descendant covariates compatible with
Theorem 1. We randomly generated 100000 sample distribu-
tions compatible with the causal diagram in Figure 5.

Z

C

X Y

Figure 5: Causal diagram such that C ∪Z is not a descendant
of X .

The results between proposed Theorem 1 and Li-Pearl’s
Theorem are summarized in Table 4. We can see that the
average gap that did not consider the covariates and the causal
diagram by Li-Pearl’s Theorem is 0.4342, while the average
gap that considered the covariates and the causal diagram by
Theorem 1 is 0.3352, and both the lower bound and upper
bound are improved by roughly 0.05. The decisions flipped
(i.e., the results of Li-Pearl’s Theorem suggest gain profit,
while the results of Theorem 1 suggest losing profit, or the
reverse) is 920/100000 ≈ 1% of the samples, which means
that at least 1% of the applications would have the wrong
decision if we do not consider the covariates. The bounds that
considered the covariates and the causal diagram are narrower
in 93688/100000 ≈ 93.7% of the samples. Therefore, if a
set of Z is available that satisfies Theorem 1, the bounds of
the benefit function by the proposed theorem are more useful
as the gap is narrower.

Table 4: Simulation results of 100000 sample distributions
compatible with the causal diagram in Figure 5.

Average
increased

lower
bound

Average
decreased

upper
bound

Average
gap by

Li-Pearl’s
Theorem

0.0494 0.0496 0.4342
Average
gap by

Theorem 1

Decision
flipped

Bounds
narrower

0.3352 920 93688

We then randomly picked 100 of 100000 sample distribu-
tions to draw the graph of bounds that considered and did
not consider the covariates and the causal diagram (To have
a better vision, we sorted the sample distributions by the gen-
eral lower bound that did not considered the covariates and
the causal diagram). The results are shown in Figure 6. We
can see that the bounds of the benefit function are improved
in most of the samples with the causal diagram.

Partial Mediators
In the case of partial mediators compatible with Theorem 2.
We randomly generated 100000 sample distributions that are
compatible with the causal diagram in Figure 1.

The results between the proposed Theorem 2 and Li-
Pearl’s Theorem are summarized in Table 5. First, the av-



Figure 6: Bounds of the benefit function for 100 samples
compatible with the causal diagram of Figure 5, where the
general bounds are obtained from Li-Pearl’s Theorem and
the bounds that considered the non-descendant covariate and
the causal diagram are obtained from Theorem 1.

erage increased lower bound is 0 because the lower bound
in Theorem 2 is exactly the lower bound in Li-Pearl’s Theo-
rem. The partial mediator cannot improve the lower bound.
The average gap is also close between Li-Pearl’s Theo-
rem and proposed Theorem 2 because the bounds of only
12724/100000 ≈ 12.7% of samples are narrowed by the
proposed Theorem 2. 12.7% is an acceptable number if the
costs for considering the partial mediators are acceptable.
The actual improvement among the narrowed samples is im-
pressive. We then randomly generated 100000 samples that
the bounds are indeed narrowed by the proposed Theorem 2
(same generating algorithm, but we keep generating until we
have 100000 narrowed samples). The results of the compari-
son between the proposed Theorem 2 and Li-Pearl’s Theorem
are summarized in Table 6. We can see that the average gap
that did not consider the partial mediator and the causal di-
agram is 0.5531, while the average gap that considered the
partial mediator and the causal diagram by Theorem 2 is
0.4768, and the upper bound is improved by roughly 0.0764.
Therefore, if a set of Z is available that satisfies Theorem
2 and the costs permitted, we should always consider the
partial mediators and using Theorem 2.

We then randomly picked 100 of 100000 narrowed sample
distributions to draw the graph of bounds that considered and
did not considered the partial mediator and the causal diagram
(To have a better vision, we sorted the sample distributions
by the general upper bound that did not consider the partial
mediator and the causal diagram). The results are shown in
Figure 7. We can see that the upper bounds of the benefit
function are improved significantly among these narrowed
cases.

Pure Mediators
In the case of pure mediators compatible with Theorem 3. We
randomly generated 100000 sample distributions compatible

Table 5: Simulation results of 100000 sample distributions
compatible with the causal diagram in Figure 1.

Average
increased

lower
bound

Average
decreased

upper
bound

Average
gap by

Li-Pearl’s
Theorem

0 0.00985 0.4564
Average
gap by

Theorem 2

Decision
flipped

Bounds
narrower

0.4465 139 12724

Table 6: Simulation results of 100000 narrowed sample dis-
tributions compatible with the causal diagram in Figure 1.

Average
increased

lower
bound

Average
decreased

upper
bound

Average
gap by

Li-Pearl’s
Theorem

0 0.0764 0.5531
Average
gap by

Theorem 2

Decision
flipped

0.4768 1033

with the causal diagram in Figure 2.

The results between the proposed Theorem 3 and Li-
Pearl’s Theorem are summarized in Table 7. We can see
that the average gap that did not consider the pure media-
tor and the causal diagram by Li-Pearl’s Theorem is 0.5195,
while the average gap that considered the pure mediator and
the causal diagram by Theorem 3 is 0.3324, and the upper
bound is improved by roughly 0.187. The lower bound is not
improved, because the lower bound in Theorem 3 is exactly
the same as in Li-Pearl’s Theorem. The decisions flipped (i.e.,
the results of Li-Pearl’s Theorem suggest gain profit, while
the results of Theorem 3 suggest losing profit, or the reverse)
is 459/100000 ≈ 0.46% of the samples, which means that
at least 0.46% of the applications would have the wrong de-
cision if we do not consider the pure mediators. The bounds
that considered the pure mediator and the causal diagram are
narrower in 99996/100000 ≈ 99.9% of the samples. There-
fore, if a set of Z is available that satisfies Theorem 3, the
bounds of the benefit function by the proposed theorem is
more useful as the gap is narrower.

We then randomly picked 100 of 100000 sample distribu-
tions to draw the graph of bounds that considered and did not
consider the pure mediator and the causal diagram (To have
a better vision, we sorted the sample distributions by the gen-
eral upper bound that did not consider the pure mediator and
the causal diagram). The results are shown in Figure 8. We
can see that the bounds of the benefit function are improved
in almost all the samples with the causal diagram.



Figure 7: Upper bound of the benefit function for 100 nar-
rowed samples compatible with the causal diagram of Figure
1, where the general upper bounds are obtained from Li-
Pearl’s Theorem and the upper bounds that considered the
partial mediator and the causal diagram are obtained from
Theorem 2.

Figure 8: Bounds of the benefit function for 100 samples
compatible with the causal diagram of Figure 2, where the
general bounds are obtained from Li-Pearl’s Theorem and
the bounds that considered the pure mediator and the causal
diagram are obtained from Theorem 3.

Table 7: Simulation results of 100000 sample distributions
compatible with the causal diagram in Figure 2.

Average
increased

lower
bound

Average
decreased

upper
bound

Average
gap by

Li-Pearl’s
Theorem

0 0.1870 0.5195
Average
gap by

Theorem 3

Decision
flipped

Bounds
narrower

0.3324 459 99996

Discussion
In this section, we will discuss one more requirement of co-
variates Z in Theorem 1. Note that in the motivating example
in the introduction section, the discount should apply to the
entire company A’s employees; the carwash company can
only decide to offer the discount to the entire company A or
not to the entire company A. The carwash company cannot
offer the discount to a specific age group in company A. Oth-
erwise, if the carwash company can offer the discount to a
specific age group, the covariates Z should be considered as
the population-specific characteristics and combined into C,
and apply Li-Pearl’s Theorem separately to each population-
specific group. This requirement is common; for example,
an election speech cannot offer to only a specific group of
people in a region, and an auto show cannot offer to only
a specific group of customers in a region. This requirement
does not apply to Theorems 2 and 3 because the mediators
happen after the treatment.

Conclusion
We demonstrated how bounds of the benefit function in the
unit selection problem could be narrowed if covariates infor-
mation and their associated causal structures are available.
We derived three theorems to narrow the bounds of the benefit
function in three common graphical conditions. We illustrated
that if costs are permitted, and there are covariates and causal
structures available, the proposed theorems should always
be applied, as narrower bounds are helping to make accurate
decisions. Examples and simulation results are provided to
support the proposed theorems.
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Appendix
Proof of Theorems
First, we have the following Lemmas 4 and 5 from (Li and
Pearl 2019).
Lemma 4. The c-specific PNS P (yx, y

′
x′ |c) is bounded as

follows:

max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ≤ c-PNS,

min


P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c)

 ≥ c-PNS.

Lemma 5.
P (yx, y

′
x′ |c)− P (y′x, yx′ |c)

= P (yx|c)− P (yx′ |c).

Lemma 6. Given a causal diagram G and distribution com-
patible with G, let Z ∪ C be a set of variables that does
not contain any descendant of X in G, then c-specific PNS
P (yx, y

′
x′ |c) is bounded as follows:

∑
z

max


0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)


×P (z|c) ≤ c-PNS, (3)

∑
z

min


P (yx|z, c),
P (y′x′ |z, c),

P (y, x|z, c) + P (y′, x′|z, c),
P (yx|z, c)− P (yx′ |z, c)+

+P (y, x′|z, c) + P (y′, x|z, c)


×P (z|c) ≥ c-PNS. (4)

Proof.
c-PNS = P (yx, y

′
x′ |c)

=
∑
z

P (yx, y
′
x′ |z, c)× P (z|c). (5)

From Lemma 4, replace c with (z, c), we have the following:

max


0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)


≤ P (yx, y

′
x′ |z, c), (6)

min


P (yx|z, c),
P (y′x′ |z, c),

P (y, x|z, c) + P (y′, x′|z, c),
P (yx|z, c)− P (yx′ |z, c)+

+P (y, x′|z, c) + P (y′, x|z, c)


≥ P (yx, y

′
x′ |z, c). (7)

Substituting Equations 6 and 7 into Equation 5, Lemma 6
holds.
Note that since we have,

∑
z

max{0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

0× P (z|c)

= 0,∑
z

max{0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

[P (yx|z, c)− P (yx′ |z, c)]× P (z|c)

= P (yx|c)− P (yx′ |c),∑
z

max{0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

[P (y|z, c)− P (yx′ |z, c)]× P (z|c)

= P (y|c)− P (yx′ |c),∑
z

max{0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

[P (yx|z, c)− P (y|z, c)]× P (z|c)

= P (yx|c)− P (y|c),

then the lower bound in Lemma 6 is guaranteed to be no
worse than the lower bound in Lemma 4. Similarly, the upper
bound in Lemma 6 is guaranteed to be no worse than the
upper bound in Lemma 4. Also note that, since Z ∪ C does
not contain a descendant of X , the term P (yx|z, c) refers to
experimental data under population z, c.

Lemma 7.

f(c) = βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) +

+θP (y′x, y
′
x′ |c) + δP (yx′ , y′x|c)

= W + σP (yx, y
′
x′ |c). (8)



where,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),
σ = β − γ − θ + δ.

Proof.

f(c)

= βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) +

+θP (y′x, y
′
x′ |c) + δP (y′x, yx′ |c)

= βP (yx, y
′
x′ |c) + γ[P (yx|c)− P (yx, y

′
x′ |c)] +

+θ[P (y′x′)− P (yx, y
′
x′ |c)] + δP (y′x, yx′ |c)

= γP (yx|c) + θP (y′x′ |c) +

+(β − γ − θ)P (yx, y
′
x′ |c) + δP (y′x, yx′ |c). (9)

By Lemma 5, we have,

P (y′x, yx′ |c) = P (yx, y
′
x′ |c)− P (yx|c) + P (yx′ |c). (10)

Substituting Equation 10 into Equation 9, we have,

f(c)

= γP (yx|c) + θP (y′x′ |c) +

+(β − γ − θ)P (yx, y
′
x′ |c) + δP (y′x, yx′ |c)

= γP (yx|c) + θP (y′x′ |c) +

+(β − γ − θ)P (yx, y
′
x′ |c) +

+δ[P (yx, y
′
x′ |c)− P (yx|c) + P (yx′ |c)]

= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +

+(β − γ − θ + δ)P (yx, y
′
x′ |c).

Theorem 1. Given a causal diagramG and distribution com-
patible with G, let Z ∪ C be a set of variables that does not
contain any descendant of X in G, then the benefit function
f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) +

δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f ≤W + σL if σ < 0,

W + σL ≤ f ≤W + σU if σ > 0,

where σ,W,L,U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L =
∑
z

max


0,

P (yx|z, c)− P (yx′ |z, c),
P (y|z, c)− P (yx′ |z, c),
P (yx|z, c)− P (y|z, c)


×P (z|c),

U =
∑
z

min


P (yx|z, c),
P (y′x′ |z, c),

P (y, x|z, c) + P (y′, x′|z, c),
P (yx|z, c)− P (yx′ |z, c)+

+P (y, x′|z, c) + P (y′, x|z, c)


×P (z|c).

Proof. By Lemmas 6 and 7,
substituting Equations 3 and 4 into Equation 8, Theorem 1
holds.

Note that, if we substituting Lemma 4 into Lemma 7, we
have the same results as in Li-Pearl’s Theorem. We showed
that in Lemma 6 that the bounds in Lemma 6 is guaranteed
to be no worse than the bounds in Lemma 4, therefore, the
bounds in Theorem 1 is guaranteed to be no worse than the
bounds in Li-Pearl’s Theorem.

Lemma 8. Given a causal diagram G and distribution com-
patible with G, let Z ∪ C be a set of variables such that
∀x, x′ ∈ X : x 6= x′, (Yx ⊥⊥ X ∪ Zx′ | Zx, C) in G, then
the c-PNS P (yx, y

′
x′ |c) is bounded as follows:

max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ≤ c-PNS, (11)

min



P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c),∑
z

∑
z′ min{P (y|z, x, c),
P (y′|z′, x′, c)}

×min{P (zx|c), P (z′x′ |c)}


≥ c-PNS.

(12)

Proof.
c-PNS

= P (yx, y
′
x′ |c)

= ΣzΣz′P (yx, y
′
x′ , zx, z

′
x′ |c)

= ΣzΣz′P (yx, y
′
x′ |zx, z′x′ , c)× P (zx, z

′
x′ |c)

≤ ΣzΣz′ min{P (yx|zx, z′x′ , c), P (y′x′ |zx, z′x′ , c)}
×min{P (zx|c), P (z′x′ |c)}

= ΣzΣz′ min{P (yx|zx, c), P (y′x′ |z′x′ , c)}
×min{P (zx|c), P (z′x′ |c)} (13)

= ΣzΣz′ min{P (y|zx, x, c), P (y′|z′x′ , x′, c)}
×min{P (zx|c), P (z′x′ |c)} (14)

= ΣzΣz′ min{P (y|z, x, c), P (y′|z′, x′, c)}
×min{P (zx|c), P (z′x′ |c)}.

Combined with the bounds in Lemma 4, Lemma 8 holds.
Note that Equation 13 is due to Yx ⊥⊥ Zx′ | Zx, C and Yx′ ⊥⊥
Zx | Zx′ , C. Equation 14 is due to ∀x ∈ X,Yx ⊥⊥ X |Zx, C.

Theorem 2. Given a causal diagram G and distribution
compatible with G, let Z be a set of variables such that
∀x, x′ ∈ X : x 6= x′, (Yx ⊥⊥ X ∪ Zx′ | Zx, C) in G, and
C does not contain any descendant of X in G, then the
benefit function f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) +

θP (y′x, y
′
x′ |c) + δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f ≤W + σL if σ < 0,

W + σL ≤ f ≤W + σU if σ > 0,



where σ,W,L, U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ,

U = min



P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c),∑
z

∑
z′ min{P (y|z, x, c),
P (y′|z′, x′, c)}

×min{P (zx|c), P (z′x′ |c)}


.

Proof. By Lemmas 8 and 7,
substituting Equations 11 and 12 into Equation 8, Theorem 2
holds.

Note that, if we substituting Lemma 4 into Lemma 7, we
have the same results as in Li-Pearl’s Theorem. From the
proof of Lemma 8, we know that the lower bound in Lemma
8 is the same as in Lemma 4 and the upper bound in Lemma
8 is no worse than the upper bound in Lemma 4. Therefore,
the lower bound in Theorem 2 is the same as in Li-Pearl’s
Theorem, and the upper bound in Theorem 2 is guaranteed to
be no worse than the upper bound in Li-Pearl’s Theorem.

Lemma 9. Given a causal diagram G in Figure 9 and distri-
bution that compatible with G, and C is not a descendant of
X , then c-PNS P (yx, y

′
x′ |c) is bounded as follow:

C

Z

X Y

Figure 9: Mediator Z with no direct effects of X on Y .

max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ≤ c-PNS, (15)

min



P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c),
ΣzΣz′ 6=z min{P (y|z, c),

P (y′|z′, c)}
×min{P (z|x, c), P (z′|x′, c)}


≥ c-PNS.

(16)

Proof. First we show that in graph G, if an individual
is a c-complier from X to Y , then Zx|c and Zx′ |c must
have the different values. This is because the structural
equations for Y and Z are fy(z, uy, c) and fz(x, uz, c),
respectively. If an individual has the same Zx|c and
Zx′ |c value, then fz(x, uz, c) = fz(x′, uz, c). This means
fy(fz(x, uz, c), uy, c) = fy(fz(x′, uz, c), uy, c), i.e., Yx|c
and Yx′ |c must have the same value. Thus this individual is
not a c-complier. Therefore,

c-PNS
= P (yx, y

′
x′ |c)

= ΣzΣz′ 6=zP (yz, y
′
z′ |c)× P (zx, z

′
x′ |c)

≤ ΣzΣz′ 6=z min{P (yz|c), P (y′z′ |c)}
×min{P (zx|c), P (z′x′ |c)}

= ΣzΣz′ 6=z min{P (y|z, c), P (y′|z′, c)}
×min{P (z|x, c), P (z′|x′, c)}.

Combined with the bounds in Lemma 4, Lemma 9 holds.

Theorem 3. Given a causal diagram G in Figure 9
and distribution compatible with G, and C does not
contain any descendant of X , then the benefit function
f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) +

δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f ≤W + σL if σ < 0,

W + σL ≤ f ≤W + σU if σ > 0,

where σ,W,L,U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ,

U = min



P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c),
ΣzΣz′ 6=z min{P (y|z, c),

P (y′|z′, c)}
×min{P (z|x, c), P (z′|x′, c)}


.

Proof. By Lemmas 9 and 7,
substituting Equations 15 and 16 into Equation 8, Theorem 3
holds.

Note that, if we substituting Lemma 4 into Lemma 7, we
have the same results as in Li-Pearl’s Theorem. From the
proof of Lemma 9, we know that the lower bound in Lemma
9 is the same as in Lemma 4 and the upper bound in Lemma
9 is no worse than the upper bound in Lemma 4. Therefore,
the lower bound in Theorem 3 is the same as in Li-Pearl’s
Theorem, and the upper bound in Theorem 3 is guaranteed to
be no worse than the upper bound in Li-Pearl’s Theorem.



Calculation in the Examples

In order to clearly see the calculation steps, we list an equiva-
lent form of Li-Pearl’s Theorem as following (see the proof
in the previous section for the equivalence):

Theorem 10. Given a causal diagram G and distribution
compatible with G, let C be a set of variables that does not
contain any descendant of X in G, then the benefit function
f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) +

δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f(c) ≤W + σL if σ < 0,

W + σL ≤ f(c) ≤W + σU if σ > 0,

where σ,W,L,U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ,

U = min


P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c)

 .

Company Selection First, we apply Li-Pearl’s Theorem
(Theorem 10) to the data in Tables 1 and 2. The benefit vector
is (100,−60, 0,−140).
We have,

σ = β − γ − θ + δ

= 100− (−60)− 0 + (−140)

= 20

W = (γ − δ)P (ra|c) + δP (ra′ |c) + θP (r′a′ |c)
= (−60− (−140))× 0.83729 + 0× 0.47405 +

+(−140)× 0.52595

= −6.64980

L = max


0,

P (ra|c)− P (ra′ |c),
P (r|c)− P (ra′ |c),
P (ra|c)− P (r|c)


= max


0,

0.83729− 0.52595,
0.70714− 0.52595,
0.83729− 0.70714


= 0.31134

U = min


P (ra|c),
P (r′a′ |c),

P (r, a|c) + P (r′, a′|c),
P (ra|c)− P (ra′ |c)+

+P (r, a′|c) + P (r′, a|c)


= min


0.83729,

1− 0.52595,
0.35286 + 0.20143,
0.83729− 0.52595+
+0.35428 + 0.09143


= 0.47405

Therefore,

W + σL ≤ f(c) ≤W + σU,

−6.64980 + 20× 0.31134 ≤ f(c)

≤ −6.64980 + 20× 0.47405,

−0.423 ≤ f(c) ≤ 2.832.

Then, we apply Theorem 1 to the data in Tables 1 and 2. σ
and W are the same as above.
And we have,

L =
∑
z

max


0,

P (ra|z, c)− P (ra′ |z, c),
P (r|z, c)− P (ra′ |z, c),
P (ra|z, c)− P (r|z, c)


×P (z|c)

= max


0,

0.44600− 0.05000,
0.49010− 0.05000,
0.44600− 0.49010

× 0.28857

+ max


0,

0.99600− 0.71900,
0.79518− 0.71900,
0.99600− 0.79518

× 0.71143

= 0.44010× 0.28857 + 0.27700× 0.71143

= 0.32407



U =
∑
z

min


P (ra|z, c),
P (r′a′ |z, c),

P (r, a|z, c) + P (r′, a′|z, c),
P (ra|z, c)− P (ra′ |z, c)+

+P (r, a′|z, c) + P (r′, a|z, c)


×P (z|c)

= min


0.44600,

1− 0.05000,
0.44555 + 0.20297,
0.44600− 0.05000+
+0.04455 + 0.30693

× 0.28857

+ min


0.99600,

1− 0.71900,
0.31526 + 0.20080,
0.99600− 0.71900+
+0.47992 + 0.00402

× 0.71143

= 0.44600× 0.28857 + 0.28100× 0.71143

= 0.32862

Therefore,
W + σL ≤ f(c) ≤W + σU,

−6.64980 + 20× 0.32407 ≤ f(c)

≤ −6.64980 + 20× 0.32862,

−0.168 ≤ f(c) ≤ −0.077.

Effective Patients of a Drug First, the set {C} satisfied
the back-door criterion for both (A,Z) and (A,R). By
Pearl’s adjustment formula, the experimental data needed
are:

P (ra|c) = P (r|a, c) = 0.66666,

P (ra′ |c) = P (r|a′, c) = 0.33265,

P (za|c) = P (z|a, c) = 0.68878,

P (z′a′ |c) = P (z′|a′, c) = 0.01232.

Then, we apply Li-Pearl’s Theorem (Theorem 10) to the data
in Table 3 and the above experimental data. The benefit vector
is (1,−1,−1,−1).
We have,

σ = β − γ − θ + δ

= 1− (−1)− (−1) + (−1)

= 2

W = (γ − δ)P (ra|c) + δP (ra′ |c) + θP (r′a′ |c)
= (−1 + 1)P (ra|c)− P (ra′ |c)− P (r′a′ |c)
= −1

L = max


0,

P (ra|c)− P (ra′ |c),
P (r|c)− P (ya′ |c),
P (ra|c)− P (r|c)


= max


0,

0.66666− 0.33265,
0.51535− 0.33265,
0.66666− 0.51535


= 0.33401

U = min


P (ra|c),
P (r′a′ |c),

P (r, a|c) + P (r′, a′|c),
P (ra|c)− P (ra′ |c)+

+P (r, a′|c) + P (r′, a|c)


= min


0.66666,

1− 0.33265,
0.36465 + 0.30233,
0.66666− 0.33265+
+0.15070 + 0.18232


= 0.66666

Therefore,

W + σL ≤ f(c) ≤W + σU,

−1 + 2× 0.33401 ≤ f(c)

≤ −1 + 2× 0.66666,

−0.3320 ≤ f(c) ≤ 0.3333.

Then, we apply Theorem 2 to the data in Table 3 and the
above experimental data. σ, W , and L are the same as above.
And we have,

U = min



P (ra|c),
P (r′a′ |c),

P (r, a|c) + P (r′, a′|c),
P (ra|c)− P (ra′ |c)+

+P (r, a′|c) + P (r′, a|c),∑
z

∑
z′ min{P (r|z, a, c),
P (r′|z′, a′, c)}

×min{P (za|c), P (z′a′ |c)}



= min



0.66666,
1− 0.33265,

0.36465 + 0.30233,
0.66666− 0.33265+
+0.15070 + 0.18232,

min{0.92593, 0.66944}×
min{0.68878, 0.98768}+
min{0.92593, 0.50000}×
min{0.68878, 0.01232}+
min{0.09290, 0.66944}×
min{0.31122, 0.98768}+
min{0.09290, 0.50000}×
min{0.31122, 0.01232}


= 0.49731

Therefore,

W + σL ≤ f(c) ≤W + σU,

−1 + 2× 0.33401 ≤ f(c)

≤ −1 + 2× 0.49731,

−0.3320 ≤ f(c) ≤ −0.0054.



Algorithm 1: Generate sample distributions for non-
descendant covariates
Input: n, number of sample distributions needed.
Output: n sample distributions (observational data and ex-
perimental data).

1: for i = 1 to n do
2: //rand(0, 1) is the function that random uniformly

generate a number from 0 to 1.
3: // t1, t2, t3, and t4 can be interpreted as the number of

individuals such that x ∧ z, x′ ∧ z, x ∧ z′, and x′ ∧ z′
respectively.

4: t1 = rand(0, 1)× 1000;
5: t2 = rand(0, 1)× (1000− t1);
6: t3 = rand(0, 1)× (1000− t1 − t2);
7: t4 = 1000− t1 − t2 − t3;
8: // o1, o2, o3, and o4 can be interpreted as the number

of individuals such that x∧z∧y, x′∧z∧y, x∧z′∧y,
and x′ ∧ z′ ∧ y respectively.

9: o1 = rand(0, 1)× t1;
10: o2 = rand(0, 1)× t2;
11: o3 = rand(0, 1)× t3;
12: o4 = rand(0, 1)× t4;
13: // Each ci corresponding to a sample distribution.
14: // The following are experimental data that satisfied

the general bounds provided by Tian and Pearl.
15: P (y|do(x), z, ci) = rand(0, 1)× t2

t1+t2
+ o1

t1+t2
;

16: P (y|do(x′), z, ci) = rand(0, 1)× t1
t1+t2

+ o2
t1+t2

;
17: P (y|do(x), z′, ci) = rand(0, 1)× t4

t3+t4
+ o3

t3+t4
;

18: P (y|do(x′), z′, ci) = rand(0, 1)× t3
t3+t4

+ o4
t3+t4

;
19: // The following are observational data.
20: P (x, y, z|ci) = o1/1000;
21: P (x, y, z′|ci) = o3/1000;
22: P (x, y′, z|ci) = (t1 − o1)/1000;
23: P (x, y′, z′|ci) = (t3 − o3)/1000;
24: P (x′, y, z|ci) = o2/1000;
25: P (x′, y, z′|ci) = o4/1000;
26: P (x′, y′, z|ci) = (t2 − o2)/1000;
27: P (x′, y′, z′|ci) = (t4 − o4)/1000;
28: end for

Distribution Generating Algorithms
Here, the sample distribution generating algorithms in simu-
lated studies are presented.

Non-descendant Covariates The Algorithm 1 is the sam-
ple distribution generating algorithm in the simulated study of
non-descendant covariates case. It generated both experimen-
tal and observational data compatible with Figure 5 (X,Y, Z
are binary) that satisfy the general relation provided by Tian
and Pearl (i.e., the general relation between experimental and
observational data).

Partial Mediators The observational data compatible with
Figure 1 (X,Y, Z are binary) in the simulated study of partial
mediators case was generated by Algorithm 2. The experi-
mental data needed was computed via adjustment formula
because the set {C} satisfied the back-door criterion for both

Algorithm 2: Generate sample distributions for partial media-
tors
Input: n, number of sample distributions needed.
Output: n sample distributions (observational data in condi-
tional probability tables).

1: for i = 1 to n do
2: //rand(0, 1) is the function that random uniformly

generate a number from 0 to 1.
3: // Each ci corresponding to a sample distribution.
4: P (x|ci) = rand(0, 1);
5: P (z|x, ci) = rand(0, 1);
6: P (z|x′, ci) = rand(0, 1);
7: P (y|x, z, ci) = rand(0, 1);
8: P (y|x′, z, ci) = rand(0, 1);
9: P (y|x, z′, ci) = rand(0, 1);

10: P (y|x′, z′, ci) = rand(0, 1);
11: end for

Algorithm 3: Generate sample distributions for pure media-
tors
Input: n, number of sample distributions needed.
Output: n sample distributions (observational data in condi-
tional probability tables).

1: for i = 1 to n do
2: //rand(0, 1) is the function that random uniformly

generate a number from 0 to 1.
3: // Each ci corresponding to a sample distribution.
4: P (x|ci) = rand(0, 1);
5: P (z|x, ci) = rand(0, 1);
6: P (z|x′, ci) = rand(0, 1);
7: P (y|z, ci) = rand(0, 1);
8: P (y|z′, ci) = rand(0, 1);
9: end for

(X,Z) and (X,Y ).

Pure Mediators The observational data compatible with
Figure 2 (X,Y, Z are binary) in the simulated study of pure
mediators case was generated by Algorithm 3. The experi-
mental data needed was computed via adjustment formula
because the set {C} satisfied the back-door criterion for
(X,Y ).




